Sulfating Patents (Class 423/36)
  • Patent number: 8999877
    Abstract: This invention provides a fine particle composite comprising fine powder of a sulfide or sulfide complex comprising a given element. The fine particle composite is obtained by a method for producing a fine particle composite comprising fine powder of a sulfide or sulfide complex comprising at least one element selected from the group consisting of molybdenum (Mo), rhodium (Rh), ruthenium (Ru), and rhenium (Re). Such method comprises steps of: preparing a solvent mixture from at least one compound containing an element selected from among molybdenum (Mo), rhodium (Rh), ruthenium (Ru), rhenium (Re), and sulfur (S); and subjecting the solvent mixture to a hydrothermal or solvothermal reaction. The resulting fine particle composite comprises fine particles of a sulfide or sulfide complex comprising at least one element selected from the group consisting of molybdenum (Mo), rhodium (Rh), ruthenium (Ru), and rhenium (Re).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 7, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, National University Corporation Kochi University
    Inventors: Sumio Kamiya, Tatsuo Shou, Yukinobu Kato, Noboru Otake, Kazumichi Yanagisawa, Wuxing Zhang
  • Patent number: 8323510
    Abstract: Methods and systems for heavy metal separation and recovery from heavy metal-containing sludge or wastes. The method utilizes ultrasonic treatment assisted acid leaching process to separate and recover different heavy metals from multi metals-containing sludge. The technique can be cost effectively implemented for heavy metal separation and purification processes in the real world at industrial scales.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: December 4, 2012
    Inventors: Fengchun Xie, Yang Ma
  • Patent number: 8252254
    Abstract: The present invention is directed to a precious metal recovery process in which basic ferric sulphates and/or jarosites are controlled by hot curing of the autoclave discharge slurry followed by decomposition of argentojarosite using strong acid consumers.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: August 28, 2012
    Assignee: Barrick Gold Corporation
    Inventors: Yeonuk Choi, Peter D. Kondos, Jacques McMullen
  • Patent number: 8163063
    Abstract: An object of the present invention is to provide a method of efficiently leaching copper from a copper sulfide ore containing chalcopyrite or enargite as a main constituent under versatile conditions for actual operation. A method of leaching copper from a copper sulfide ore, characterized by comprising using, as a leaching solution, a sulfuric acid solution containing iodide ions and ferric (III) ions in an excessive amount relative to the iodide ions and leaching copper from a copper sulfide ore; or a method of leaching copper from a copper sulfide ore, characterized by comprising leaching copper from a copper sulfide ore with the use of a leaching solution further containing water-soluble ligands such as chloride ions that can stabilize ferric (III) ions in addition to the above components, is provided.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 24, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Manabu Manabe
  • Patent number: 8052774
    Abstract: Disclosed herein is a method for concentrating gold contained in a leach residue obtained in a copper hydrometallurgical process for recovering copper from a copper sulfide mineral to efficiently separate and recover gold from the leach residue: a gold-bearing copper sulfide mineral is subjected to pressure leaching with sulfuric acid at a temperature higher than 102° C. and 112° C. or lower to obtain a leach residue, and the leach residue is subjected to flotation to separate it into a float fraction and a sink fraction; the float fraction obtained by flotation is desulfurized to obtain a desulfurized product; the desulfurized product is subjected to oxidative roasting to obtain an oxidatively-roasted product; the oxidatively-roasted product is dissolved in a sulfuric acid solution to obtain a copper solution, and a gold-bearing residue is separated and recovered from the copper solution.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 8, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Noriyuki Nagase, Satoshi Asano, Masatoshi Takano, Kenji Takeda, Shinichi Heguri, Atsushi Idegami
  • Patent number: 7842120
    Abstract: A method of obtaining copper from feedstock includes: providing feedstock into acid solution including chloride and bromide of one of alkali metal and alkali earth metal, and one of chloride of copper and iron and bromide of copper and iron; leaching monovalent copper and divalent copper with use of oxidizing power of at least one of iron ion and copper ion, with air being blown into the acid solution under an atmospheric pressure at a temperature less than a boiling point of the acid solution; solid-liquid separating the acid solution; blowing air into the solution; oxidizing copper in the solution; coprecipitating iron and impurity; extracting copper from the solution from which deposition including the coprecipitate is separated; obtaining the extracted copper into sulfuric acid solution as copper sulfate; obtaining copper from the copper sulfate; and recycling hydrochloric acid generated in the extracting in another copper leaching.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: November 30, 2010
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yoshifumi Abe, Hiroshi Hosaka, Kazuaki Takebayashi, Yasunari Ishiguro, Akira Yoshimura
  • Patent number: 7604783
    Abstract: The present invention is directed to a precious metal recovery process in which basic ferric sulphates and/or jarosites are controlled by a number of mechanisms, including control of the oxidation reaction conditions in the first autoclave compartment, hot curing of the autoclave discharge slurry, and/or contacting of the autoclave feed slurry with the hot cured discharge liquid.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: October 20, 2009
    Assignee: Placer Dome Technical Services Limited
    Inventors: James A. King, Jinxing Ji, Christopher Andrew Fleming, Cesare Giosue Ferron
  • Publication number: 20080170976
    Abstract: The invention relates to a method, by means of which the valuable metals contained in a sulphidic, multicomponent concentrate are recovered using hydrometallurgical treatment. One constituent of the concentrate is copper sulphide, which is leached using an alkali chloride-copper (II) chloride solution. The sulphides of other valuable metals, such as zinc, nickel, cobalt and lead are leached before copper leaching and each is recovered as a separate product before copper recovery.
    Type: Application
    Filed: December 21, 2005
    Publication date: July 17, 2008
    Applicant: OUTOTEC OYJ
    Inventors: Stig-Erik Hultholm, Olli Hyvarinen
  • Patent number: 7285222
    Abstract: A method for recycling sludge during waste-water treatment firstly utilizes a process of chemical coagulation to produce sludge rich in copper ions. The sludge is then leached in a sulfuric acid storage tank with sulfuric acid of concentration 1-2N, whereby a extractive solution with copper enrichment 18-39 g/L and residues can be obtained. The extractive solution is then processed in a refrigeration crystallization tank to form copper sulfate crystals. Further, the residues produced are added into the coagulation tank as a coagulant in the process of chemical coagulation for wastewater treatment, thereby achieving a goal of zero sludge production.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: October 23, 2007
    Assignee: National Cheng Kung University
    Inventors: Hung-Yuan Hsiao, Min-Shing Tsai, Li-Hsing Shih, Hung-Ta Chen, Yeu-Juin Tuan
  • Patent number: 7175819
    Abstract: Spent, acidic solutions comprising cupric chloride and hyrdrochloric acid from the copper etching process are regenerated by a process in which the acid is subjected to distillation with sulfuric acid. In one embodiment, the process comprises (a) providing a spent etchant comprising at least about 10% by weight chloride and at least about 5% dissolved copper; (b) adding at least about 2 moles of sulfuric acid per mole of dissolved copper to the spent etching solution, thereby converting copper chloride into hydrochloric acid and precipitated copper sulfate; (c) distilling the mixture from step (b) to vaporize at least a portion of the hydrochloric acid; (d) condensing at least a portion of the vaporized hydrochloric acid; (e) separating at least a portion of the precipitated copper sulfate from the residual liquid, wherein said residual liquid comprises sulfuric acid; and (f) reusing at least a portion of the residual liquid as a sulfuric acid source in step (b).
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: February 13, 2007
    Assignee: Phibro-Tech, Inc.
    Inventors: Gang Zhao, H. Wayne Richardson
  • Patent number: 6933861
    Abstract: A key-operating device includes a shell confining a chamber therein and connected to a video game apparatus with depressible keys, a lever pivotally mounted in the chamber and having protrusions projecting toward the keys, a wheel surrounding and connected to the shell and rotatable relative to the shell, and an actuating member projecting from the wheel and engageable with the lever in such a manner that rotation of the wheel results in engagement between the actuating member and the lever so as to permit fulcrum movement of the lever and pressing of the keys by the protrusions.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: August 23, 2005
    Assignee: Alfadata Computer Corp.
    Inventor: Rocky Wang
  • Patent number: 6007600
    Abstract: The invention relates to a method for producing copper in a hydrometallurgical process from copper-bearing raw materials, such as sulfidic concentrates. The concentrate is leached in a leaching stage of several steps into a chloride-based solution. The copper-bearing solution obtained from this leaching is subjected to reduction and solution purification, whereafter the copper contained in the solution is precipitated as copper oxidule by means of alkali hydroxide. The alkali chloride solution formed in the production of copper oxidule is fed into chloride alkali electrolysis, where it is regenerated back into alkali hydroxide. The hydrogen generated in the electrolysis is used in the reduction of copper oxidule and in other reduction stages of the process. The formed chlorine is used in the leaching of the raw material. When necessary, the reduced copper that is in a granular or pulverous form is further subjected to melting and casting in order to produce commercial-grade copper.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: December 28, 1999
    Assignee: Outokumpu OYJ
    Inventors: Olli Hyvarinen, Matti Hamalainen
  • Patent number: 5650057
    Abstract: A process for the extraction of a metal from an ore or concentrate comprises subjecting the ore or concentrate to pressure oxidation in the presence of oxygen and an acidic solution containing halogen ions and a source of bisulphate or sulphate ions, such as H.sub.2 SO.sub.4. The metals which can be extracted by the process comprises copper as well as non-cuprous metals such as zinc, nickel and cobalt. During pressure oxidation the metal may be precipitated as an insoluble basic salt, such as basic copper sulphate, or substantially completely solubilized and precipitated later as the basic metal salt.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 22, 1997
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 5484579
    Abstract: A continuous hydrometallurgical process for conversion of ore derived copper and zinc sulfides into recoverable water soluble sulfates is provided. The process comprises:i) contacting the ore derived copper and zinc sulfides with sulfuric acid and with nitric acid to form a reaction mixture in an acidic solution,ii) maintaining the reaction mixture at a temperature in the range of 110.degree. C. to 170.degree. C. while continuously mixing the reaction mixture,iii) adding sufficient sulfuric acid and nitric acid to the reaction mixture to form a light precipitate and a dark precipitate in the reaction mixture, the light precipitate comprising water soluble sulfate salts of copper sulfate, zinc sulfate and iron sulfate, and the dark precipitate being water insoluble and comprising mainly elemental sulfur and gangue,iv) introducing a source of oxygen to the reaction mixture to promote oxidation in the presence of the nitric acid, of the sulfides to sulfates and to oxidize gaseous NO.sub.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: January 16, 1996
    Assignee: R & O Mining Processing Ltd.
    Inventor: Robert N. O'Brien
  • Patent number: 5348713
    Abstract: A process is disclosed for recovering zinc, lead, copper and precious metals from zinc plant residue, said process comprising leaching the residue with return zinc spent electrolyte, neutralizing residual acid and reducing ferric iron in the solution by addition of zinc sulphide concentrate in the presence of a limited quantity of oxygen, flotation of the resulting slurry to separate unreacted zinc sulphide, treatment of flotation tailings with sulphur dioxide and elemental sulphur to further leach iron, zinc and impurity elements and precipitate copper, flotation of the resulting slurry to separate a copper sulphide concentrate, thickening, filtering and washing of the flotation tailings followed by addition of lime and sodium sulphide to activate lead sulphate and flotation of a lead concentrate from the residue.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: September 20, 1994
    Assignee: Sherritt Gordon Limited
    Inventors: Derek E. Kerfoot, Michael J. Collins, Michael E. Chalkley
  • Patent number: 5332560
    Abstract: A method for the recovery of copper from copper-containing materials, for example, scrap, ores or dust. An aqueous cupric tetrammine sulfate lixiviant is contacted with the copper-containing material to produce a leachate containing cuprous, nickel, and zinc ions, ammonium sulfate and free ammonia. Copper can be recovered from the leachate by electrolysis. Nickel and zinc can be precipitated from the resulting spent electrolyte by oxidizing substantially all of the cuprous ions in the copper ammine sulfate solution to cupric ions and lowering the pH of the solution to a range from about pH 7.5 to about pH 8.0 in order to form a precipitate. Alternatively, copper sulfate can be added to the cupric ammine sulfate-containing solution in order to form nickel and/or zinc containing precipitate.
    Type: Grant
    Filed: March 5, 1993
    Date of Patent: July 26, 1994
    Assignee: Cato Research Corporation
    Inventors: William H. Kruesi, Paul R. Kruesi
  • Patent number: 5320759
    Abstract: A process for selectively recovering dissolved heavy metals from a solution is disclosed that involves selectively reacting a xanthate with such dissolved heavy metals. Selective reaction of a xanthate with selected dissolved heavy metals is accomplished by conducting the reaction under conditions such that only some of the heavy metals react with the xanthate, to the exclusion of reaction with other dissolved heavy metals. Selectivity of the reaction is particularly influenced by the pH at which the reaction occurs. Typically, the reaction should occur at a pH below about 4.0. Xanthates, once reacted, can be separated from the heavy metal xanthate reaction product and recycled for use within the process. Purified heavy metal product can be produced if desired.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: June 14, 1994
    Assignee: Hazen Research, Inc.
    Inventor: Enzo Coltrinari
  • Patent number: 5316751
    Abstract: A method for site remediation for mitigating contamination from metals or metal compounds, particularly resulting from the situation of mine tailing waste on or near water sources, including the reprocessing and redeposit of separated sands and slimes in-site in a manner to encourage rather than inhibit leaching of residuals by chelating agents or biological agents with recovery of leachate and removal of metals or metal compounds.
    Type: Grant
    Filed: February 11, 1991
    Date of Patent: May 31, 1994
    Inventors: Gordon Kingsley, Richard E. Peterson
  • Patent number: 5188713
    Abstract: A process for recovery of metal from a feedstock comprising copper is provided. The process comprises the steps of:(a) contacting the feedstock with an aqueous mixture comprising ammonium nitrate having a concentration greater than about 1.5M and sulphuric acid having a concentration greater than about 6M at a temperature of from about 105.degree. C. to about 130.degree. C., to produce a first residue comprising a cuprous salt and a leachate comprising copper;(b) separating the residue from the leachate; and(c) electrowinning copper from the leachate.The process may also be used advantageously to recover iron present in the feedstock in a form other than jarosite.
    Type: Grant
    Filed: March 5, 1991
    Date of Patent: February 23, 1993
    Assignee: Envirochip Technologies Ltd.
    Inventors: Robert N. O'Brien, Thomas D. McEwan
  • Patent number: 5147618
    Abstract: A process for recovering gold from refractory gold-bearing ores uses sulfurous acid as the leaching agent to form a gold-sulfite complex. The ore is ground, slurried blended with a chelating agent and then subjected to a simultaneous dissolved SO.sub.2 leaching and anion exchange resin adsorption step in the presence of dissolved oxygen. The gold transfers to the resin which is later separated from the resin by chemical stripping.
    Type: Grant
    Filed: May 21, 1991
    Date of Patent: September 15, 1992
    Assignee: Freeport-McMoRan Inc.
    Inventors: Freddie J. Touro, Tadeusz K. Wiewiorowski
  • Patent number: 5147617
    Abstract: A process for recovering gold from gold-bearing ores includes the steps of forming a slurry of ground ore and treating the ore with an oxidizing and complexing agent such as hydrogen sulfide or a sulfide salt. A chelating agent, SO.sub.2, air, and an anion exchange resin are added to the slurry to subject the ore to a simultaneous sulfurous acid leaching and anion exchange resin adsorption step in the presence of dissolved oxygen. The gold transfers to the resin which is then removed from the slurry. The gold is then separted from the resin by chemical stripping. Alternately, the ground ore is blended with an oxidizing agent such as calcium hypochlorite and then with a gold-complexing agent. The ore blend is slurried in water, with the addition of a chelating agent, SO.sub.2, air and an anion exchange resin to effect the leaching and adsorption of gold values.
    Type: Grant
    Filed: May 21, 1991
    Date of Patent: September 15, 1992
    Assignee: Freeport-McMoRan Inc.
    Inventors: Freddie J. Touro, Tadeusz K. Wiewiorowski
  • Patent number: 5085836
    Abstract: A method to reduce dissolved silver present in spent, waste, photographic processing fluids containing thiosulfate, is described. This process involves adjusting the pH to a low level prior to the addition of finely ground steel to the solution. With the pH at the low level, e.g. 2.5, the reaction of dissolved silver to precipitated silver, is facilitated. However, the pH must then be raised or neutralized, e.g. 7-8.5, in order to insure that the dissolved silver is essentially all precipitated. This material can now be safely shipped without treatment as a hazardous material and, after filtering the solids therefrom, can be safely disposed.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: February 4, 1992
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Barbara T. Booker
  • Patent number: 5059403
    Abstract: A method for producing copper sulfate from waste copper-containing liquid including the steps of recovery of acidic and basic copper-containing liquid, and neutralization of the liquid to form crystalline copper sulfate, wherein the ratio of acidic to basic copper-containing liquid, temperature, pH value and the concentration of copper ion in the resultant solution of each step is being controlled such that the solid copper sulfate is obtained in high yield and purity and will have a larger particle size, and at the same time, the filtrate will contain copper ion in a concentration below 0.3 ppm before being expelled to the surroundings.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: October 22, 1991
    Assignee: Compeq Manufacturing Co., Ltd.
    Inventor: Chung C. Chen
  • Patent number: 4956154
    Abstract: Aqueous effluent solutions containing metal cations may be treated with an extractant comprising an organophosphinic acid, a di-2-ethylhexyl phosphoric acid and/or an aliphatic amine to selectively separate chromium, nickel, cobalt, copper and lead cations from the aqueous solution. Typical extraction techniques include liquid-liquid extraction employing either mixer settlers or columns, liquid membrane extraction and selective supported membrane extraction.
    Type: Grant
    Filed: March 9, 1988
    Date of Patent: September 11, 1990
    Assignee: UNC Reclamation
    Inventors: Alex Magdics, Donald B. Stain
  • Patent number: 4915730
    Abstract: A process and apparatus for the recovery of metals such as silver from phosphate flue dust. The process includes the steps of blending chloride salt and the flue dust to produce a blended material, roasting the blended material in an oxygen bearing atmosphere to oxidize carbon in the blended material producing a gas and to react chloride salt with the metal in the blended material producing a water soluble metallic salt, dissolving the metallic salt in water to produce a solution, filtering the solution to remove solids, and precipitating metals from the filtered solution with the precipitate ready for conventional smelting. The preferred embodiment of the apparatus includes a flue dust hopper and mill and a salt hopper and mill for feeding the dust and salt to a radiant tube dryer and a radiant tube asher for blending and roasting the materials, and a spray chamber at the outlet of the asher for separating solids and gases, where certain of the solids go into solution.
    Type: Grant
    Filed: July 13, 1989
    Date of Patent: April 10, 1990
    Inventors: Allan Elias, Hans W. Rasmussen
  • Patent number: 4778519
    Abstract: A method is provided for recovering gold and silver from precious metal bearing materials including ores, leaching residues, flue dust, electronic scrap, jewelry scrap, etc. In the method, the gold and silver are extracted from the precious metal bearing materials with a thiourea solution to form a thiourea leach, and the thiourea leach is contacted with carbon to adsorb the gold and silver and provide loaded carbon. The method is characterized by the step of contacting an alkaline solution of thiousulfate ion with the loaded carbon thereby desorbing the precious metals form the carbon. In one modification of the method, an additional step includes adding a salt to the aqueous thiousulfate solution. When needed, the method includes the step of protecting the thiousulfate ion from oxidizing agents. This is done by adding a reducing agent such as sodium sulfite to the thiousulfate solution.
    Type: Grant
    Filed: April 7, 1987
    Date of Patent: October 18, 1988
    Inventor: Batric Pesic
  • Patent number: 4735783
    Abstract: An aqueous solution containing a water soluble polyvalent metal sulphate, an alkali metal silicate and an alkali metal metabisulphite is described which is added to a slurry of a copper mineral bearing ore to be subjected to a froth flotation step for obtaining a copper concentrate. The aqueous solution is added to enhance the selectivity of conventional flotation collectors and depressants when the valuable minerals are finally disseminated in the host ore, which is then required to be ground to very small particle sizes to achieve the desired liberation. Other valuable minerals such as those bearing zinc and lead, may be recovered from the tailing.
    Type: Grant
    Filed: April 22, 1987
    Date of Patent: April 5, 1988
    Assignee: Falconbridge Limited
    Inventor: Srdjan Bulatovic
  • Patent number: 4731113
    Abstract: A process for the recovery of precious metals from ore containing the same is disclosed. The process includes the formation of a lixiviant solution including a thiourea compound, urea and an alkali lignin sulfonate. The ore is then exposed to this lixiviant solution to extract the previous metals therefrom, and the dissolved previous metals are then recovered from the solution.
    Type: Grant
    Filed: August 13, 1986
    Date of Patent: March 15, 1988
    Inventor: Roger H. Little
  • Patent number: 4698139
    Abstract: The purpose of the method is to remove chlorides and fluorides from a valuable metal raw material by leaching the raw material into sulphuric acid solution and by crystallizing the valuable metal sulphate selectively out of the solution. The valuable metal sulphate crystals are washed in sulphuric acid solution, and the recovered dechlorinated and defluorinated crystals are leached into water and conducted into electrolysis. The sulphuric acid solution employed in the raw material leaching and in the crystal washing is preferably the same as the return acid of the electrolysis. Chlorides and fluorides are removed from the mother liquor of crystallization in the bleed.
    Type: Grant
    Filed: January 6, 1986
    Date of Patent: October 6, 1987
    Assignee: Outokumpu Oy
    Inventors: Sigmund P. Fugleberg, Jaakko I. Poijarvi
  • Patent number: 4671945
    Abstract: This is a method for the complete leaching of the valuable metals in a metal sulphide material which contains copper, zinc, lead, silver and iron by the use of a solution which essentially contains cupric chloride/sulphates. After the valuable metals have been recovered, the solution is regenerated whereby ferrous chloride and cuprous chloride/sulphate is oxidized to a ferric hydroxide solid and a cupric chloride solution respectively. The regenerated solution is split into two part-solutions and returned to the process.One part-solution goes to a metathesis stage where the fresh metal sulphide material is added in large excess with respect to the part-solutions's content of copper. The result is that only the valuable metals like zinc, lead and silver are leached while copper and iron remain in the residue.The other part-solution goes to a leach stage where the residue from the metathesis stage is added.
    Type: Grant
    Filed: October 29, 1985
    Date of Patent: June 9, 1987
    Inventors: Thomas Thomassen, Carl O. Kostol
  • Patent number: 4670052
    Abstract: A process for the recovery of gold from a precious metal bearing sludge concentrate is disclosed. The process comprises the steps of leaching the sludge with hydrochloric acid and hydrogen peroxide to solubilize at least gold, palladium and platinum, removing silver from the leach slurry as insoluble silver chloride and selectively precipitating gold from the leach solution remaining after removal of silver by reduction with SO.sub.2 in the presence of sodium ions.
    Type: Grant
    Filed: May 7, 1986
    Date of Patent: June 2, 1987
    Assignee: Noranda, Inc.
    Inventors: Robert W. Stanley, G. Bryn Harris, Serge Monette
  • Patent number: 4654078
    Abstract: Precious metals such as gold and silver are recovered from difficult-to-treat ores, especially those containing manganese and/or copper, by lixiviating the ores using copper-ammonium thiosulfate in which the pH of the lixiviating solution is maintained at a minimum level of 9.5 in order to inhibit the action of metallic iron and its ferric salts that are present in the solution and which decomposes the double salt of copper-ammonium thiosulfate. Copper cement is used in a subsequent precipitation process to expose a large amount of area on which the gold and silver can precipitate without also causing precipitation of copper from the lixiviant solution.
    Type: Grant
    Filed: July 12, 1985
    Date of Patent: March 31, 1987
    Inventors: Ariel E. Perez, Hector D. Galaviz
  • Patent number: 4645535
    Abstract: A process for the recovery of precious metals from ore containing the same is disclosed. The process includes the formation of a lixiviant solution including a thiourea compound, urea and potassium lignin sulfonate. The ore is then exposed to this lixiviant solution to extract the precious metals therefrom, and the dissolved precious metals are then recovered from the solution.
    Type: Grant
    Filed: August 15, 1985
    Date of Patent: February 24, 1987
    Inventor: Roger H. Little
  • Patent number: 4610723
    Abstract: A process for lixiviation of concentrates of copper sulphides of tetrahedral type containing high concentration of arsenic and antimony to recover copper and noble metals. The concentrates are repulped into an aqueous ferrous sulphate solution with an established and controlled solid-liquid ratio which is thereafter oxidized by an oxygen containing gas in a reactor, thereby oxidizing the sulphides to sulphates, precipitating iron as ferric arsenates and antimoniates and yielding a lixiviation pulp in which the solid phase contains the iron, antimony and arsenic as well as the insoluble sulphates of the non-ferrous metals, such as lead and noble metals, and the liquid phase containing the copper, free sulphuric acid and the soluble sulphates of non-ferrous metals, as well as zinc, cadmium, cobalt, etc. The metals contained therein are recovered, after solid-liquid separation by conventional method.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: September 9, 1986
    Inventors: Eduardo D. Nogueira, Angel L. Redondo Abad
  • Patent number: 4606763
    Abstract: A process for the pressure oxidation leaching of non-ferrous metal sulphidic material which comprises providing an autoclave assembly which has a series of successive compartments, the first compartment of which being substantially larger in size than each of the remaining compartments. An oxygen partial pressure is provided in the autoclave assembly in the range of from about 50 to about 2000 kPa. An aqueous slurry of the material is fed into the relatively large first compartment with resultant flow of the material through the successive smaller compartments causing the temperature in the first and successive compartments to be sufficient to produce autogeneous oxidation of the sulphidic material. The oxidized slurry from the last compartment of the series is discharged.
    Type: Grant
    Filed: March 4, 1985
    Date of Patent: August 19, 1986
    Assignee: Sherritt Gordon Mines Limited
    Inventor: Donald R. Weir
  • Patent number: 4606764
    Abstract: The invention comprises the treatment of metal oxides and mixed metal oxides and metal sulfides in a vertical tube reactor system having a downcomer section and a riser section in order to oxidize and dissolve the metal values in aqueous slurry primarily in the downcomer section and introducing a reducing agent comprising a formate species and reducing the dissolved metal values in the riser section. The reduced metal values are then separated with the gangue values from the product solution downstream from the vertical tube reactor system. The reduced metal values may then be separated from the gangue material by conventional solid separation techniques, such as flotation.
    Type: Grant
    Filed: January 11, 1985
    Date of Patent: August 19, 1986
    Assignee: Resource Technology Associates
    Inventors: Wayne C. Hazen, Enzo L. Coltrinari, John E. Litz, David L. Thompson
  • Patent number: 4605439
    Abstract: A process for the recovery of gold from refractory auriferous iron-containing sulphidic material which comprises providing an aqueous feed slurry of fresh feed material and oxidized solids from a subsequent pressure oxidation step. The feed slurry has a pulp density in the range of from about 30 to about 60% by weight. The slurry is subjected to pressure oxidation at a temperature of from about 120.degree. to about 250.degree. C. under a total pressure of from about 360 to about 6000 kPa to produce a slurry of oxidized solids. A portion of the oxidized solids is recycled to the feed slurry, and gold is recovered from the remaining oxidized solids.
    Type: Grant
    Filed: March 4, 1985
    Date of Patent: August 12, 1986
    Assignee: Sherritt Gordon Mines Limited
    Inventor: Donald R. Weir
  • Patent number: 4594102
    Abstract: A process for recovering cobalt and nickel values from cobalt and nickel containing sulphidic material also containing iron includes roasting the sulphidic material to produce a calcine containing water soluble cobalt and nickel sulphate, and leaching the calcine in aqueous sulphate solution under oxidizing conditions at an oxygen overpressure in the range of from about 50 kPa to about 1500 kPa and at a temperature in the range of from about 100.degree. to about 180.degree. C. to produce an iron-containing residue and a cobalt and nickel containing solution. The residue is separated from the solution, and cobalt and nickel values are recovered from the solution.
    Type: Grant
    Filed: September 15, 1983
    Date of Patent: June 10, 1986
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Donald R. Weir, Derek E. Kerfoot, Michael E. Chalkley
  • Patent number: 4585477
    Abstract: A method of recovering copper and nickel from sulphidic minerals containing copper, nickel and iron comprises the steps of roasting the mineral, preferably to provide magnetite; sulphating, for example with sulphuric acid, sulphur trioxide, metal sulphate and/or sulphur dioxide together with oxygen; and a subsequent leaching of the sulphated material and recovery of copper from the leaching solution, for example by electrolysis. All or part of the leaching solution with its nickel content is recycled to the roasting stage, and the nickel content is removed in the form of nickel oxide together with the leaching residue, from which nickel can be recovered.
    Type: Grant
    Filed: February 11, 1985
    Date of Patent: April 29, 1986
    Assignee: Boliden Aktiebolag
    Inventor: Thomas K. Mioen
  • Patent number: 4582690
    Abstract: Thiosalts contained in waste streams are oxidized to sulfate ions in the presence of sulfur-bound copper. Air oxidation of the waste stream is effected in a slurry of the copper compound, which may be CuS, Cu.sub.2 S or chalcopyrite, and continuous long term operation is possible without loss of catalytic activity and without catalyst degradation.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: April 15, 1986
    Assignee: University of Waterloo
    Inventors: Garry L. Rempel, Manas Chanda
  • Patent number: 4571264
    Abstract: A process for recovering gold from refractory auriferous iron-containing sulphidic ore which comprises feeding ground ore as an aqueous slurry to an acidic pretreatment step. The ground ore in the acidic pretreatment step is treated with aqueous sulphuric acid solution to decompose carbonate and acid consuming gangue compounds, and subjecting the treated slurry to a first liquid-solids separation step to produce a sulphate solution and separated solids. Water is added to the separated solids in a first repulping step to form a slurry having a pulp density in the range of from about 25 to about 60% by weight solids. The first repulped slurry is oxidized in a pressure oxidation step at a temperature in the range of from about 135.degree. to about 250.degree. C.
    Type: Grant
    Filed: March 4, 1985
    Date of Patent: February 18, 1986
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Donald R. Weir, Roman M. Genik-Sas-Berezowsky
  • Patent number: 4571263
    Abstract: A process for recovering gold from refractory auriferous iron-containing concentrate includes feeding the concentrate as an aqueous slurry to an acidic pretreatment step and treating the concentrate in the acidic pretreatment step with aqueous sulphuric acid solution to decompose carbonate and other acid consuming gangue compounds. The treated slurry is oxidized in a pressure oxidation step at a temperature in the range of from about 135.degree. to about 250.degree. C. under a pressurized oxidizing atmosphere while maintaining a free acid concentration of from about 5 to about 40 g/L sulphuric acid to cause dissolution of iron, formation of sulphuric acid and oxidation of substantially all oxidizable sulphide compounds to sulphate form with less than about 20% of oxidized sulphur being present as elemental sulphur during the oxidation step.
    Type: Grant
    Filed: March 4, 1985
    Date of Patent: February 18, 1986
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Donald R. Weir, Roman M. Genik-Sas-Berezowsky
  • Patent number: 4571262
    Abstract: A process for separately recovering platinum group metal values, nickel values and copper from nickel-copper-iron sulphidic matte containing platinum group metals includes leaching ground matte at atmospheric pressure in acidic nickel-copper sulphate solution at a temperature in the range of from about 75.degree. to about 105.degree. C. and at a pH below about 4 initially under oxidizing conditions and subsequently under neutral or non-oxidizing conditions to cause dissolution of nickel and iron, precipitation of copper as a copper sulphide and precipitation of dissolved platinum group metals. The copper, nickel and platinum group metal containing solids are separated from the nickel and iron containing sulphate solution and are leached in acidic nickel-copper sulphate solution under pressurized oxidizing conditions at a temperature of from about 120.degree. to about 180.degree. C. to cause dissolution of nickel and copper with minor dissolution of platinum group metals.
    Type: Grant
    Filed: March 11, 1985
    Date of Patent: February 18, 1986
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Derek G. E. Kerfoot, Russell P. Kofluk, Donald R. Weir
  • Patent number: 4545963
    Abstract: A process for separately recovering zinc and lead values from zinc and lead containing sulphidic ore which also contains iron comprises subjecting ground ore to a first flotation step to float an initial lead concentrate containing zinc and produce zinc and iron containing tailings. The zinc and iron containing tailings are subjected to a second flotation step to float an initial zinc concentrate containing iron and also produce tailings. The initial zinc concentrate is subjected to a third flotation step to float a further zinc concentrate containing iron and also produce zinc and iron containing tailings. The zinc and iron containing tailings from the third flotation step and at least a lead and zinc containing portion of the initial lead concentrate are leached in a first leach step under oxidizing conditions at a temperature in the range of from about 130.degree. to about 170.degree. C.
    Type: Grant
    Filed: September 26, 1983
    Date of Patent: October 8, 1985
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Donald R. Weir, Ian M. Masters, Barry N. Doyle, Michael E. Chalkley
  • Patent number: 4511540
    Abstract: Process for treating oxidized ores with a manganiferous matrix to recover the small quantities of copper, nickel and cobalt, which consists of attacking the aforementioned ore by means of an aqueous solution of H.sub.2 SO.sub.4 with the simultaneous injection of sulfur dioxide, at a temperature which does not exceed boiling point of the medium, at a pH less than 1.5; introducing an alkaline sulfide to precipitate the copper, nickel and cobalt sulfides in the suspension resulting from the attack; and separating by sulfides and the residue by flotation. The process is applicable to attacks on manganiferous nodules obtained from ocean beds as well as to attacks on land manganiferous matrix oxidized ores.
    Type: Grant
    Filed: October 26, 1981
    Date of Patent: April 16, 1985
    Assignee: Pechiney Ugine Kuhlmann
    Inventors: Charles Crussard, Pierre Maurel, Jean Bonhomme
  • Patent number: 4431613
    Abstract: A method of treating sulphidic mattes containing from 5% to 60% iron; from 15% to 40% sulphur together with soluble non-ferrous metals such as copper, cobalt, nickel and zinc and also optionally insoluble non-ferrous metals which term includes platinum group metals gold and silver by a leaching process to effect substantial separation of the non-ferrous metals from iron as well as from insoluble residue material. The matte is contacted in a finely subdivided form with sulphate in acid medium at a temperature of from 70.degree. C. to 120.degree. C. and an oxygen partial pressure of from 50kPa to 1,000kPa. The quantity of sulphate present is at least the stoichiometric amount required for dissolving the soluble non-ferrous metals present but is limited to ensure that a substantial proportion of iron which dissolves simultaneously with the soluble non-ferrous metals precipitates out as it is replaced by dissolving non-ferrous metals.
    Type: Grant
    Filed: October 12, 1982
    Date of Patent: February 14, 1984
    Assignee: National Institute for Metallurgy
    Inventor: Bernard Verbaan
  • Patent number: 4383979
    Abstract: Zinc, copper and cadmium are recovered from their ferrites by subjecting the ferrites to a sulfuric acid bearing solution in the presence of potassium, sodium or ammonium ions under atmospheric conditions at 80.degree.-105.degree. C. to precipitate the iron present in the ferrites as jarosite, separating at least a portion of the jarosite-bearing solid material from the solution before recycling the solution to a neutral leach, from which a copper and cadmium bearing solution is recovered and to which acid and calcine are also fed, feeding the solid obtained from the neutral leach to the said ferrite treatment stage classifying the solid obtained from the neutral leach into a finer and coarser fraction, feeding the finer fraction to the ferrite treatment stage, comminuting the coarser fraction by grinding, leaching or milling and recycling the comminuted fraction to the process.
    Type: Grant
    Filed: August 26, 1980
    Date of Patent: May 17, 1983
    Assignee: Outokumpu Oy
    Inventors: Jussi K. Rastas, Lars-Goran Bjorkqvist, Raija-Leena Gisler, Simo S. Liukkonen
  • Patent number: 4338069
    Abstract: A tire curing press has a loader assembly comprising a bead grip for engaging and lifting the axial interior of the upper bead of a green tire and a tread positioning ring movable axially to an adjusted position to engage the tire tread shoulder and to force a predetermined distance between the upper bead and tread to identify precisely the transaxial middle or crown plane of the tread. The loader includes means to swing the bead grip and tread register from a tire pick-up position to a load position centered in the press and to position the lower bead of the green tire on or close to a movable toe ring, and then to lower the bead grip, tread register and toe ring uniformly with the green tire held open and firmly therebetween to match the transaxial middle plane of the tread to that of a bladder mounted in a center mechanism in the press by independently movable top and bottom bladder bead clamps.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: July 6, 1982
    Assignee: NRM Corporation
    Inventors: Anand P. Singh, Daniel Shichman
  • Patent number: 4338168
    Abstract: A method is provided for recovering copper values from a copper-bearing hematite residue in a single stage. It comprises leaching the residue in an aqueous sulphuric acid solution in the presence of ammonium, sodium or potassium ions, at a temperature between about 80.degree. C. and the boiling point of the solution so that copper values are dissolved while iron is precipitated as jarosite. The method is particularly suitable for the treatment of residues resulting from an oxidizing pressure leach of copper concentrates.
    Type: Grant
    Filed: February 11, 1981
    Date of Patent: July 6, 1982
    Assignee: Noranda Mines Limited
    Inventors: Robert W. Stanley, Serge Monette, Derek G. E. Kerfoot
  • Patent number: RE37251
    Abstract: A process for the extraction of a metal from an ore or concentrate comprises subjecting the ore or concentrate to pressure oxidation in the presence of oxygen and an acidic solution containing halogen ions and a source of bisulphate or sulphate ions, such as H2SO4. The metals which can be extracted by the process comprises copper as well as non-cuprous metals such as zinc, nickel and cobalt. During pressure oxidation the metal may be precipitated as an insoluble basic salt, such as basic copper sulphate, or substantially completely solubilized and precipitated later as the basic metal salt.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: July 3, 2001
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones