Alcohol, Arylhydroxide, Or Polyol Patents (Class 423/242.4)
  • Patent number: 11499104
    Abstract: A method is disclosed of purifying a recycled or renewable organic material, wherein the recycled or renewable organic material includes more than 1 ppm silicon as silicon compounds and/or more than 10 ppm phosphorous as phosphorous compounds. The method can include providing a feed of the lipid material; heat treating the organic material in presence of an adsorbent and the filtering organic material and hydrotreating the lipid material in a presence of a hydrotreating catalyst to obtain purified hydrotreated organic material having less than 20% organic material and/or less than 30% of the original phosphorous content of the organic material.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: November 15, 2022
    Assignee: NESTE OYJ
    Inventors: Blanka Toukoniitty, Ville Paasikallio, Jukka-Pekka Pasanen, Jouni Touronen, Meri Hovi, Antti Pasanen, Salla Likander, Sami Toppinen, Pekka Aalto, Kari Jansson, Marina Lindblad, Mats Käldström, Kaisa Lamminpää
  • Patent number: 9611440
    Abstract: A process for producing dry synthetic natural gas (SNG, Synthetic Natural Gas) from solid or liquid, carbonaceous fuel, substantially consisting of the following process steps: a) gasification of a solid or liquid, carbonaceous fuel to a raw synthesis gas b) cooling of the gas, separation of solids and the gas condensate c) raw gas conversion d) washing of the gas with methanol for separating hydrogen sulfide, carbon dioxide and moisture, wherein the methanol is circulated via a regeneration plant, e) methanation, f) condensation of moisture by means of cooling and/or cold water, g) further drying of the gas by condensation at low temperature by adding methanol to avoid the formation of ice.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: April 4, 2017
    Assignee: L'AIR LIQUIDE, SOCIÉTÉ ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE
    Inventors: Manfred Meyer, Stefan Walter, Ute Herrlett
  • Publication number: 20150001132
    Abstract: Disclosed herein are scavenging compounds and compositions useful in applications relating to the production, transportation, storage, and separation of crude oil and natural gas. Also disclosed herein are methods of using the compounds and compositions as scavengers, particularly in applications relating to the production, transportation, storage, and separation of crude oil and natural gas.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Inventors: Jennifer L. Sorrells, Nestor U. Soriano, JR.
  • Publication number: 20140369916
    Abstract: Provided is a process for controlling heavy metal (e.g., mercury) emission in S02-containing flue gas, comprising passing a stream of the flue gas (2) through a wet scrubber (1) where it is brought into contact with a liquid absorbent (8) comprising an ionic liquid, an oxidizer (11) and polar protic organic solvent, wherein the amount of said organic solvent is adjusted such that the SO2 absorption is minimized while operating said wet scrubber at a temperature lower than the normal working temperature that would be used in the absence of said solvent. The process may be preceded by an initial stage where a fluoride-containing liquid is used for reducing the amount of sulfur dioxide in the flue gas stream; the sulfur dioxide can be subsequently desorbed from the fluoride-containing liquid upon the addition of a polar solvent.
    Type: Application
    Filed: January 31, 2013
    Publication date: December 18, 2014
    Applicant: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventors: Yoel Sasson, Tatyana Sachs, Effi Dvash, Zach Barnea
  • Patent number: 8858828
    Abstract: The present disclosure provides a scrubbing composition containing an aqueous solution of 2-(3-aminopropoxy)ethan-1-ol. The scrubbing composition is especially suited for use in removing acid gases, such as carbon dioxide and hydrogen sulfide, from gas streams.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: October 14, 2014
    Assignee: Huntsman Petrochemical LLC
    Inventors: Howard P. Klein, Robert A. Grigsby, Jr., Jingjun Zhou, Patrick Holub, Attila Gaspar, Zsolt Gaspar
  • Patent number: 8765086
    Abstract: A process for removal of H2S and CO2 from an acid gas stream comprising H2S and CO2, the process comprising the steps of: (a) reacting H2S in the acid gas stream with SO2 to form sulphur vapor and water vapor, thereby obtaining a first off-gas stream comprising CO2, water vapor, sulphur vapor, residual SO2 and residual H2S; (b) converting residual SO2 in the first off-gas stream to H2S in a first off-gas treating reactor, thereby obtaining a second off-gas stream depleted in SO2 and enriched in H2S and CO2 compared to the first off-gas stream; (c) contacting the second off-gas stream with an H2S absorbing liquid, thereby transferring H2S from the gas stream to the H2S absorbing liquid to obtain H2S absorbing liquid enriched in H2S and a third off-gas stream enriched in CO2; (d) removing CO2 from the third off-gas stream by contacting the third off-gas stream with CO2 absorbing liquid in a CO2 absorber, thereby transferring CO2 from the third off-gas stream to the CO2 absorbing liquid to obtain CO2 absorbing l
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 1, 2014
    Assignee: Shell Oil Company
    Inventors: Theodorus Johannes Brok, Gerardus Petrus Van Der Zwet
  • Patent number: 8685236
    Abstract: A method of removing contaminates from sour water is provided. The method includes producing raw sour water within a syngas production system, and removing the contaminates from the raw sour water using a chemical reaction within a treatment unit to produce treated sour water. The treatment unit is in flow communication with the syngas production system.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: April 1, 2014
    Assignee: General Electric Company
    Inventor: Gary Daniel Miller
  • Patent number: 8664141
    Abstract: Provided is a silver-supported alumina catalyst for reducing nitrogen oxides using ethanol, which has the drawbacks of the conventional silver-supported alumina catalysts improved, has high performance, is not likely to deteriorate over time, and has excellent initial performance and durability. A catalyst for purifying nitrogen oxides, which purifies nitrogen oxides in exhaust gas using an alcohol as a reducing agent, and contains alumina, aluminum sulfate and silver as main components.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: March 4, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Masatoshi Fujisawa, Yasuyoshi Kato
  • Patent number: 8641922
    Abstract: A sorbent for removal of acid gas from hydrocarbon gas includes a mixture of dewatered residue obtained from the distillation of ethanol, and an amine.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: February 4, 2014
    Assignee: Intevep, S.A.
    Inventors: Alfredo Viloria, Rafael Yoll, Yanine Gonzalez, Monica Roman, Jose Biomorgi
  • Patent number: 8623308
    Abstract: The invention provides a process for removing mercaptans from a gas stream comprising natural gas or inert gas and mercaptans, the process comprising the steps of: (a) contacting a first gas stream comprising natural gas or inert gas and mercaptans with a hydrodesulphurization catalyst in the presence of hydrogen in a hydrodesulphurization unit to obtain a second gas stream comprising natural gas or inert gas, which is depleted of mercaptans and enriched in H2S; (b) removing H2S from the second gas stream comprising natural gas or inert gas in a H2S removal unit to obtain a purified gas stream comprising natural gas or inert gas, which is depleted of mercaptans.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: January 7, 2014
    Assignee: Shell Oil Company
    Inventors: Anders Carlsson, Gijsbert Jan Van Heeringen
  • Patent number: 8524184
    Abstract: A process for the removal of hydrogen sulfide from a gas stream in which the gas stream is first passed through a Claus unit operating at a sub-stoichiometric ratio (H2S:SO2) of greater than 2:1 to produce a tail gas stream comprising less than 2000 vppm SO2. This tail gas stream is then treated to increase the sulfur recovery to at least 99.5% by first directly cooling the tail gas stream by contact with water as a coolant, followed by contacting the gas stream with a circulating stream of a dilute, absorbent solution of a severely sterically hindered secondary aminoether alcohol to further cool the gas stream, and then removing the H2S from the stream using a stronger absorbent solution of a severely sterically hindered secondary aminoether alcohol.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jagannathan N. Iyengar, David Perry, Robert B. Fedich
  • Patent number: 8500866
    Abstract: Upon cooling to 15 to 45° C., a process for the treatment of raw product gas generated by pressure gasification of solid fuels comprises the removal of HCN and NH3 in a preliminary stage, of H2S and COS and possibly other sulfur-containing compounds in a first stage and of CO2 in a second stage by physisorption with cold oxygenate, and the pure product gas is supplied to the direct reduction of iron ore as reduction gas and/or as fuel gas. An improvement of the process consists in that recycle gas loaded with CO2 and steam, which is branched off from the circuit of the recycle gas of the direct reduction of iron ore, is admixed to the desulfurized product gas upon removal of the steam contained therein.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 6, 2013
    Assignee: Lurgi Clean Coal Technology (Proprietary) Limited
    Inventor: Gerhard Schmitt
  • Patent number: 8444943
    Abstract: Apparatus and methods for recovering sulfur from acid gases. Acid gases containing relatively high amounts of carbonyl sulfide and/or one or more types of mercaptans can be treated in a sulfur recovery system employing an acid gas enrichment zone and a tail gas treatment zone, where partially-loaded sulfur absorbing solvent from the tail gas treatment zone is employed for sulfur absorption in the acid gas enrichment zone. Off-gas from the acid gas enrichment zone can be combined and hydrogenated with a sulfur recovery unit tail gas thereby increasing the total amount of sulfur recovery from the initial acid gas.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: May 21, 2013
    Assignee: Black & Veatch Corporation
    Inventor: Justin A. Lamar
  • Patent number: 8435471
    Abstract: A wet flue gas desulfurization process uses byproduct polyester streams such as those from the production of PLA and/or PGA consisting of hydroxy acids and other organic acids to catalyse the solubilization of calcium from limestone and to further catalyse the reaction of calcium with SO2 for desulfurization and thereby provide significant improvement in process efficiency.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 7, 2013
    Assignee: 2R Environmental Systems, LLC
    Inventors: Barry Hugghins, Joseph Daniel Cook
  • Patent number: 8404900
    Abstract: An absorbent for separating acidic gases is disclosed. The absorbent or an absorbent composition for separating acidic gases has more than 3 kinds of compounds along with Chemical Formula 1 and 2, and has ability of rapid carbon dioxide elimination, excellent absorption ability, and less energy consumption for regenerating an absorbent due to easy desorption of carbon dioxide.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 26, 2013
    Assignee: Korea Electric Power Corporation
    Inventors: Jun-Han Kim, Jae-Goo Shim, Kyung-Ryong Jang, Ji-Hyun Lee
  • Patent number: 8318117
    Abstract: Absorption medium for acid gases comprising an oligoamine (A) of the general formula (I) and a primary or secondary alkanolamine (B) of the general formula (II) in which the weight ratio of oligoamine (A) to the primary or secondary alkanolamine (B) is 0.2 to 4, and also the process for removing acid gases from a gas stream by contacting the gas stream at a pressure of 0.05 to 10 MPa abs with an aqueous solution brought to and maintained at a temperature of 20 to 80° C. of said absorption medium.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 27, 2012
    Assignee: BASF SE
    Inventors: Ute Lichtfers, Robin Thiele, Susanna Voges, Georg Sieder, Oliver Spuhl, Hugo Rafael Garcia Andarcia
  • Publication number: 20120248372
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 4, 2012
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMA
    Inventor: Jason E. Bara
  • Publication number: 20110223084
    Abstract: This invention relates to sulfur functionalized ionic liquid compounds that are useful in methods of carbon dioxide or sulfur dioxide removal to which they may be applied.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: MARK A. SCIALDONE
  • Patent number: 7951355
    Abstract: A process for producing a purified synthesis gas stream from a contaminated feed synthesis gas stream is disclosed. A part of the feed synthesis gas stream is subjected to a water gas shift step. The water gas shift step is used in combination with bulk contaminant removal followed by polishing to thereby remove the contaminants from the synthesis gas stream so as to provide the purified synthesis gas stream having a desired low level of contaminants.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: May 31, 2011
    Assignee: Shell Oil Company
    Inventors: Jan Lodewijk Maria Dierickx, Maarten Hesselink, Cornelis Jacobus Smit
  • Publication number: 20110104030
    Abstract: Novel solvent composition for selective removal of COS from a gas stream containing same, said composition comprising a) at least one polyalkylene glycol alkyl ether of the formula R1O-(Alk-O)n—R2??(I) or 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone or a mixture of N-formylmorpholine and N-acetylmorpholine wherein R1 is an alkyl group having from 1 to 6 carbon atoms; R2 is hydrogen or an alkyl group having from 1 to 4 carbon atoms; Alk is an alkylene group, branched or unbranched, having from 2 to 4 carbon atoms, and n is from 1 to 10; and b) at least one alkanolamine compound of the formula R3NHR4OR6??(II) or at least one piperazine compound of formula wherein R3 is hydrogen, an alkyl group having from 1 to 6 carbon atoms, or the R4OH group; R4 is a branched or unbranched alkylene group having from 1 to 6 carbon atoms; R5, independently in each occurrence, is hydrogen or an hydroxyalkyl group having from 1 to 4 carbon atoms; and R6 is hydrogen, an alkyl gr
    Type: Application
    Filed: August 16, 2010
    Publication date: May 5, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Craig N. Schubert, Arnold C. Ashcraft
  • Publication number: 20100003177
    Abstract: Apparatus comprising an absorber device provided with a plurality of sequentially adjacent sections for flowing a gas stream therethrough. A conduit infrastructure comprising a section configured to ingress, communicate with and egress from each section of the absorber device, and a recovery and regeneration section, is configured with a plurality of heat exchange and cooling equipment. A process wherein a liquid solvent provided with at least one chemical compound selected for reacting with the selected gaseous component, is counter-flowed against and commingled with the gas stream. The liquid solvent temperature is controllably manipulated between each section of the column to provide: (a) thermodynamic-driven mass transfer at the front end of the absorber device, and (b) kinetic-driven mass transfer at the back end of the absorber device. The heat generated during the recovery of the gaseous component from the absorption liquid solvent system is recovered for use in regenerating solvent system.
    Type: Application
    Filed: March 23, 2007
    Publication date: January 7, 2010
    Applicant: THE UNIVERSITY OF REGINA
    Inventors: Adisorn Aroonwilas, Amornvadee Veawab
  • Patent number: 7604788
    Abstract: The invention provides a process for the removal of polysulfanes from gas streams formed during H2S synthesis.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 20, 2009
    Assignee: Evonik Degussa GmbH
    Inventors: Alexander Möller, Wolfgang Böck, Wolfgang Taugner, Harald Heinzel, Stephan Rautenberg
  • Publication number: 20090081093
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 26, 2009
    Inventor: Douglas C. Comrie
  • Publication number: 20090047201
    Abstract: The invention provides a process for removing mercaptans from a gas stream comprising natural gas or inert gas and mercaptans, the process comprising the steps of: (a) contacting a first gas stream comprising natural gas or inert gas and mercaptans with a hydrodesulphurisation catalyst in the presence of hydrogen in a hydrodesulphurisation unit to obtain a second gas stream comprising natural gas or inert gas, which is depleted of mercaptans and enriched in H2S; (b) removing H2S from the second gas stream comprising natural gas or inert gas in a H2S removal unit to obtain a purified gas stream comprising natural gas or inert gas, which is depleted of mercaptans.
    Type: Application
    Filed: August 2, 2005
    Publication date: February 19, 2009
    Inventors: Anders Carlsson, Gijsbert Jan Van Heeringen
  • Patent number: 7459134
    Abstract: The combustion fume flowing in through line 1 is decarbonated by contacting with a solvent in column C2. The solvent laden with carbon dioxide is regenerated in zone R. The purified fume discharged through line 9 comprises part of the solvent. The method allows to extract the solvent contained in the purified fume. The purified fume is contacted in zone ZA with a non-aqueous ionic liquid of general formula Q+ A?; Q+ designates an ammonium, phosphonium and/or sulfonium cation, and A? an anion likely to form a liquid salt. The solvent-depleted purified fume is discharged through line 17. The solvent-laden ionic liquid is regenerated by heating in evaporation device DE. The solvent separated from the ionic liquid in device DE is recycled.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: December 2, 2008
    Inventors: Renaud Cadours, Fabrice Lecomte, Lionel Magna, Cécile Barrere-Tricca
  • Publication number: 20080175778
    Abstract: The invention provides a process for the removal of polysulfanes from gas streams formed during H2S synthesis.
    Type: Application
    Filed: October 26, 2007
    Publication date: July 24, 2008
    Applicant: Evonik Degussa GmbH
    Inventors: Alexander Moller, Wolfgang Bock, Wolfgang Taugner, Harald Heinzel, Stephan Rautenberg
  • Patent number: 7000382
    Abstract: A method of partially oxidizing an alcohol to an aldehyde or ketone comprises contacting a gas containing the alcohol with a solid catalyst containing molybdenum, preferably in a +6 oxidation state, and having a surface area of 10 m2/g or higher, preferably 100 m2/g or higher. The molybdenum is supported on a high surface area carrier. The alcohol is a primary or secondary alcohol and preferably contains from 1 to 6 carbon atoms. In a preferred embodiment, the alcohol is ethanol. NOx emissions from an internal combustion engine can be lowered by combining the product of partial oxidation with the exhaust stream before passing the exhaust mixture through a lean NOx catalyst.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: February 21, 2006
    Assignee: General Motors Corporation
    Inventors: Jong-Hwan Lee, Steven J. Schmieg, Se H. Oh
  • Patent number: 6663841
    Abstract: A method for removing or scavenging hydrogen sulfide (H2S) and/or mercaptans from supercritical and/or liquid carbon dioxide (CO2) using triazine scavenging agents is described. Preferred triazines are hexahydrotriazines.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: December 16, 2003
    Assignee: Baker Hughes Incorporated
    Inventors: Tauseef Salma, Doug Elledge, Paula Kolb, Scot Haines
  • Patent number: 6652821
    Abstract: The present invention provides a purifying agent having an effect of removing or decomposing toxic substances contained in flue gas or incinerated ash. The purifying agent of the present invention contains one or more kinds of salts selected from alkali metal silicates, fluoride ion, hydrogencarbonate ion, and water-soluble alcohols or derivatives thereof.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 25, 2003
    Inventors: Yasuo Fukutani, Yoshiyuki Futahashi, Yukio Wada, Eiichiro Nakayama, Kikuko Fukutani, Masami Kojima, Kosuke Wada, Masayoshi Uchida, Shunji Suzuki, Naoya Fujii