Reactant Added To Fuel For Reaction In Gas Mixture Patents (Class 423/244.05)
  • Patent number: 10833341
    Abstract: A non-catalytic hydrogen generation process is provided that supplies hydrogen to a hydrodesulfurization unit and a solid oxide fuel cell system combination, suitable for auxiliary power unit application. The non-catalytic nature of the process enables use of sulfur containing feedstock for generating hydrogen which is needed to process the sulfur containing feed to specifications suitable for the solid oxide fuel cell. Also, the non-catalytic nature of the process with fast dynamic characteristics is specifically applicable for startup and shutdown purposes that are typically needed for mobile applications.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: November 10, 2020
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Thang Viet Pham, Hasan Imran, Mohamed Daoudi
  • Patent number: 9579600
    Abstract: Sulfurous fuel and CaCO3-containing sorbent are combusted in a furnace of a circulating fluidized bed boiler. A dry circulating fluidized bed scrubber includes a reactor with water and Ca(OH)2 feeds for converting SO2 in the exhaust gas to CaSO3 and CaSO4 and a dust separator in gas flow connection with the reactor. A discharge removes CaO-containing bottom ash from the furnace. A classifier classifies a portion of the removed CaO-containing bottom ash into coarse and finer portions. A fine ash channel conveys some of the finer bottom ash portion from the classifier to a grinder. A ground ash channel conveys some of the ground bottom ash portion from the grinder to a hydrator to hydrate CaO in the ash to Ca(OH)2. A hydrated ash channel conveys some of the Ca(OH)2 from the hydrator to the dry circulating fluidized bed scrubber as a sorbent.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: February 28, 2017
    Assignee: AMEC FOSTER WHEELER ENERGIA OY
    Inventors: Tobias Brand, Reijo Kuivalainen, Maria-Helena Möbs, Rolf Graf
  • Patent number: 8449288
    Abstract: A method for reducing NOx formation, including the steps of: providing a furnace with a plurality of secondary air injection ducts, asymmetrically positioned in an opposing manner; injecting fuel with primary air through a first stage prior to injection of a second air; injecting secondary air and aqueous urea solution through the plurality of reagent injection ducts; controlling the asymmetrical injection to produce a high velocity mass flow and a turbulence resulting in dispersion of the urea solution into the combustion space, thereby providing reduced NOx formation in the combustion process.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: May 28, 2013
    Assignee: Nalco Mobotec, Inc.
    Inventor: Brian S. Higgins
  • Patent number: 8382470
    Abstract: A fluidized bed boiler plant and a method of combusting sulfurous fuel in the fluidized bed boiler plant, a furnace of which plant is provided with a fluidized bed of particles. Sulfurous fuel, CaCO3-containing sulphur-binding agent and combusting air are introduced to the bed of particles, whereby fuel burns and generates flue gases and the sulphur-binding agent calcinates to CaO and binds SO2 generated in the combustion. Energy is recovered to a heat exchange medium circulating in heat exchange tubes of a condensing heat exchanger arranged in a flue gas channel, and a water solution of acid condensing on outer surfaces is neutralized by mixing it in a mixing vessel to a CaO-containing ash from a plant, preferably, fly ash collected by a dust separator.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: February 26, 2013
    Assignee: Foster Wheeler Energia Oy
    Inventor: Pertti Kinnunen
  • Patent number: 8353698
    Abstract: A coaxial injection device for injecting and dispersing reagents into a reactor, including an exterior duct for high-velocity gas injection; an outer-middle injector with at least one nozzle for liquid injection; an inner-middle duct for low-velocity gas injection; and an interior injector with nozzle for liquid injection; wherein, the exterior duct is formed by the internal wall of an insert and the external wall of the outer-middle injector; and is located externally to and circumferentially surrounds all other injectors and ducts; the outer-middle injector is formed by two concentric cylinders with end plate and injector nozzles; the inner-middle duct is formed by interior wall of the outer-middle injector and the exterior wall of the interior injector; the interior injector is formed by a cylinder with an endplate, the endplate having a nozzle; thereby ensuring the mixing and dispersion of the liquids and gases into the reactor to increase reaction homogeneity, reaction efficiency, reactor efficiency and
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: January 15, 2013
    Assignee: Nalco Mobotec, Inc.
    Inventor: Goran Moberg
  • Publication number: 20100135884
    Abstract: The present invention involves a process and materials for desulfurization of a gaseous stream comprising contacting the gas stream with a manganese aluminate catalyst. The manganese aluminate catalyst is preferably selected from the group consisting of Mn2xAl2O2x+3, Mn(2?y)(MnO)yAl2O(5?y), Mn(4?y)(MnO)yAl2O(7?y), Mn(6?y)(MnO)yAl2O(9?y), Mn(1?z)(MnO)zAlO(3?z) and intermediates thereof, wherein x?0.5, 0?y?2 and 0?z?1. Preferably, x is between 1 and 3.
    Type: Application
    Filed: June 26, 2009
    Publication date: June 3, 2010
    Inventors: Manuela Serban, Alakananda Bhattacharyya, Lisa M. King
  • Publication number: 20080267848
    Abstract: Disclosed is a doped cerium oxide sorbent that can effectively and regenerably remove H2S in the temperature range of about 500° C. to about 1000° C. Regenerable sorbents (e.g., ZnO, La2O3, CeO2) and methods of using them are disclosed that allow cyclic desulfurization from about 300-500° C., 350-450° C., and at about 400° C. In one embodiment, the present invention relates to a method of desulfurizing fuel gas comprising passing the fuel gas through the sorbent at a space velocity wherein the sulfur compounds are adsorbed substantially on the surface of the sorbent; and regenerating the sorbent by passing a regenerating gas through the sorbent, wherein substantially all of the sulfur compounds are desorbed from the sorbent surface. In a further embodiment, the method of desulfurizing fuel gas further comprises repeating the aforementioned steps while the fuel processor is in operation.
    Type: Application
    Filed: November 8, 2005
    Publication date: October 30, 2008
    Applicant: Trustees of Tufts College
    Inventors: Maria F. Stephanopoulos, Zheng Wang, Mann Sakbodin
  • Publication number: 20070168213
    Abstract: Methods involve adding sorbent components, such as calcium oxide, alumina, and silica, as well as optional halogens as part of environmental control. Use of the sorbents leads to significant reductions in sulfur and mercury emissions that otherwise would result from burning coal. Use of the sorbents leads to production of waste coal ash that, while higher in mercury, is nevertheless usable as a commercial product because the mercury in the ash is non-leaching and because the coal ash has a higher cementitious nature by virtue of the increased content of the sorbent components in the ash. Thus, the methods involve adding powders having qualities that lead to the production of a cementitious coal ash while at the same time reducing emissions from a coal burning facility.
    Type: Application
    Filed: January 11, 2007
    Publication date: July 19, 2007
    Inventor: Douglas C. Comrie
  • Publication number: 20040018133
    Abstract: A process for controlling both fireside ash deposits and corrosion, and fouling, corrosion, and emissions due to SO3 formation within a fossil-fuel-fired combustion system, such as a furnace forming part of an electrical power generating plant. A solution of a soluble magnesium compound, which can be derived from wastes, such as the bleed stream from the power plant's SO2 scrubber, is injected into the combustion products within the furnace in the form of a fine spray and at a point at which the temperature is sufficiently high to produce submicron-size MgO particles. The SO3 reacts with the MgO particles to form MgSO4. Insoluble magnesium compounds can be added to the solution to produce larger (micron sized) MgO particles on thermal decomposition. The micron-sized MgO particles are deposited on furnace surfaces to reduce ash deposits and to reduce catalytic generation of SO3. The boiler wastes can be reacted with other industrial process waste products to provide marketable chemicals.
    Type: Application
    Filed: July 23, 2002
    Publication date: January 29, 2004
    Inventor: Jerrold E. Radway
  • Publication number: 20020085961
    Abstract: A process for cleaning flue gases containing ash and sulfur dioxide produced by burning sulfur-containing coal in the combustion chamber of a circulating fluidized-bed firing system includes delivering a particulate SO2 sorbent into the combustion chamber. A mixture including portions of the ash, the reaction product produced in the reaction of the SO2 sorbent with the sulfur dioxide, and unreacted SO2 sorbent is fed from the combustion chamber to a mixing unit. In the mixing unit, water or an aqueous sodium-containing solution is mixed with this mixture and the unreacted SO2 sorbent is converted into a hydration product at a reaction temperature of 60° to 100° and at atmospheric pressure. The ash, the reaction product, and the hydration product is returned from the mixing unit into the combustion chamber, and the hydration product is reactivated to an SO2 sorbent at a combustion-chamber temperature of 700° to 950° C.
    Type: Application
    Filed: September 14, 2001
    Publication date: July 4, 2002
    Inventors: Jean X. Morin, Joachim Seeber
  • Publication number: 20020037246
    Abstract: The method of simultaneously reducing carbon dioxide (CO2) emissions and sulfur dioxide (SO2) emissions produced by the combustion of carbon-containing matter in a hearth consists in injecting into the hearth a calcium-based agent, a fraction of which absorbs SO2 after decarbonization, and then, after the flue gases have been subjected to intermediate cooling, in causing them to transit via a first reactor and in putting them in contact therein with the other fraction of the absorbant that has not reacted with SO2 so as to capture CO2 from the flue gases by carbonization, then, in a separator, in extracting the solids contained in the flue gases output from the first reactor so as to subject them to heat treatment in a second reactor in order to extract CO2 therefrom by decarbonization and in order to recycle the resulting regenerated CO2 absorbant to the first reactor.
    Type: Application
    Filed: September 14, 2001
    Publication date: March 28, 2002
    Applicant: ALSTOM
    Inventors: Corinne Beal, Jean-Xavier Morin, Michel Vandycke