Platinum Group Metal (ru, Rh, Pd, Os, Ir, Or Pt) Patents (Class 423/22)
  • Patent number: 8889257
    Abstract: An article having: a nonconductive fiber and a RuO2 coating. A method of: immersing a nonconductive article in a solution of RuO4 and a nonpolar solvent at a temperature that is below the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent in the presence of the article; and warming the article and solution to ambient temperature under ambient conditions to cause the formation of a RuO2 coating on a portion of the article. An article having: a nonconductive fiber and a coating. The coating is made by electroless deposition, sputtering, atomic-layer deposition, chemical vapor deposition, or physical vapor deposition.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Debra R Rolison, Jeffrey W Long, Christopher N. Chervin, Justin C Lytle, Katherine A. Pettigrew
  • Patent number: 8883097
    Abstract: A method of treating value bearing material comprising oxidized or surface oxidized mineral values includes the steps of crushing the value bearing material, contacting the crushed material! with a sulfide solution to sulfide the oxidized or surface oxidized mineral values, and adding ions of a selected base metal to the crushed value bearing material. The value bearing material may comprise oxidized or surface oxidized base metal or precious metal minerals. The crushed value bearing material is prepared as a slurry or pulp comprising from 15% to 40% solids and the remainder comprising water. The sulfide solution preferably comprises a soluble sulfidiser such as sodium hydrosulfide and the base-metal ion solution preferably comprises metal salt of base metals like copper or iron.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 11, 2014
    Assignee: University of Cape Town
    Inventors: Deidre Jane Bradshaw, Andrew James Haigh Newell
  • Publication number: 20140328736
    Abstract: A method for separating an amount of osmium from a mixture containing the osmium and at least one other additional metal is provided. In particular, method for forming and trapping OsO4 to separate the osmium from a mixture containing the osmium and at least one other additional metal is provided.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Hendrik P. Engelbrecht, Cathy S. Cutler, Leonard Manson, Stacy Lynn Wilder
  • Patent number: 8828353
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: September 9, 2014
    Assignee: Freeport Minerals Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Publication number: 20140248198
    Abstract: To provide a palladium separating agent capable of separating palladium ions from a solution containing palladium ions of a low concentration to a high concentration in a short time with a high selectivity, and a method for separating palladium. A palladium separating agent having a functional group represented by the formula (1) bonded to a carrier: —Z—(CH2)n-S—R??(1) wherein R is a C1-18 chain hydrocarbon group, a C3-10 alicyclic hydrocarbon group, a C6-14 aromatic hydrocarbon group, a carboxymethyl group or a carboxyethyl group, n is an integer of from 1 to 4, and Z is an amide bond.
    Type: Application
    Filed: October 5, 2012
    Publication date: September 4, 2014
    Applicant: TOSOH CORPORATION
    Inventors: Yukinori Sudo, Takahiro Masuda, Setsuo Yoshida
  • Patent number: 8790608
    Abstract: Non-spherical siliceous particles having a plurality of porous branches are disclosed and claimed. The porous branches are randomly oriented and elongated, ring-like, and/or aggregated. An additive introduced during synthesis of the particles modifies pore volume and morphology. The tunability of the pore volume includes an inner diameter ranging from about 2 ? to about 50,000 ?. Synthesizing the particles includes mixing under constant or intermittent stirring in a reaction vessel an aqueous silicic acid solution with an acidic heel solution to form a mixture. The stirring may optionally be performed at a variable speed. An additive is introduced into the mixture at a controlled rate, wherein the additive imposes a pH change from a lower pH to a higher pH to the mixture to induce siliceous particle precipitation.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 29, 2014
    Assignee: Nalco Company
    Inventors: Brian T. Holland, Sascha Welz
  • Patent number: 8765480
    Abstract: A method for recovering a metal, capable of recovering a metal easily without requiring the use of an organic medium, is provided. A first complex between a first chelating agent and a metal present in a sample is formed in a first mixture prepared by mixing the first chelating agent and the sample. Then, the first complex is recovered from the first mixture, and a second complex between the metal derived from the first complex and a second chelating agent is formed in a second mixture prepared by mixing the first complex and an aqueous solution of the second chelating agent. The aqueous solution is under the pH conditions where the first chelating agent can be insoluble in the aqueous solution. Then, a liquid fraction containing the second complex is recovered from the second mixture. Thus, the metal can be recovered.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: July 1, 2014
    Assignee: ARKRAY, Inc.
    Inventor: Yuka Shimomura
  • Patent number: 8753599
    Abstract: A method and composition for the reduction of the emission of selenium into the environment from the burning of fossil fuels with the use of two chemistries, either individually or in combination with each other. The method uses polydithiocarbamic compounds, including polydithiocarbamic compounds derived from a polymer produced from acrylic-x and alkylamine in conjunction with a scrubber process to capture selenium and reduce its emission in aqueous phase blowdown. The method and composition also helps reduce corrosion in the scrubber process.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: June 17, 2014
    Assignee: Nalco Company
    Inventors: Bruce A. Keiser, Jitendra T. Shah, John V. Meier, Paul J. Zinn, Jianwei Yuan, Raul Espinosa, Rebecca L. Stiles, Richard Mimna, Wayne M. Carlson
  • Patent number: 8753590
    Abstract: A solid composition comprises: MnO2; and a compound represented by the general formula (I) wherein: R is a polymer; each Y is independently a hydrogen or a negative charge; Z is either hydrogen or is not present; each n is independently 1, 2, 3, 4, 5 or 6; wherein the MnO2 is bound to the compound of formula (I) so as to coat the surface thereof. Such a composition may be used for the separation of polyvalent metal species, such as Mo, from one or more accompanying impurities.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: June 17, 2014
    Assignee: Mallinckrodt LLC
    Inventor: Luis Antonio Miguel Marques Barbosa
  • Patent number: 8747789
    Abstract: A composition comprising a polymer derived from at least two monomers: acrylic-x and an alkylamine, wherein said polymer is modified to contain a functional group capable of scavenging one or more compositions containing one or more metals is disclosed. These polymers have many uses in various mediums, including wastewater systems.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: June 10, 2014
    Assignee: Nalco Company
    Inventors: Paul J. Zinn, Jitendra T. Shah, William J. Andrews
  • Publication number: 20140154156
    Abstract: The present invention enables simple production of osmium tetroxide having comparable performance to that sold in reagents from a solution containing osmium. The present invention relates to a method for producing osmium tetroxide solution, the method comprising a step for using ozone or a similar oxidizing gas to oxidize a solution containing osmium and produce osmium tetroxide gas and a step for introducing the resulting osmium tetroxide gas into a recovery solution; the present invention further relates to a production apparatus therefor.
    Type: Application
    Filed: May 30, 2012
    Publication date: June 5, 2014
    Applicant: National University Corporation Hamamatsu University School of Medicine
    Inventors: Kazushige Suzuki, Yoshinori Muranaka
  • Publication number: 20140147353
    Abstract: Methods and compositions are described for preparing metal salts and selectively separating metals from substrates and other metals. The methods can include a thionyl reagent that reacts with a metal in a solution to produce a metal salt. The reaction can be controlled by varying reagents and conditions such that the method can be used to selectively separate one or more metals from another metal or from a substrate. The method can also be used for removing metals from a surface. Compositions produced by the method are also described.
    Type: Application
    Filed: September 2, 2011
    Publication date: May 29, 2014
    Applicant: Georgia Tech Research Corporation
    Inventors: Wei Lin, Ching P. Wong, Rongwei Zhang
  • Patent number: 8715388
    Abstract: The present invention relates to a process for recovery of a precious metal catalyst from an organosilicon product-containing liquid reaction medium containing precious metal catalyst.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: May 6, 2014
    Assignee: Momentive Performance Materials
    Inventors: He Bai, Scott Frum
  • Patent number: 8702838
    Abstract: A method for recovering a metal, capable of recovering a metal easily without requiring the use of an organic medium, is provided. A complex between a chelating agent and a metal present in a sample is formed in a mixture prepared by mixing the chelating agent and the sample under pH conditions where the chelating agent can be insoluble in an aqueous medium. Then, the complex is recovered from the mixture, and further, the metal is recovered by dissolving the recovered complex in an aqueous medium under pH conditions that are different from the pH conditions where the chelating agent can be insoluble in an aqueous medium. By this method, a metal can be recovered easily without requiring the use of the use of an organic medium.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: April 22, 2014
    Assignee: ARKRAY, Inc.
    Inventors: Yuka Shimomura, Mayumi Yamada
  • Patent number: 8663584
    Abstract: An extraction component enabling the concurrent recovery of gold and/or palladium selectively from a hydrochloric acid media containing the base metals and other contaminants. The disclosed extractant disclosed eliminates the conventional multi-step process for such extraction by providing for an extraction method which uses a single solvent extraction reagent. Further enhancing the conventional multi step process, the conventional scrubbing stage is eliminated by a single stripping stage. The resulting solutions can be obtained from leaching many types of material such as copper anode slimes, the treatment of scrap such as electronic circuit boards and plating effluents, PGM, or refractory gold ores.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: March 4, 2014
    Inventors: Loghman Moradi, Hiwa Salimi, Mohammad Piltan, Issa Yavari
  • Patent number: 8636967
    Abstract: A metal recovery process for heavy effluent from a hydroconversion process. The effluent contains unconverted residue and a solid carbonaceous material containing group 8-10 metal, group 6 metal, and vanadium and/or nickel, and the metals are recovered according to the invention.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 28, 2014
    Assignee: Intevep, S.A.
    Inventors: Carlos Canelon, Angel Rivas, Edgar Lopez, Luis Zacarias
  • Patent number: 8618019
    Abstract: A producing method includes a preparing step of preparing a chemical compound having at least one of elements of alkali metals and alkali earth metals along with platinum, and a reducing step of reducing the prepared chemical compound with a reducing agent to form platinum nanoparticles.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: December 31, 2013
    Assignees: Aisin Seiki Kabushiki Kaisha, Toyota Jidosha Kabushiki Kaisha, The Doshisha
    Inventors: Takeshi Kamizono, Gang Xie, Minoru Inaba
  • Patent number: 8609050
    Abstract: A method and composition for the reduction of the emission of selenium into the environment from the burning of fossil fuels with the use of two chemistries, either individually or in combination with each other. The method uses polydithiocarbamic compounds, including polydithiocarbamic compounds derived from a polymer produced from acrylic-x and alkylamine in conjunction with a scrubber process to capture selenium and reduce its emission in aqueous phase blowdown. The method and composition also helps reduce corrosion in the scrubber process.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: December 17, 2013
    Assignee: Nalco Company
    Inventors: Bruce A. Keiser, Jitendra T. Shah, John V. Meier, Paul J. Zinn, Jianwei Yuan, Raul Espinosa, Rebecca L. Stiles, Richard Mimna, Wayne M. Carlson
  • Publication number: 20130330255
    Abstract: According to the present invention, ruthenium or a ruthenium compound, which is expensive, can be collected with high efficiency even from an aqueous solution containing a water-soluble salt, a lower alcohol, an organic acid or the like, by adding at least one specific inorganic adsorbent to an aqueous solution containing ruthenium or the ruthenium compound, dissolving the entirety or a part of the inorganic adsorbent under an acidic condition, and then adding an alkali to adjust the solution to be an alkaline solution having a pH value of 7 or higher, thereby depositing the inorganic adsorbent while causing the inorganic adsorbent to adsorb ruthenium or the ruthenium compound.
    Type: Application
    Filed: February 10, 2012
    Publication date: December 12, 2013
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Takashi Ouchi, Yoshio Nishimura
  • Publication number: 20130315803
    Abstract: A liquid-liquid-liquid three-phase continuous and countercurrent extraction apparatus comprises a three-phase-mixing chamber, a three-liquid-flow settler, and a two-phase-mixing chamber; a liquid-flow control separator placed in the three-liquid-flow settler aims to flexibly regulate the directions of three liquid flows in the three-phase system by different control separator combinations to achieve either a countercurrent operation of the top-layered phase with the middle-bottom two-layered mixtures, or a countercurrent operation of the top-middle two-layered mixtures with the bottom-layered phase; and a method of using the same, relating to extraction and separation field of chemical technology.
    Type: Application
    Filed: April 11, 2011
    Publication date: November 28, 2013
    Applicant: INSTITUTE OF PROCESS ENGINEERING, CHINESE ACADEMY OF SCIENCES
    Inventors: Huizhou Liu, Kun Huang, Zhentao An
  • Patent number: 8580212
    Abstract: The present invention relates to a process for preparing a trichloroammineplatinate salt by reacting a tetrachloroplatinate salt in aqueous solution in the presence of ammonium chloride and an alkali chloride with one or more carbonate salts selected from the group consisting of potassium, sodium and ammonium carbonate while keeping the pH value below 7 during the reaction; the product obtained therein and a use thereof.
    Type: Grant
    Filed: June 20, 2009
    Date of Patent: November 12, 2013
    Assignee: VUB Pharma A.S.
    Inventors: Vladimir Kysilka, Jan Mengler, Petr Kacer, Libor Cerveny, Karel Havlovic, Lucie Potucka
  • Patent number: 8562922
    Abstract: The present application relates to novel gel-type or macroporous picolylamine resins which are based on at least one monovinylaromatic compound and at least one polyvinylaromatic compound and/or a (meth)acrylic compound and contain tertiary nitrogen atoms in structures of the general formula (I) as functional group, where R1 is an optionally substituted radical from the group consisting of picolyl, methylquinoline and methylpiperidine, R2 is —CH2—S—CH2COOR3 or —CH2—S—C1-C4-alkyl or —CH2—S—CH2CH(NH2)COOR3 or —CH2—S—CH2—CH(OH)—CH2(OH) or or derivatives thereof or —C?S(NH2), R3 is a radical from the group consisting of H, Na and K, m is an integer from 1 to 4, n and p are each, independently of one another, a number in the range from 0.1 to 1.9 and the sum of n and p is 2 and M is the polymer matrix, a process for preparing them and their uses, in particular the use in hydrometallurgy and electroplating.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 22, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Reinhold Klipper, Michael Schelhaas, Duilio Rossoni
  • Patent number: 8535625
    Abstract: An adsorbent contains a carbohydrate having an ether linkage. Alternatively, an adsorbent contains a carbohydrate having a cross-linkage formation produced by a dehydration reaction using a strong acid. In collection of a precious metal using the adsorbent, the adsorbent selectively adsorbs a precious metal dissolved in a solution.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 17, 2013
    Assignees: Denso Corporation, Saga University
    Inventors: Minoru Kurata, Kinya Atsumi, Hiroaki Fukuda, Katsutoshi Inoue, Keisuke Ohto, Hidetaka Kawakita
  • Patent number: 8500846
    Abstract: The present invention is to provide a novel rare metal extractant containing a cyclic phenol sulfide derivative of the formula (1) and a method for extractive separation of rare metal(s) using the rare metal extractant with high efficiency.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: August 6, 2013
    Assignee: Akita University
    Inventors: Yoshihiko Kondo, Chun-bin Li, Manabu Yamada, Fumio Hamada
  • Publication number: 20130177487
    Abstract: A process for upgrading a precious metals-containing concentrate or residue results in near-quantitave removal of base metals and several impurity elements at elevated temperatures. The precious metals-containing concentrate or residue is exposed to oxygen or an oxygen-containing environment in an oxidative pre-treatment step followed by treatment with a hydrochlorinating agent in a hydrochlorination step to form an upgraded concentrate or residue.
    Type: Application
    Filed: June 17, 2011
    Publication date: July 11, 2013
    Applicant: ANGLO PLATINUM MANAGEMENT SERVICES (PROPRIETARY) LIMITED
    Inventors: Alain Roy, Boyd R. Davis, Leslie James Bryson, Lloyd Robert Nelson, Stephen Farring Woollam, Victor Loyiso Vusumzi Mtotywa
  • Patent number: 8475749
    Abstract: A method recovers noble metals from noble metal-containing compositions and includes steps of (i) providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalized by organic groups and has at least one noble metal adsorbed to it, and (ii) ashing of the noble metal-containing composition provided in step (i) in order to adjust a residual carbon content of at most 10% by weight, relative to the total weight of the noble metal-containing composition after ashing, to obtain an ashed composition.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 2, 2013
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Joachim Kralik, Martin Stettner, Stefanie Fuchs Alameda
  • Publication number: 20130149219
    Abstract: The invention provides a process for the leaching of a laterite ore, concentrate, tailings or waste rock for the recovery of value metals, at least one value metal being nickel. The laterite ore or concentrate is subjected to a leaching step with a lixiviant comprising hydrochloric acid to leach nickel from the laterite ore, followed by a liquid/solids separation step. The liquid obtained is subject to solvent extraction with a dialkyl ketone, to obtain a solution rich in iron and a raffinate. Separation of iron from cobalt and nickel is obtained.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 13, 2013
    Inventors: Vaikuntam I. Lakshmanan, Ramamritham Sridhar, Jonathan Chen, M. A. Halim, Robert DeLaat
  • Patent number: 8454914
    Abstract: An object of the present invention is to provide a process for recovering ruthenium at a sufficient recovery rate from a solid in which a ruthenium compound is supported on a carrier. The present invention relates to a process for recovering ruthenium, comprising the following steps (1) to (3): (1) bringing a solid in which a ruthenium compound is supported on a carrier, into contact with a reducing gas, to thereby reduce the ruthenium compound; (2) cooling the solid obtained in the step (1) to 250° C. or lower under an atmosphere of a non-oxidizing gas; and (3) mixing the solid obtained in the step (2) with an oxidizing solution, to thereby dissolve ruthenium in the solution.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: June 4, 2013
    Assignees: Furuya Metal Co., Ltd., Sumitomo Chemical Company, Limited
    Inventors: Yoshinari Hirai, Tomohiro Maruko, Kohei Seki
  • Patent number: 8436044
    Abstract: A pharmaceutical composition or combination drug, which contains, as active ingredients, (a) a coordination compound composed of a block copolymer represented by the following formula I or formula II and cisplatin, and (b) gemcitabine hydrochloride. In the formulae I and II, R1, A, R2, R3, m and n are as defined in the description.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: May 7, 2013
    Assignee: Nanocarrier Co., Ltd.
    Inventors: Mitsunori Harada, Iulian Bobe, Takashi Shimizu
  • Publication number: 20130108525
    Abstract: A method for separating an amount of osmium from a mixture containing the osmium and at least one other additional metal is provided. In particular, method for forming and trapping OsO4 to separate the osmium from a mixture containing the osmium and at least one other additional metal is provided.
    Type: Application
    Filed: August 3, 2012
    Publication date: May 2, 2013
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Hendrik P. Engelbrecht, Cathy S. Cutler, Leonard Manson, Stacy Lynn Wilder
  • Publication number: 20130089477
    Abstract: Disclosed is a method and apparatus for recovering rare metal, which separates and collects rare metals by making use of chemical actions in an efficient combination of adsorption and separation, thereby reducing work load and improving work safety. The method for recycling rare metals includes a leaching step in which a rare metal of palladium, platinum, and rhodium is mixed with hydrochloric acid into a hydrochloric acid mixture, which is then stirred at one atmospheric pressure or lower at a temperature from 50 to 90 degrees Centigrade. The vapor resulting from the stirring is condensed, and the hydrochloric acid resulting from the condensing is fed back to the original hydrochloric acid mixture to produce a hydrochloric acid leaching solution. The hydrochloric acid leaching solution produced in the leaching step is used to collect the rare metals.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 11, 2013
    Inventor: Haruo Uehara
  • Publication number: 20130078166
    Abstract: A method of recovering rhenium (Re) and other metals from Re-bearing materials in the form of ammonium perrhenate having at least the step of adding Re-bearing materials into a leaching slurry. Additionally, the method has the step of adjusting the pH of the slurry to obtain Re in soluble form in a metal salt solution and insoluble residues; filtering the metal salt solution to remove the insoluble residues; selectively precipitating Re from the metal salt solution; and filtering the Re precipitate from the metal salt solution to obtain a Re filtercake. The method further has the step of drying and formulating Re to produce Re sulfide product.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Applicants: WRC WORLD RESOURCES COMPANY GMBH, WORLD RESOURCES COMPANY
    Inventors: World Resources Company, WRC World Resources Company GmbH
  • Patent number: 8399529
    Abstract: For processing of noble metal-containing, moist recycling materials with an unknown noble metal content (hereinafter called “batch”), a moisture-binding agent is added for homogenisation and the batch is mixed with comminution of optionally pre-sent agglomerates to form a free-flowing and homogenous powder. Optionally, the following takes place subsequently for analysis: A at least one representative, volume-reduced sample is taken first of all, B the sample is dried, C the sample is optionally divided further and D the sample is analyzed and the noble metal content of the batch is calculated on the basis of the data a previously known or pre-calculated quantity of the moisture-binding agent being added before sampling (step A).
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: March 19, 2013
    Assignee: W.C. Heraeus GmbH
    Inventors: Christian Mock, Horst Meyer, Matthias Grehl, Jochen Schleβmann, Martin Stettner
  • Patent number: 8383070
    Abstract: A method of recovering rhenium (Re) and other metals from Re-bearing materials in the form of ammonium perrhenate having at least the step of adding Re-bearing materials into a leaching slurry. Additionally, the method has the step of adjusting the pH of the slurry to obtain Re in soluble form in a metal salt solution and insoluble residues; filtering the metal salt solution to remove the insoluble residues; selectively precipitating Re from the metal salt solution; filtering the Re precipitate from the metal salt solution to obtain a Re filtercake; and formulating and drying the Re filtercake to obtain a Re sulfide product. The method further has the step of combining the Re sulfide product with a Molybdenum (Mo) concentrate containing Re to obtain a Mo/Re concentrate; roasting the Mo/Re concentrate to obtain Mo oxide product and a flue gas containing Re; and treating the flue gas containing Re to obtain ammonium perrhenate.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: February 26, 2013
    Assignees: World Resources Company, WRC World Resources Company GmbH
    Inventors: Eberhard Luederitz, Ulrich R. Schlegel, Peter T. Halpin, Dale L. Schneck
  • Patent number: 8372361
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: February 12, 2013
    Assignee: Freeport-McMoran Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8372360
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: February 12, 2013
    Assignee: Freeport-McMoran Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8362199
    Abstract: Interlayer insulating films 5,7 (insulating films) provided in a memory capacitor cell 8 are formed between a gate electrode 3 and a counter electrode 8C formed on a silicon wafer 1. The interlayer insulating films 5,7 comprise a borazine-based resin, having a specific dielectric constant of no greater than 2.6, a Young's modulus of 5 GPa or greater and a leak current of no greater than 1×10?8 A/cm2.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: January 29, 2013
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Matsutani, Makoto Kaji, Koichi Abe, Yuko Uchimaru
  • Patent number: 8333941
    Abstract: Mesoporous conductive niobium and niobium-ruthenium particles and methods for forming the same are described. In some cases the particles are suitable for use as a fuel cell catalyst. The described aerosol-based synthesis method allows for single step formation and processing of the particles.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: December 18, 2012
    Assignee: STC.UNM
    Inventors: Plamen Atanassov, Elise Switzer, Datye Abhaya, Timothy Olson, Daniel Konopka, Svitlana Pylypenko, Timothy L Ward
  • Patent number: 8329903
    Abstract: An organometallic complex is provided by which favorable red-color light emission can be obtained. Further, an organometallic complex having a peak of light emission at about 620 nm is provided because the wavelength of light which is perceived as excellent red-color light is about 620 nm. Furthermore, an organometallic complex is provided by which red-color light emission with high luminous efficiency (cd/A) can be obtained. An organometallic complex represented by the following general formula (G2) and a light-emitting element, a light-emitting device, and an electronic device including the organometallic complex represented by the following general formula (G2) are provided.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 11, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Satoshi Seo
  • Patent number: 8323502
    Abstract: Multi-layered macromolecules wherein the layers are covalently bonded together and wherein the macromolecules are covalently bonded to solid particulate substrates, methods for the preparation of such compositions, and methods for their uses in a multitude of end use applications ranging from the purification of waste chemical and metal process streams to the separation and identification of proteins, peptides, and oligionucleotides.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: December 4, 2012
    Assignee: Diazem Corporation
    Inventors: Charles E. Skinner, William Henry Campbell, Yung K. Kim
  • Patent number: 8318113
    Abstract: A solid composition comprises: —MnO2; and—a compound represented by the general formula (I) wherein: R is a polymer; each Y is independently a hydrogen or a negative charge; Z is either hydrogen or is not present; each n is independently 1, 2, 3, 4, 5 or 6; wherein the MnO2 is bound to the compound of formula (I) so as to coat the surface thereof. Such a composition may be used for the separation of polyvalent metal species, such as Mo, from one or more accompanying impurities.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 27, 2012
    Assignee: Mallinckrodt LLC
    Inventor: Luis Antonio Miguel Marques Barbosa
  • Publication number: 20120228151
    Abstract: An extraction component enabling the concurrent recovery of gold and/or palladium selectively from a hydrochloric acid media containing the base metals and other contaminants. The disclosed extractant disclosed eliminates the conventional multi-step process for such extraction by providing for an extraction method which uses a single solvent extraction reagent. Further enhancing the conventional multi step process, the conventional scrubbing stage is eliminated by a single stripping stage. The resulting solutions can be obtained from leaching many types of material such as copper anode slimes, the treatment of scrap such as electronic circuit boards and plating effluents, PGM, or refractory gold ores.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Inventors: Loghman Moradi, Hiwa Salimi, Mohammad Piltan, Issa Yavari
  • Patent number: 8252253
    Abstract: The invention relates to a process for recovering ruthenium from a used ruthenium-comprising catalyst which comprises ruthenium as ruthenium oxide on a support material which is not readily soluble in mineral acid, which comprises the steps: a) the ruthenium oxide-comprising catalyst is reduced in a gas stream comprising hydrogen chloride and, if appropriate, an inert gas at a temperature of from 300 to 500° C.; b) the reduced catalyst from step a) comprising metallic ruthenium on the sparingly soluble support material is treated with hydrochloric acid in the presence of an oxygen-comprising gas, with the metallic ruthenium present on the support being dissolved as ruthenium(III) chloride and obtained as an aqueous ruthenium(III) chloride solution; c) if appropriate, the ruthenium(III) chloride solution from step b) is worked up further.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: August 28, 2012
    Assignee: BASF SE
    Inventors: Guido Henze, Heiko Urtel, Martin Sesing, Martin Karches
  • Patent number: 8252252
    Abstract: Processes for the recovery of ruthenium from materials containing ruthenium or ruthenium oxides or from ruthenium-containing noble metal ore concentrates, with the steps of A. the introduction of the material into a highly alkaline alkali hydroxide melt in the presence of nitrate as oxidizing agent with the formation of an oxidized melt residue with water-soluble ruthenate (RuO4)2?, B. the dissolution of the oxidized melt residue obtained in water, C. the addition of a reducing agent, D. the precipitation of the metals formed, can also be used for separating off selenium. Optionally, ruthenium is separated off by distillation, instead of precipitation, following step B, with the steps of 5C the treatment of the ruthenate-containing solution with an oxidizing agent, 5D distilling off of the RuO4 obtained, 5E taking up of the RuO4 from step 5D in hydrochloric acid. By way of further subsequent purification steps, processes for the recovery of ruthenium targets are obtained.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: August 28, 2012
    Assignee: W.C. Heraeus GmbH
    Inventors: Horst Meyer, Matthias Grehl, Christian Nowottny, Martin Stettner, Joachim Kralik
  • Patent number: 8246975
    Abstract: It is intended to provide a drug delivery system which makes it possible to solve the existing technical problems and is easily usable in practice. A drug, which comprises an organic compound or an inorganic compound and has been magnetized by modifying a side chain and/or crosslinking side chains, is induced by a magnetic force into target tissues or an affected part.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 21, 2012
    Assignees: IHI Corporation
    Inventors: Haruki Eguchi, Yoshihiro Ishikawa
  • Patent number: 8242040
    Abstract: A process for the removal of corrosion metal contaminants from a carbonylation catalyst solution comprising an iridium and/or rhodium carbonylation catalyst, an alkali and/or alkaline earth metal and corrosion metal contaminants in which the catalyst solution is contacted with a cation exchange resin having its active sites partially loaded with a sufficient amount of alkali and/or alkaline earth metal to maintain the concentration of said alkali and/or alkaline earth metal in the catalyst solution and recovering a catalyst solution of reduced corrosion metal contaminant content.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: August 14, 2012
    Assignee: BP Chemicals Limited
    Inventors: Andrew David Poole, Stephen James Smith
  • Patent number: 8240480
    Abstract: A method of sorting mined material for subsequent processing to recover valuable material, such as valuable metals, from the mined material is disclosed. The method includes a combination of selective breakage of mined material, for example, by using microwaves and/or high pressure grinding rolls, subsequent size separation, and then particle sorting of a coarse fraction of the separated material based on differential heating and thermal imaging.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: August 14, 2012
    Assignee: Technological Resources Pty. Limited
    Inventors: Raymond Walter Shaw, Barry Lavin
  • Patent number: 8211389
    Abstract: Uses for a composition comprising a polymer derived from at least two monomers: acrylic-x and an alkylamine, wherein said polymer is modified to contain a functional group capable of scavenging one or more compositions containing one or more metals are disclosed. These polymers have many uses in various mediums, including wastewater systems.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 3, 2012
    Assignee: Nalco Company
    Inventors: Paul J. Zinn, Jitendra T. Shah, William J. Andrews
  • Publication number: 20120164039
    Abstract: To provide a solid-liquid palladium ion adsorbent which has both extraction performance and selectivity of a liquid-liquid palladium extracting agent in a conventional solvent extraction method and which does not require use of an organic solvent, and methods for selectively separating and recovering palladium, using it.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 28, 2012
    Applicant: TOSOH CORPORATION
    Inventor: Yukinori Sudo
  • Patent number: 8206682
    Abstract: A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: June 26, 2012
    Inventors: Lawrence Shore, Ramail Matlin, Robert Heinz