Ion Exchanging Or Liquid-liquid Extracting Patents (Class 423/21.5)
  • Publication number: 20130287653
    Abstract: Rare earth elements are recovered from coal ash. The coal ash with rare earth elements can be treated with a mineral acid to form an aqueous mineral acid solution. The aqueous mineral acid solution can be extracted to form an organic solution that includes the rare earth salts. The organic solution can be mixed with water to form an aqueous solution that includes the rare earth salts. The rare earth elements are separated from the aqueous solution.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 31, 2013
    Inventors: Prakash B. Joshi, Dorin V. Preda, David A. Skyler, Anait Tsinberg, B. David Green, William J. Marinelli
  • Patent number: 8524176
    Abstract: A method is described to produce high purity rare earth oxides of the elements La, Ce, Tb, Eu and Y from phosphor, such as waste phosphor powders originating in various consumer products. One approach involves leaching the powder in two stages and converting to two groups of relatively high purity mixed rare earth oxides. The first group containing Eu and Y is initially separated by solvent extraction. Once separated, Eu is purified using Zn reduction with custom apparatus. Y is purified by running another solvent extraction process using tricaprylmethylammonium chloride. Ce is separated from the second group of oxides, containing La, Ce and Tb by using solvent extraction. Subsequently, La and Tb are separated from each other and converted to pure oxides by using solvent extraction processes. A one-stage leaching process, wherein all rare earths get leached into the solution and subsequently processed, is also described.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 3, 2013
    Assignee: REEnewal Corporation
    Inventor: Narayan V. Thakur
  • Patent number: 8470270
    Abstract: The present invention relates to methods for recovering rare earth elements, in particular, from phosphogypsum. The claimed method comprises acidic extraction of rare earth elements from phosphogypsum using sulfuric acid-nitric acid mixture solution at 3.2-1.2 ratio with concentration of 1-3% by weight and at liquids-solids ratio of 4-5 within 8-12 minutes with simultaneous hydroacoustic action on the extraction suspension agent being mixed succeeded by separation of insoluble gypsum from extraction suspension agent and by recovery of rare earth elements from extraction solution using cation-exchange sorption by passing the latter through cation-exchange filter. The claimed method allows both to increase the recovery rate of rare earth elements and to reduce by half the time of the process accomplished at lower concentrations and with smaller volumes of acidic reagents.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 25, 2013
    Assignee: Twin Trading Company
    Inventors: Yakov Kuzmich Abramov, Vladimir Mihailovich Veselov, Viktor Mihailovich Zalevsky, Nikolay Dmitrievich argunov, Lidija Petrovna Bogdanova, Nikolay Aleksandrovich Gukasov, Vladimir Dmitrievich Evdokimov, Vitaly Grigorevich Tamurka, Ljubov Viktorovna Motovilova
  • Patent number: 8460623
    Abstract: Provided are methods using ketoximes and/or aldoximes, including 3-methyl-5-alkylsalicylaldoxime and/or 3-methyl-5-alkyl-2-hydroxyacetophenone oxime, in reagent compositions for metal extraction/isolation. One such method is of extracting a metal from a nitrate-containing aqueous solution. Another such method is of extracting a metal from an aqueous ammoniacal solution. A third method is of multi-metal extraction based on a predetermined pH.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: June 11, 2013
    Assignee: Cognis IP Management GmbH
    Inventors: Michael Virnig, Jack Bender, Nathan C. Emmerich
  • Patent number: 8425654
    Abstract: An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 23, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Amanda M. Johnsen, Chuck Z. Soderquist, Bruce K. McNamara, Darrell R. Fisher
  • Patent number: 8372360
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: February 12, 2013
    Assignee: Freeport-McMoran Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8372361
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: February 12, 2013
    Assignee: Freeport-McMoran Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8354085
    Abstract: The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N?,N?-tetraoctyl-3-oxapentanediamide (TODGA).
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 15, 2013
    Assignee: U.S. Department of Energy
    Inventor: Artem V. Guelis
  • Publication number: 20120328493
    Abstract: A target light rare earth element is separated from an aqueous solution containing two or more of La, Ce, Pr and Nd by contacting an organic phase containing an extractant with the aqueous solution in a counter-current flow multistage mixer-settler while adding an alkaline solution thereto, and contacting the organic phase with an acid aqueous solution for back-extracting the target element. The extractant is a dialkyl diglycol amic acid having formula: R1R2NCOCH2OCH2COOH wherein R1 and R2 are alkyl, at least one having at least 6 carbon atoms.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 27, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroto Sugahara, Kazuaki Sakaki, Takehisa Minowa
  • Patent number: 8263028
    Abstract: Processes described include reacting a fresh or spent catalyst, or sorbent, with a solution containing an extracting agent (such as an acid or a base). Preferably, the catalyst contains both alumina and a molecular sieve (or a sorbent), and the reaction is performed under relatively mild conditions such that the majority of the base material does not dissolve into the solution. Thus, the catalyst can be re-used, and in certain instances the catalyst performance even improves, with or without re-incorporating certain of the metals back into the catalyst. Additionally, metals contained in the catalyst, such as Na, Mg, Al, P, S, Cl, K, Ca, V, Fe, Ni, Cu, Zn, Sr, Zn Sb, Ba, La, Ce, Pr, Nd, Pb, or their equivalent oxides, can be removed from the catalyst. Some of the metals that are removed are relatively valuable (such as the rare earth elements of La, Ce, Pr and Nd).
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: September 11, 2012
    Inventor: Albert A. Vierheilig
  • Publication number: 20120219476
    Abstract: Provided are methods using ketoximes and/or aldoximes, including 3-methyl-5-alkylsalicylaldoxime and/or 3-methyl-5-alkyl-2-hydroxyacetophenone oxime, in reagent compositions for metal extraction/isolation. One such method is of extracting a metal from a nitrate-containing aqueous solution. Another such method is of extracting a metal from an aqueous ammoniacal solution. A third method is of multi-metal extraction based on a predetermined pH.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 30, 2012
    Inventors: Michael Virnig, Jack Bender, Nathan C. Emmerich
  • Patent number: 8216532
    Abstract: Processes described include reacting a fresh or spent catalyst, or sorbent, with a solution containing an extracting agent (such as an acid or a base). Preferably, the catalyst contains both alumina and a molecular sieve (or a sorbent), and the reaction is performed under relatively mild conditions such that the majority of the base material does not dissolve into the solution. Thus, the catalyst can be re-used, and in certain instances the performance of the catalyst even improves, with or without re-incorporating certain of the metals back into the catalyst. Additionally, metals contained in the catalyst, such as Na, Mg, Al, P, S, Cl, K, Ca, V, Fe, Ni, Cu, Zn, Sr, Zn Sb, Ba, La, Ce, Pr, Nd, Pb, or their equivalent oxides, can be removed from the catalyst. Some of the metals that are removed are relatively valuable (such as the rare earth elements of La, Ce, Pr and Nd).
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 10, 2012
    Inventor: Albert A. Vierheilig
  • Patent number: 8177881
    Abstract: Solvent extraction from an aqueous phase containing first and second rare earth elements is carried out by contacting an organic phase containing a diglycolamic acid as an extractant and a hydrocarbon or a low-polar alcohol as a solvent, with the aqueous phase below pH 3 for extracting the first rare earth element into the organic phase, back-extracting from the organic phase with an aqueous acid solution for recovering the first rare earth element, and recovering the second rare earth element which has not been extracted into the organic phase and has remained in the aqueous phase.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 15, 2012
    Assignees: Shin-Etsu Chemical Co., Ltd., Japan Atomic Energy Agency
    Inventors: Hiroto Sugahara, Kazuaki Sakaki, Takehisa Minowa, Hirochika Naganawa, Kojiro Shimojo
  • Publication number: 20120114538
    Abstract: The present invention relates to methods for recovering rare earth elements, in particular, from phosphogypsum. The claimed method comprises acidic extraction of rare earth elements from phosphogypsum using sulfuric acid-nitric acid mixture solution at 3.2-1.2 ratio with concentration of 1-3% by weight and at liquids-solids ratio of 4-5 within 8-12 minutes with simultaneous hydroacoustic action on the extraction suspension agent being mixed succeeded by separation of insoluble gypsum from extraction suspension agent and by recovery of rare earth elements from extraction solution using cation-exchange sorption by passing the latter through cation-exchange filter. The claimed method allows both to increase the recovery rate of rare earth elements and to reduce by half the time of the process accomplished at lower concentrations and with smaller volumes of acidic reagents.
    Type: Application
    Filed: September 14, 2010
    Publication date: May 10, 2012
    Inventors: Yakov Kuzmich Abramov, Vladimir Mihailovich Veselov, Viktor Mihailovich Zalevsky, Nikolay Dmitrievich Argunov, Lidija Petrovna Bogdanova, Nikolay Aleksandrovich Gukasov, Dmitrievich Evdokimov, Vitaly Grigorevich Tamurka, Ljubov Viktorovna Motovilova
  • Publication number: 20120100049
    Abstract: The present invention relates to methods for the separation of rare earth elements from aqueous solutions and, more particularly, to the separation of lanthanides (e.g., neodymium(III)) from aqueous solutions using an organo phosphorus functionalized adsorbent.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 26, 2012
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Lawrence Tavlarides, Hyung-Jun Park
  • Publication number: 20120087849
    Abstract: The present invention relates to a method for recovering lanthanum from zeolite compounds containing lanthanum which is characterized in that (A) an aqueous acid is added to one or more zeolite compounds containing lanthanum so that there is a pH value of lower than or equal to 3, and (B) dissolved lanthanum is separated out. The method according to the invention makes it possible when recovering lanthanum from zeolites containing lanthanum to dispense with the use of corrosive gases such as chlorine and hydrogen chloride and with corrosive oxidative molten metals, and thus simplifies the apparatus requirements and the process. The present invention makes it possible to recover lanthanum from zeolite compounds containing lanthanum which occur as catalyst waste from large-scale chemical material conversion processes, such as, for example, the Fluid Catalytic Cracking method (FCC method), the hydrocracking method or the Claus process.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 12, 2012
    Applicant: FERRO DUO GMBH
    Inventor: Alexander Kehrmann
  • Publication number: 20110274597
    Abstract: The application of aqueous solution of magnesium bicarbonate and/or calcium bicarbonate in the process of extraction separation and purification of metals is disclosed, wherein the aqueous solution of magnesium bicarbonate and/or calcium bicarbonate is used as an acidity balancing agent, in order to adjust the balancing pH value of the extraction separation process which uses an acidic organic extractant, improve the extraction capacity of organic phase, and increase the concentration of metal ions in the loaded organic phase.
    Type: Application
    Filed: January 14, 2010
    Publication date: November 10, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Xinlin Peng, Hongwei Li, Guilin Yang, Dali Cui, Chunmei Wang, Na Zhao, Liangshi Wang, Ying Yu
  • Patent number: 8052947
    Abstract: A method for separating and recovering trivalent and tetravalent actinoids in a simple and less costly manner without using an organophosphorus compound is provided. This method selectively separates and recovers the tetravalent actinoid plutonium Pu (IV) and the trivalent actinoids americium Am (III) and curium Cm (III) from trivalent lanthanoids Ln (III), etc. with the use of an extractant having a functional group with neutral multidentate ligand activity which is a hybrid donor type organic compound having both of donor atoms, i.e., an oxygen atom and a nitrogen atom.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: November 8, 2011
    Assignee: Japan Atomic Energy Agency
    Inventors: Tsuyoshi Yaita, Hideaki Shiwaku, Shinichi Suzuki, Yoshihiro Okamoto
  • Publication number: 20110206580
    Abstract: A method of recovering a rare earth constituent from a phosphor is presented. The method can include a number of steps (a) to (d). In step (a), the phosphor is fired with an alkali material under conditions sufficient to decompose the phosphor into a mixture of oxides. A residue containing rare earth oxides is extracted from the mixture in step (b). In step (c), the residue is treated to obtain a solution, which comprises rare earth constituents in salt form. Rare earth constituents are separated from the solution in step (d).
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Digamber Gurudas Porob, Alok Mani Srivastava, Prasanth Kumar Nammalwar, Gopi Chandran Ramachandran, Holly Ann Comanzo
  • Patent number: 7993612
    Abstract: A process for recovering rare earth elements from a composite ore containing rare earth elements that includes a monazite group mineral and an apatite mineral, includes pre-leaching the composite ore with an acid so as to substantially dissolve the apatite mineral into the leach liquor and precipitating rare earth elements from the pre-leach liquor. The residue of the pre-leaching step is subjected to an acid bake treatment, followed by a water leach, to produce a water leach liquor rich in rare earth elements. Impurities including thorium and iron are separated from the water leach liquor by introducing a neutralizing additive to the water leach liquor rich in rare earth elements, and rare earth elements are precipitated from the post-neutralization liquor.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: August 9, 2011
    Assignee: Arafura Resources Limited
    Inventors: Steven John Mackowski, Raul Raiter, Karin Helene Soldenhoff, Elizabeth Margaret Ho
  • Patent number: 7829044
    Abstract: The invention provides a process by which rare earth metal ions can be efficiently extracted by easy operation, and effective extracting reagents for the process. Specifically, phosphonamides represented by the general formula [1]; a process for producing the same; reagents for extracting rare earth metal ions, containing the phosphonamides; and a process for extraction of rare earth metal ions with the phosphonamides: [1] wherein R1 is alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, aralkyl, or a heterocyclic group, with the proviso that each group may be substituted; R2 is hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, aralkyl, or a heterocyclic group, with the proviso that each group may be substituted; R3 is hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, aralkyl, or a heterocyclic group, with the proviso that each group may be substituted, or the two R3s may be united to form alkylene, cycloalkylene, or arylene.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: November 9, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Yoshikazu Makioka, Teruyuki Hayashi, Masato Tanaka, Li-Biao Han
  • Patent number: 7799293
    Abstract: Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: September 21, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dean R. Peterman, John R. Klaehn, Mason K. Harrup, Richard D. Tillotson, Jack D. Law
  • Patent number: 7553461
    Abstract: A separation medium, a method for using that separation medium and an apparatus for selectively extracting multivalent cations such as pseudo-lanthanide, prelanthanide, lanthanide, preactinide or actinide cations from an aqueous acidic sample solution is described. The separation medium is preferably free-flowing and comprises particles having a diglycolamide (DGA) extractant dispersed onto an inert, porous support.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: June 30, 2009
    Assignee: PG Research Foundation, Inc.
    Inventors: E. Philip Horwitz, Richard E. Barrans, Jr., Andrew H. Bond
  • Publication number: 20090162267
    Abstract: Method for recovery of rare earths from fluorescent lamps. The method comprises six steps. The individual process steps are: Mechanical separation of coarse components. Separation of the halophosphate. Extraction in acids of easily soluble rare-earth fluorescent substances (mainly Y, Eu-oxide) Extraction in acids of rare-earth fluorescent substances which dissolve with difficulty (for example rare-earth phosphates) Breakdown of the remaining components which contain rare earths (for example rare-earth-aluminates) Final treatment.
    Type: Application
    Filed: May 31, 2007
    Publication date: June 25, 2009
    Applicant: OSRAM Gesellschaft mit beschrankter Haftung
    Inventors: Robert Otto, Agnieszka Wojtalewicz-Kasprzak
  • Publication number: 20090074639
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 19, 2009
    Applicant: PHELPS DODGE CORPORATION
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 7494630
    Abstract: A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: February 24, 2009
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Terry A. Todd, Jack D. Law, R. Scott Herbst, Valeriy N. Romanovskiy, Igor V. Smirnov, Vasily A. Babain, Vyatcheslav M. Esimantovski
  • Patent number: 7435399
    Abstract: A method of producing and purifying promethium-147 including the steps of: irradiating a target material including neodymium-146 with neutrons to produce promethium-147 within the irradiated target material; dissolving the irradiated target material to form an acidic solution; loading the acidic solution onto a chromatographic separation apparatus containing HDEHP; and eluting the apparatus to chromatographically separate the promethium-147 from the neodymium-146.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: October 14, 2008
    Assignee: UT-Battelle, LLC
    Inventors: Furn F Knapp, Jr., Rose A Boll, Saed Mirzadeh
  • Patent number: 7282187
    Abstract: A process for selectively extracting metal values, including, uranium, thorium, scandium and zirconium, from starting materials which include the metal values. The process is particularly well suited to extracting metal and recovering metal values from tantalum/niobium production process ore residues.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: October 16, 2007
    Assignee: Caboi Corporation
    Inventors: Patrick M. Brown, Robert A Hard, Donna D. Harbuck, G. Kyle Green
  • Patent number: 7157022
    Abstract: A separation medium, a method for using that separation medium and an apparatus for selectively extracting multivalent cations such as pseudo-lanthanide, prelanthanide, lanthanide, preactinide or actinide cations from an aqueous acidic sample solution is described. The separation medium is preferably free-flowing and comprises particles having a diglycolamide (DGA) extractant dispersed onto an inert, porous support.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: January 2, 2007
    Assignee: .PG Research Foundation, Inc.
    Inventors: E. Philip Horwitz, Richard E. Barrans, Jr., Andrew H. Bond
  • Patent number: 7157003
    Abstract: The invention concerns a cyclic method for separating at least one chemical element E1 from at least one chemical element E2 from an aqueous solution containing said elements, which employs a mixture of two extractants operating in non-overlapping chemical fields. Each cycle of said method comprises: a) co-extracting elements E1 and E2 by means of an organic phase containing a first extractant suited to causing the migration of said elements into said organic phase; b) adding to the organic phase a second extractant suited to selectively retaining the element(s) E2 in said organic phase during step c): c) selectively stripping the element(s) E1 from the organic phase; d) selectively stripping the element(s) E2 from the organic phase; e) separating the first and second extractants present in said organic phase at the end of step d).
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: January 2, 2007
    Assignee: Commissariat A L'Energie Atomique
    Inventors: Pascal Baron, Michael Lecomte, Xavier Heres, Bernard Mauborgne
  • Patent number: 7122164
    Abstract: Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 17, 2006
    Assignee: Sandia Corporation
    Inventors: Tina M. Nenoff, May D. Nyman
  • Patent number: 7101484
    Abstract: A process for purifying a stock Sr-90 solution containing stable and radioactive impurities, holding the purified Sr-90 solution for Y-90 ingrowth, and subsequently extracting the Y-90 from the Sr-90/Y-90 solution. The stock solution is sequentially passed through two thermoxide-type sorbents (T-3 and T-5), which hold the impurities while passing the Sr-90 solution. After ingrowth of Y-90, the Sr-90/Y-90 solution is passed through sorbent T-3, which preferentially sorbs the Y-90 while passing the Sr-90 solution. The Y-90 is then eluted from the T-3 sorbent. The T-3 and T-5 sorbents are specially prepared compounds of zirconium dioxide and titanium dioxide, respectively, that preferentially sorb Y-90 under predetermined conditions of solution pH and NaCl concentration.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: September 5, 2006
    Assignee: TC International Inc
    Inventors: Nikolai D. Betenekov, Leonid M. Sharygin, Roy W. Brown
  • Patent number: 7063792
    Abstract: A method for separating a metal (a) from a metal (2), preferably zirconium from hafnium, which consists in dissolving said metals in an aqueous solution wherein said metals are in a state preventing them from passing through a nanofiltration membrane; treating the aqueous medium with a ligand, for example EDTA, which is complexed with metal (1) and/or metal (2), then in passing the resulting treated medium on a filtering membrane allowing through the ligand-metal complexes, but retaining the metals not complexed with the ligand.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: June 20, 2006
    Assignee: Compagnie Europeenne du Zirconium CEZUS
    Inventors: Noël Ozanne, Marc Lionel Lemaire, Alain Jean-Louis Guy, Jacques Henri Foos, Stéphane Pellet-Rostaing, Frédéric Chitry
  • Patent number: 7025899
    Abstract: The preparation of concentrated solutions of oxime metal extractants, such as aldoximes and ketoximes, or mixtures of aldoxime and ketoxime, and the use thereof in formulating or preparing extraction reagent compositions for use in an extractant organic phase in a process of extracting metals from aqueous solutions containing metal values; and in particular, to concentrates which are solutions of individual ketoxime or aldoxime or mixtures of water-insoluble hydroxy aldoximes and ketoximes, in varying ratios by weight of 1:100 aldoxime to ketoxime, or conversely, 100:1 ketoxime to aldoxime, in water-immiscible hydrocarbon solvents or equilibrium modifiers. The invention also provides for maintaining stability of concentrates determined by accelerating rate calorimetry to define the ranges of oxime concentration and volume whereby the concentrate will be a stable, flowable, pourable and pumpable concentrate which can be safely stored long term.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: April 11, 2006
    Assignee: Cognis Corporation
    Inventors: R. Brantley Sudderth, George A. Wolfe, Ralph L. Jensen, Gary A. Kordosky, Michael J. Virnig, Mary Collins, Stephen M. Olafson, Terry L. Crandell, Hans C. Hein
  • Patent number: 6974563
    Abstract: Inorganic ion exchange materials for the separation of 90Y from 90Sr include clinoptilolite, potassium titanosilicate pharmacosiderite, sodium titanosilicate and sodium nonatitanate. These materials are suitable for making a 90Y generator that contains 90Sr immobilized on an ion exchange column of the materials. The materials have a very high selectivity for 90Sr, a very low selectivity for 90Y, good radiation and thermal stability, low toxicity, fast reaction kinetics, and can be readily and reproducibly synthesized. A method is thus provided for eluting 90Y from the ion exchange material with an aqueous solution to obtain a carrier-free solution of 90Y.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: December 13, 2005
    Assignee: Lynntech, Inc.
    Inventor: Paul Sylvester
  • Patent number: 6736958
    Abstract: The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10−6M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10−6M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: May 18, 2004
    Assignee: IA INC
    Inventors: Richard Harding Smith, Glenn Brian Martin
  • Publication number: 20040062695
    Abstract: A separation medium, a method for using that separation medium and an apparatus for selectively extracting multivalent cations such as pseudo-lanthanide, prelanthanide, lanthanide, preactinide or actinide cations from an aqueous acidic sample solution is described. The separation medium is preferably free-flowing and comprises particles having a diglycolamide (DGA) extractant dispersed onto an inert, porous support.
    Type: Application
    Filed: January 27, 2003
    Publication date: April 1, 2004
    Inventors: E. Philip Horwitz, Richard E. Barrans, Andrew H. Bond
  • Patent number: 6667016
    Abstract: Inorganic-organic hybrid gels can be employed to extract chemical species such as lanthanides and actinides and their preparation. The gels include a network of inorganic components with the formula: where M is Si, Ti, Zr or Al, wherein organic molecules which can complex the species to be extracted are integrated, with each organic molecule being covalently linked to one or several M atoms in the network. The network is made by a sol-gel process from metallic alkoxides functionalized with complexing groups (amino, ether, hydroxy, amido, pyridino and bipyridino), capable of extracting metals such as lanthanides and actinides.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: December 23, 2003
    Assignee: Commissariat a l'Energie Atomique and Compagnie Generale des Matieres Nucleaires
    Inventors: Daniel Meyer, OLivier Conocar, Joël Moreau, Michel Wong Chi Man
  • Patent number: 6657081
    Abstract: The invention relates to new calixarenes according to the formula: wherein: R1 is an alkyl or aryl group, or a hydrogen atom, R2 and R3, which may be identical or different, are alkyl or aryl groups, n is an integer ranging from 2 to 8, and p is an integer ranging from 4 to 8. Said calixarenes may be used to extract actinides and lanthanides from aqueous solutions.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: December 2, 2003
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-François Dozol, Alejandro Garcia Carrera, Volker Bohmer, Susan E. Matthews
  • Patent number: 6630114
    Abstract: The invention relates to new calixarenes according to the formula: wherein R1 and R2, which may be identical or different, are alkyl, alkoxy or aryl groups, and n is an integer equal to 2, 3 or 4. Said calixarenes may be used to extract actinides and lanthanides from aqueous solutions.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: October 7, 2003
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-François Dozol, Hélène Rouquette, Alejandro Garcia Carrera, Laetitia Delmau, Volker Böhmer, Alexander Shivanyuk, Christian Muzigmann
  • Patent number: 6350419
    Abstract: The present invention provides a novel process for the removal and recovery of metals from waste waters and process streams. The process of the present invention utilizes a combination of a supported liquid membrane (SLM) and a strip dispersion to improve extraction of the target species while increasing membrane stability and reducing processing costs. The process is illustrated with cobalt removal and recovery with unexpected results, such as unexpectedly high cobalt fluxes and a very high cobalt concentration in the strip solution recovered. This process can remove other metals, such as copper, zinc, nickel, mercury, lead, cadmium, silver, europium, lanthanum, neodymium, praseodymium, gadolinium, and selenium, from the feed stream to provide a concentrated strip solution of the target species.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: February 26, 2002
    Assignee: Commodore Separation Technologies Inc.
    Inventor: W. S. Winston Ho
  • Patent number: 6312653
    Abstract: The invention involves a process for separating actinides and lanthanides by liquid-liquid extraction by means of calixarenes. These calixarenes have the formula: with R1 and R2 being alkyl groups or o-nitrophenoxy alkyl groups and R3 and R4 being aryl groups, and they are used in an organic liquid phase containing an organic diluent. The diluent and the calixarene concentration of the organic phase are chosen so as to ensure an enrichment of the organic phase with the actinide(s) and/or lanthanide(s) to be separated from an aqueous acid or saline solution.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: November 6, 2001
    Assignee: Commissariat A l'Energie Atomique
    Inventors: Laetitia Delmau, Nicole Simon, Jean-François Dozol, Bernard Tournois, Christine Roussin-Bouchard, Serge Eymard, Volker Böhmer, Cordula Grüttner, Alexander Shivanyuk, Christian Musigmann
  • Patent number: 6312654
    Abstract: The invention relates to a method of separating trivalent actinides from at least one trivalent lanthanide and/or yttrium, whereby the trivalent actinides are extracted from an aqueous solution containing a H+ concentration of 0.01 to 2 moles/liter by using as extractant an (aryl)dithiophosphinic acid of the Formula R1R2PS (SH), in which R1 is phenyl or naphthyl, R2 is phenyl or naphthyl, or R1 and R2 are each phenyl or naphthyl substituted by methyl, ethyl, propyl, isopropyl, cyano, nitro, or halogen, with addition of an extraction synergist selected from the group consisting of trioctylphosphate, tris-(2-propylpentyl)-phosphate, and tris-(2-ethylhexyl)-phosphate. The use of the synergist in the extraction allows for a more selective extraction.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: November 6, 2001
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Giuseppe Modolo, Reinhard Odoj
  • Publication number: 20010033814
    Abstract: The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
    Type: Application
    Filed: April 27, 2001
    Publication date: October 25, 2001
    Inventors: Valeriy Nicholiavich Romanovskiy, Igor V. Smirnov, Vasiliy A. Babain, Terry A. Todd, Ken N. Brewer
  • Patent number: 6306355
    Abstract: The invention involves the separation of actinides and lanthanides by membrane transport by means of a calixarene. To this end, a first aqueous solution containing at least one metal from the group of actinides and lanthanides to be separated is placed in the compartment 3 and a second aqueous re-extraction solution such as a 10−2 mol/L solution of HNO3 is placed in the compartment 5. The membrane 6 is a microporous membrane of which the pores are filled with a liquid organic phase (calixarene and diluent) chosen in order to favour membrane transport of the metal(s) to be separated from compartment 3 to compartment 5.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: October 23, 2001
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Laetitia Delmau, Nicole Simon, Jean-François Dozol, Bernard Tournois, Christine Roussin-Bouchard, Volker Böhmer, Ralf A. Jakobi, Oliver Mogck, Abdi Tunayar
  • Publication number: 20010031233
    Abstract: Compositions and methods for selectively binding metal ions from a source solution comprise using a polyhydroxypyridinone-containing ligand covalently bonded to a particulate solid support through a hydrophilic spacer of the formula SS-A-X-L (HOPO)n where SS is a particulate solid support such as silica or a polymeric bead, A is a covalent linkage mechanism, X is a hydrophilic spacer grouping, L is a ligand carrier, HOPO is a hydroxypyridinone appropriately spaced on the ligand carrier to provide a minimum of six functional coordination metal binding sites, and n is an integer of 3 to 6 with the proviso that when SS is a particulate organic polymer, A-X may be combined as a single covalent linkage.
    Type: Application
    Filed: April 6, 2001
    Publication date: October 18, 2001
    Inventors: Ronald L. Bruening, Krzysztof E. Krakowiak
  • Patent number: 6270737
    Abstract: Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC6H4(OCH2CH2)nOH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: August 7, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Boris N. Zaitsev, Vyacheslav M. Esimantovskiy, Leonard N. Lazarev, Evgeniy G. Dzekun, Valeriy N. Romanovskiy, Terry A. Todd, Ken N. Brewer, Ronald S. Herbst, Jack D. Law
  • Patent number: 6258333
    Abstract: The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: July 10, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Valeriy Nicholiavich Romanovskiy, Igor V. Smirnov, Vasiliy A. Babain, Terry A. Todd, Ken N. Brewer
  • Patent number: 6214301
    Abstract: Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively ad
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: April 10, 2001
    Assignee: The Regents of the University of California
    Inventors: Wayne A. Taylor, David J. Jamriska