Amine Patents (Class 423/242.7)
  • Patent number: 11014042
    Abstract: A nitrogen oxide absorbing unit, a nitrogen oxide absorbing liquid extraction line, a nitrogen oxide absorbing liquid heating/regenerating unit, a released gas line, and a regenerated liquid discharge line are provided. The nitrogen oxide absorbing unit is configured to absorb and remove nitrogen oxides in exhaust gas with nitrogen oxide absorbing liquid by introducing the exhaust gas containing nitrogen oxides and carbon dioxide. Through the nitrogen oxide absorbing liquid extraction line, the circulating nitrogen oxide absorbing liquid is extracted from a nitrogen oxide absorbing liquid circulation line. The nitrogen oxide absorbing liquid heating/regenerating unit is configured to obtain released gas containing at least nitrogen monoxide and carbon dioxide and nitrogen oxide absorbing liquid regenerated liquid by subjecting the nitrogen oxide absorbing liquid to heating and regeneration treatment.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: May 25, 2021
    Assignee: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Takashi Kamijo, Tatsuya Tsujiuchi
  • Patent number: 9884289
    Abstract: A contaminant gas is removed from a feed gas in two absorption and stripping circuits operated in tandem. The gas is first passed through a rich gas absorber producing a rich absorption liquor from which contaminant gas is stripped in a rich liquor stripper. A lean gas exiting the rich gas absorber is passed through a lean gas absorber, producing a lean absorption liquor from which contaminant gas is stripper in a lean liquor stripper. Regenerated absorption media exiting the respective strippers are recirculated to the respective absorbers.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: February 6, 2018
    Inventor: Ernesto Vera-Castañeda
  • Patent number: 9566550
    Abstract: A mineral carbonation process, characterized in that the silicate feedstock is thermally activated by using heat generated from the combustion of fuel prior to reacting the activated slurry feedstock with carbon dioxide.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: February 14, 2017
    Assignee: ORICA EXPLOSIVES TECHNOLOGY PTY LTD
    Inventor: Geoffrey Frederick Brent
  • Patent number: 9221009
    Abstract: The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants) and, in particular to a new and useful method and apparatus designed to improve the water supplied to non-calcium-based, aqueous wet SOx scrubbers. In another embodiment, the present invention relates to a system and method for softening water for use in non-calcium-based, aqueous wet SOx scrubbers.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 29, 2015
    Assignee: The Babcock & Wilcox Company
    Inventors: William Downs, Paul J Williams
  • Patent number: 9072999
    Abstract: Described are aromatic amino compounds that are useful to methods of carbon dioxide and sulfur dioxide removal.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: July 7, 2015
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Mark A. Scialdone, James A. Schultz
  • Patent number: 9028590
    Abstract: A process for the reduction of carbon dioxide and carbonyl sulfide from various types of gas emitting sources containing carbon dioxide and/or gas or liquid emitting sources containing carbonyl sulfide, using ion exchange resin.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 12, 2015
    Assignees: LANXESS Deutschland GmbH, LANXESS Sybron Chemicals, Inc.
    Inventors: Anthony P. Tirio, Rudolf Wagner
  • Patent number: 8980210
    Abstract: A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: March 17, 2015
    Assignee: Battelle Memorial Institute
    Inventors: David J. Heldebrant, Clement R. Yonker, Phillip K. Koech
  • Patent number: 8932547
    Abstract: The invention relates to a so-called zero emission ‘AST-CNR/ITM system’ modular plant for removal of pollutants from flue gases produced by industrial processes. The plant comprises prefabricated modular elements with programmed and automatic operation, easy to mount and assemble on site without undergoing expensive plant stoppage. Each module or ‘reaction tower’ comprises a plurality of sections vertically arranged on top of one another, which carry out the following functions: Removal of particulate matter with treatment and removal of chemical pollutants, such as heavy metals, chlorides, fluorides Treatment and removal of SOx Treatment and removal of NOx Capture of CO2 Production of hydrogen Production of methanol. The various sections may be combined according to the requirements of the plant and of the flue gases to be treated.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: January 13, 2015
    Assignee: AST Engineering S.R.L.
    Inventors: Tommaso Nardo, Antonio Maria Nardo, Angelo Basile, Fausto Gallucci
  • Patent number: 8894955
    Abstract: The present invention provides a process for removing mercaptans from a gas stream. In the process, a first mercaptan-comprising gas stream comprising at least a mercaptan of the general formula: R1—SH, wherein R1 is an alkyl group comprising 1 to 4 carbon atoms, and an acid component is contacted with an absorption medium to obtain a mercaptan-depleted gas stream. The absorption medium includes a substituted disulphide and a base. The substituted disulphide is of the general formula R2—SS—R3, wherein R2 and R3 are carbon comprising substituents of which the corresponding R2—SH and R3—SH thiols have a vapor pressure below the vapor pressure of any R1—SH thiol, and at least one of R2 and R3 is an electron withdrawing group.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: November 25, 2014
    Assignee: Shell Oil Cpmpany
    Inventors: Jozef Jacobus Titus Smits, Sipke Hidde Wadman
  • Patent number: 8894956
    Abstract: Disclosed is an sorbent for removing sulfur dioxide (SO2) contained in combustion flue gases or in the atmosphere by using a diamine-based ionic liquid or a diamine compound supported by a polymer resin. To be specific, the present invention relates to a method of using a tertiary diamine compound immobilized on a polymer surface as a SO2 sorbent and also relates to a novel sorbent for absorbing or adsorbing a sulfur dioxide hydrate (SO2.H2O) formed by a bond between SO2 and water.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 25, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyun Joo Lee, Seung Rok Lim, Kean Im Lee, Chang Soo Kim, Hoon Sik Kim, Ji Sik Choi, Sang Deuk Lee
  • Patent number: 8894954
    Abstract: The present invention provides a process for removing mercaptans from a gas stream gas stream, comprising the steps: a) providing a first mercaptan-comprising gas stream comprising at least a mercaptan of the general formula: R1—SH, wherein R1 is an alkyl group comprising 1 to 4 carbon atoms; and b) contacting the mercaptan-comprising gas stream with an absorption medium comprising a substituted disulphide and a nitrogen-containing base to obtain a second mercaptan-depleted gas stream, wherein: the substituted disulphide is of the general formula R2—SS—R3 wherein: R2 and R3 are carbon comprising substituents of which the corresponding R2—SH and R3—SH thiols have a vapor pressure below the vapor pressure of any R1—SH thiol.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: November 25, 2014
    Assignee: Shell Oil Company
    Inventors: Jozef Jacobus Titus Smits, Sipke Hidde Wadman
  • Patent number: 8858828
    Abstract: The present disclosure provides a scrubbing composition containing an aqueous solution of 2-(3-aminopropoxy)ethan-1-ol. The scrubbing composition is especially suited for use in removing acid gases, such as carbon dioxide and hydrogen sulfide, from gas streams.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: October 14, 2014
    Assignee: Huntsman Petrochemical LLC
    Inventors: Howard P. Klein, Robert A. Grigsby, Jr., Jingjun Zhou, Patrick Holub, Attila Gaspar, Zsolt Gaspar
  • Publication number: 20140294708
    Abstract: The present invention provides a process for removing mercaptans from a gas stream gas stream, comprising the steps: a) providing a first mercaptan-comprising gas stream comprising at least a mercaptan of the general formula: R1—SH, wherein R1 is an alkyl group comprising 1 to 4 carbon atoms; and b) contacting the mercaptan-comprising gas stream with an absorption medium comprising a substituted disulphide and a nitrogen-containing base to obtain a second mercaptan-depleted gas stream, wherein: the substituted disulphide is of the general formula R2—SS—R3 wherein: R2 and R3 are carbon comprising substituents of which the corresponding R2—SH and R3—SH thiols have a vapour pressure below the vapour pressure of any R1—SH thiol.
    Type: Application
    Filed: November 30, 2011
    Publication date: October 2, 2014
    Inventors: Jozef Jacobus Titus Smits, Sipke Hidde Wadman
  • Patent number: 8765083
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 1, 2014
    Assignee: Nalco Company
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Patent number: 8765951
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: July 1, 2014
    Assignee: Nalco Company
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Patent number: 8765086
    Abstract: A process for removal of H2S and CO2 from an acid gas stream comprising H2S and CO2, the process comprising the steps of: (a) reacting H2S in the acid gas stream with SO2 to form sulphur vapor and water vapor, thereby obtaining a first off-gas stream comprising CO2, water vapor, sulphur vapor, residual SO2 and residual H2S; (b) converting residual SO2 in the first off-gas stream to H2S in a first off-gas treating reactor, thereby obtaining a second off-gas stream depleted in SO2 and enriched in H2S and CO2 compared to the first off-gas stream; (c) contacting the second off-gas stream with an H2S absorbing liquid, thereby transferring H2S from the gas stream to the H2S absorbing liquid to obtain H2S absorbing liquid enriched in H2S and a third off-gas stream enriched in CO2; (d) removing CO2 from the third off-gas stream by contacting the third off-gas stream with CO2 absorbing liquid in a CO2 absorber, thereby transferring CO2 from the third off-gas stream to the CO2 absorbing liquid to obtain CO2 absorbing l
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 1, 2014
    Assignee: Shell Oil Company
    Inventors: Theodorus Johannes Brok, Gerardus Petrus Van Der Zwet
  • Patent number: 8741246
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 3, 2014
    Assignee: Board of Trustees of the University of Alabama
    Inventor: Jason E. Bara
  • Patent number: 8691171
    Abstract: A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 8, 2014
    Assignees: BASF SE, Research Triangle Institute
    Inventors: Torsten Katz, Christian Riemann, Karsten Bartling, Sean Taylor Rigby, Luke James Ivor Coleman, Marty Alan Lail
  • Publication number: 20140079612
    Abstract: The objective of this invention is to develop a method to reclaim functional sites on a CO2 sorbent that have reacted with an acid gas (other than CO2) to form heat stable salts (HSS). HSS are a significant concern for dry sorbent based CO2 capture because over time the buildup of HSS will reduce the overall functionality of the CO2 sorbent. A chemical treatment can remove the non-CO2 acid gas and reclaim functional sites that can then be used for further CO2 adsorption.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 20, 2014
    Inventors: Holly Krutka, Sharon Sjostrom, William J. Morris
  • Patent number: 8641922
    Abstract: A sorbent for removal of acid gas from hydrocarbon gas includes a mixture of dewatered residue obtained from the distillation of ethanol, and an amine.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: February 4, 2014
    Assignee: Intevep, S.A.
    Inventors: Alfredo Viloria, Rafael Yoll, Yanine Gonzalez, Monica Roman, Jose Biomorgi
  • Patent number: 8636968
    Abstract: A method and apparatus for separating gaseous emission pollutants from a scrubber by using a narrow band of UV light energy emitted from an LED light source. The method includes sweeping the evolved gas away from the flow of liquid containing the pollutant using a non-reactive gas. The pollutant can be CO2, NOx, SOx, or other pollutants. The method can operate on multiple pollutants the gas stream, using different banks of LEDs, specifically tuned for a certain pollutant.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: January 28, 2014
    Inventor: Bamidele A. Omotowa
  • Patent number: 8591846
    Abstract: A method and apparatus for processing a sour gas rich in carbon dioxide in a Claus process, so sulfur compounds are removed by a selective solvent in a gas scrubbing process. Sulfur components and carbon dioxide, are separated into at least two sour gas fractions, wherein at least one sour gas fraction having a higher content of sulfur components is obtained, wherein the fraction having the highest hydrogen sulfide content is introduced in the thermal reaction stage of the Claus furnace with a gas containing oxygen by means of a burner. The sulfur is converted to sulfur dioxide in the thermal reaction stage of the Claus furnace and exhaust gases are discharged into the closed Claus reaction chamber behind the burner. The remaining sour gas fractions stripped of sulfur components are fed to the Claus reaction chamber and are mixed with the combustion gases leaving the burner.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: November 26, 2013
    Assignee: Thyssenkrupp UHDE GmbH
    Inventor: Johannes Menzel
  • Patent number: 8591843
    Abstract: The invention relates to the use of a liquid, containing 0.1 to 100% of an amine or several amines of formula H2N—CH2(CHR2)x—(OCH2(CHR3)y)z—OR1, where R1=C1 to C6 alkyl, R2=H or CH3, R3=H or CH3, x=0 to 3, y=0 to 3, z=0 to 10 and 0 to 99.9% of any further solvent including piperazine and/or water for separating acid gas components from technical gases.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: November 26, 2013
    Assignee: UHDE GmbH
    Inventors: Johannes Menzel, Alexander Snell
  • Patent number: 8574453
    Abstract: One aspect of the present invention relates to salts that are room-temperature ionic liquids (RTILs), methods of making them, and methods of using them in connection with temporary or permanent gas sequestration. Another aspect of the present invention relates to a class of solvents which can be transformed into RTILs by exposure to a gas, and methods of using them in connection with temporary or permanent gas sequestration.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: November 5, 2013
    Assignee: Georgetown University
    Inventors: Tao Yu, Richard G. Weiss, Taisuke Yamada, Mathew George
  • Publication number: 20130287662
    Abstract: A method of modifying a chemical interaction between a functional group of an immobilized amine in a solid sorbent composition and a compound that chemically interacts with the functional group to reduce the heat required to desorb the compound from the solid sorbent. A method of inhibiting degradation of an immobilized amine in an immobilized amine solid sorbent. Compositions and methods of use of a low-cost regenerable immobilized amine solid sorbent resistant to degradation.
    Type: Application
    Filed: January 7, 2011
    Publication date: October 31, 2013
    Applicant: THE UNIVERSITY OF AKRON
    Inventor: Steven S. C. Chuang
  • Patent number: 8568676
    Abstract: A process for workup of an industrial carbon dioxide-rich gas to be freed of sulfur components, in which an industrial gas to be freed of sulfur components is purified by a gas scrubbing, and the laden solvent is freed of carbon dioxide and hydrogen sulfide by a regeneration to obtain at least one acid gas fraction having a relatively high content of sulfur components, and the fraction with the highest hydrogen sulfide (H2S) content is supplied to a Claus plant with downstream Claus process gas hydrogenation, and at least one carbon dioxide-laden, low-hydrogen sulfide acid gas fraction from the regeneration device, which has a reduced sulfur content compared to the fraction with the highest hydrogen sulfide (H2S) content, is combined with the hydrogenated Claus process gas to give a combined process gas stream, which is supplied to further processing or to recycling into the process.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 29, 2013
    Assignee: Thyssenkrupp Uhde GmbH
    Inventor: Johannes Menzel
  • Patent number: 8551435
    Abstract: This invention provides novel processes utilizing compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO2.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Nalco Company
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Publication number: 20130259789
    Abstract: A process for removing sulphur oxides from a fluid stream, such as flue gas, that comprises a) providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the non-aqueous absorption liquid being incompletely miscible with water: b) treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex: c) causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; d) separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.
    Type: Application
    Filed: March 1, 2013
    Publication date: October 3, 2013
    Applicants: Research Triangle Institute, BASF SE
    Inventors: Torsten Katz, Christian Riemann, Karsten Bartling, Sean Taylor Rigby, Luke James Ivor Coleman, Marty Alan Lail
  • Patent number: 8541622
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO2.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 24, 2013
    Assignee: Nalco Company
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Patent number: 8524184
    Abstract: A process for the removal of hydrogen sulfide from a gas stream in which the gas stream is first passed through a Claus unit operating at a sub-stoichiometric ratio (H2S:SO2) of greater than 2:1 to produce a tail gas stream comprising less than 2000 vppm SO2. This tail gas stream is then treated to increase the sulfur recovery to at least 99.5% by first directly cooling the tail gas stream by contact with water as a coolant, followed by contacting the gas stream with a circulating stream of a dilute, absorbent solution of a severely sterically hindered secondary aminoether alcohol to further cool the gas stream, and then removing the H2S from the stream using a stronger absorbent solution of a severely sterically hindered secondary aminoether alcohol.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jagannathan N. Iyengar, David Perry, Robert B. Fedich
  • Patent number: 8518158
    Abstract: Novel solvent composition for selective removal of COS from a gas stream containing same, said composition comprising a) at least one polyalkylene glycol alkyl ether of the formula R1O-(Alk-O)n—R2??(I) or 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone or a mixture of N-formylmorpholine and N-acetylmorpholine wherein R1 is an alkyl group having from 1 to 6 carbon atoms; R2 is hydrogen or an alkyl group having from 1 to 4 carbon atoms; Alk is an alkylene group, branched or unbranched, having from 2 to 4 carbon atoms, and n is from 1 to 10; and b) at least one alkanolamine compound of the formula R3NHR4OR6??(II) or at least one piperazine compound of formula wherein R3 is hydrogen, an alkyl group having from 1 to 6 carbon atoms, or the R4OH group; R4 is a branched or unbranched alkylene group having from 1 to 6 carbon atoms; R5, independently in each occurrence, is hydrogen or an hydroxyalkyl group having from 1 to 4 carbon atoms; and R6 is hydrogen, an alkyl group having from 1
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: August 27, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Craig N. Schubert, Arnold C. Ashcraft
  • Patent number: 8506914
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 13, 2013
    Assignee: Board of Trustees of The University of Alabama
    Inventor: Jason E. Bara
  • Publication number: 20130193378
    Abstract: A process for the reduction of carbon dioxide and carbonyl sulfide from various types of gas emitting sources containing carbon dioxide and/or gas or liquid emitting sources containing carbonyl sulfide, using ion exchange resin.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 1, 2013
    Applicants: LANXESS DEUTSCHLAND GMBH, LANXESS SYBRON CHEMICALS INC.
    Inventors: LANXESS Sybron Chemicals Inc., LANXESS Deutschland GmbH
  • Patent number: 8461335
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO2.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 11, 2013
    Assignee: Nalco Company
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Patent number: 8444943
    Abstract: Apparatus and methods for recovering sulfur from acid gases. Acid gases containing relatively high amounts of carbonyl sulfide and/or one or more types of mercaptans can be treated in a sulfur recovery system employing an acid gas enrichment zone and a tail gas treatment zone, where partially-loaded sulfur absorbing solvent from the tail gas treatment zone is employed for sulfur absorption in the acid gas enrichment zone. Off-gas from the acid gas enrichment zone can be combined and hydrogenated with a sulfur recovery unit tail gas thereby increasing the total amount of sulfur recovery from the initial acid gas.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: May 21, 2013
    Assignee: Black & Veatch Corporation
    Inventor: Justin A. Lamar
  • Patent number: 8419832
    Abstract: The invention relates to a process for the purification of a gaseous mixture containing mercaptans and other acid gases comprising a stage of bringing said gaseous mixture into contact with an absorbent solution comprising an alkanolamine, a C2-C4 thioalkanol and water.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: April 16, 2013
    Assignee: Total S.A.
    Inventors: Serge Capdeville, Jean-Louis Peytavy, Georges Fremy, Didier Anglerot
  • Patent number: 8404900
    Abstract: An absorbent for separating acidic gases is disclosed. The absorbent or an absorbent composition for separating acidic gases has more than 3 kinds of compounds along with Chemical Formula 1 and 2, and has ability of rapid carbon dioxide elimination, excellent absorption ability, and less energy consumption for regenerating an absorbent due to easy desorption of carbon dioxide.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 26, 2013
    Assignee: Korea Electric Power Corporation
    Inventors: Jun-Han Kim, Jae-Goo Shim, Kyung-Ryong Jang, Ji-Hyun Lee
  • Publication number: 20130039829
    Abstract: A process for the capture of sulfur dioxide from a gaseous stream utilizing a regenerable diamine absorbent comprising a diamine and a weak organic acid.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: CANSOLV TECHNOLOGIES INC.
    Inventor: Michel Ouimet
  • Patent number: 8361426
    Abstract: Absorption medium for acid gases comprising an oligoamine (A) of the general formula (I) and a piperazine derivative (B) of the general formula (II) in which the weight ratio of oligoamine (A) to the piperazine derivative (B) is 0.2 to 25, and also process for removing acid gases from a gas stream by contacting the gas stream at a pressure of 0.05 to 10 MPa abs with an aqueous solution of said absorption medium which is brought to and maintained at a temperature of 20 to 80° C.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: January 29, 2013
    Assignee: BASF SE
    Inventors: Ute Lichtfers, Robin Thiele, Susanna Voges, Georg Sieder, Oliver Spuhl, Hugo Rafael Garcia Andarcia
  • Patent number: 8318116
    Abstract: An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 27, 2012
    Inventor: Liang Hu
  • Patent number: 8318117
    Abstract: Absorption medium for acid gases comprising an oligoamine (A) of the general formula (I) and a primary or secondary alkanolamine (B) of the general formula (II) in which the weight ratio of oligoamine (A) to the primary or secondary alkanolamine (B) is 0.2 to 4, and also the process for removing acid gases from a gas stream by contacting the gas stream at a pressure of 0.05 to 10 MPa abs with an aqueous solution brought to and maintained at a temperature of 20 to 80° C. of said absorption medium.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 27, 2012
    Assignee: BASF SE
    Inventors: Ute Lichtfers, Robin Thiele, Susanna Voges, Georg Sieder, Oliver Spuhl, Hugo Rafael Garcia Andarcia
  • Patent number: 8269037
    Abstract: An absorption medium for removing acid gases from a fluid stream comprises an aqueous solution of a) of at least one metal salt of an aminocarboxylic acid, and b) of at least one acid promoter, wherein the molar ratio of b) to a) is in the range from 0.0005 to 1.0. The acid promoter is selected from mineral acids, carboxylic acids, sulfonic acids, organic phosphonic acids and partial esters thereof. The absorption medium, compared with absorption media based on amino acid salts, has a reduced regeneration energy requirement without significantly reducing the absorption capacity of the solution for acid gases. In a process for removing acid gases from the fluid stream, the fluid stream is brought into contact with the absorption medium.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: September 18, 2012
    Assignee: BASF SE
    Inventors: Gerald Vorberg, Torsten Katz, Georg Sieder, Christian Riemann, Rupert Wagner, Ute Lichtfers, Erika Dengler
  • Patent number: 8231713
    Abstract: Novel solvent composition for selective removal of COS from a gas stream containing same, said composition comprising a) at least one polyalkylene glycol alkyl ether of the formula R1O-(Alk-O)n—R2??(I) or 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone or a mixture of N-formylmorpholine and N-acetylmorpholine wherein R1 is an alkyl group having from 1 to 6 carbon atoms; R2 is hydrogen or an alkyl group having from 1 to 4 carbon atoms; Alk is an alkylene group, branched or unbranched, having from 2 to 4 carbon atoms, and n is from 1 to 10; and b) at least one alkanolamine compound of the formula R3NHR4OR6??(II) or at least one piperazine compound of formula wherein R3 is hydrogen, an alkyl group having from 1 to 6 carbon atoms, or the R4OH group; R4 is a branched or unbranched alkylene group having from 1 to 6 carbon atoms; R5, independently in each occurrence, is hydrogen or an hydroxyalkyl group having from 1 to 4 carbon atoms; and R6 is hydrogen, an alkyl group having from 1
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: July 31, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Craig N. Schubert, Arnold C. Ashcraft
  • Patent number: 8158091
    Abstract: Processes directed to the removal of sulfurous compounds from air are presented herein. The compositions and processes may be able to treat air with H2S concentrations of at least 1000 ppm. The processes are used to remove sulfurous compounds from air associated with wastewater systems in various aspects. This Abstract is presented to meet requirements of 37 C.F.R. §1.72(b) only. This Abstract is not intended to identify key elements of the apparatus and processes disclosed herein or to delineate the scope thereof.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 17, 2012
    Assignee: Syneco Systems Inc
    Inventors: Leigh Falkman, Dennis W. Van Dover
  • Publication number: 20120070353
    Abstract: The present invention relates to a process for separating off at least one acidic gas from a gas mixture comprising at least one acidic gas, which comprises the step of contacting of the gas mixture with a porous metal-organic framework, where the framework adsorbs the at least one acidic gas and the framework comprises at least one at least bidentate organic compound coordinated to at least one metal ion, wherein the porous metal-organic framework is impregnated with an amine suitable for a gas scrub. The invention further provides such impregnated metal-organic frameworks.
    Type: Application
    Filed: March 18, 2010
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: Natalia Trukhan, Ulrich Müller, Johann-Peter Melder, Steven Brughmans, Torsten Katz
  • Publication number: 20110288184
    Abstract: The invention relates to a so-called zero emission ‘AST-CNR/ITM system’ modular plant for removal of pollutants from flue gases produced by industrial processes. The plant comprises prefabricated modular elements with programmed and automatic operation, easy to mount and assemble on site without undergoing expensive plant stoppage. Each module or ‘reaction tower’ comprises a plurality of sections vertically arranged on top of one another, which carry out the following functions: Removal of particulate matter with treatment and removal of chemical pollutants, such as heavy metals, chlorides, fluorides Treatment and removal of SOx Treatment and removal of NOx Capture of CO2 Production of hydrogen Production of methanol The various sections may be combined according to the requirements of the plant and of the flue gases to be treated.
    Type: Application
    Filed: August 20, 2008
    Publication date: November 24, 2011
    Applicants: CONSIGLIO NAZIONALE DELLE RICERCHE, AST ENGINEERING S.R.L.
    Inventors: Tommaso Nardo, Antonio Maria Nardo, Angelo Basile, Fausto Gallucci
  • Publication number: 20110223086
    Abstract: Described are aromatic amino compounds that are useful to methods of carbon dioxide and sulfur dioxide removal.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: MARK A. SCIALDONE, James A. Schultz
  • Publication number: 20110223087
    Abstract: Described are amino compounds that are useful to methods of carbon dioxide removal.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Steven Raymond Lustig, Dennis A. Redder
  • Publication number: 20110223084
    Abstract: This invention relates to sulfur functionalized ionic liquid compounds that are useful in methods of carbon dioxide or sulfur dioxide removal to which they may be applied.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: MARK A. SCIALDONE
  • Publication number: 20110217219
    Abstract: The invention relates to a process using a solvent combination for the gas scrubbing of industrial gases in order to separate acid gases, particularly including carbon dioxide and hydrogen sulphide. The inventive solvent combination consists of a solution of amines in water, said solution containing ammonia for improving the absorption of CO2. The group of primary and secondary amines includes all types of amines with one or two substituents. Particularly suitable as constituent of the inventive solvent combination is piperazine and piperazine derivatives.
    Type: Application
    Filed: October 15, 2009
    Publication date: September 8, 2011
    Applicant: UHDE GMBH
    Inventor: Johannes Menzel