Binary Fluorine Containing Compound Patents (Class 423/489)
-
Patent number: 12145857Abstract: A production method of tungsten hexafluoride according to one embodiment of the present invention includes: a first step of bringing tungsten having an oxide film into contact with a fluorine gas or inert gas containing 50 vol ppm to 50 vol % of hydrogen fluoride in a reactor, thereby removing the oxide film from the tungsten; and a second step of bringing the tungsten from which the oxide film has been removed by the first step into contact with a fluorine-containing gas to form tungsten hexafluoride.Type: GrantFiled: July 12, 2019Date of Patent: November 19, 2024Assignee: CENTRAL GLASS COMPANY, LIMITEDInventors: Akiou Kikuchi, Yuta Takeda, Masakiyo Nagatomo, Akifumi Yao
-
Patent number: 12043880Abstract: Method for producing thermally processed material (50), the method comprising providing material (35) to be thermally processed, providing carbon-containing scrap material (20) from an electrolysis cell (10) for the production of primary aluminium (15), introducing the material (35) to be thermally processed into a furnace (40), processing the carbon-containing scrap material (20) to produce a scrap fuel (55), and thermally processing the material (35) to be thermally processed in the furnace (40) using energy generated by burning the scrap fuel (55) such as to produce thermally processed material (50).Type: GrantFiled: May 14, 2019Date of Patent: July 23, 2024Assignee: NORSK HYDRO ASAInventor: Roland Scharf-Bergmann
-
Patent number: 11987862Abstract: A method for liquefying niobium and tantalum and a method for producing a niobium solution and a tantalum solution, which can liquefy niobium and tantalum or produce a niobium solution and a tantalum solution safely and efficiently from a smelting raw material containing niobium and tantalum. Ammonium hydrogen sulfate is mixed as a reaction agent into a powdered substance containing at least one element of niobium or tantalum, and the mixture is melted under predetermined conditions to form a molten substance. A suspension formed by dissolving the molten substance having been solidified in an aqueous solution is subjected to solid-liquid separation to recover a precipitate. The precipitate is composed of niobium and/or tantalum with few impurities, and the precipitate is dissolved in one type of acid solution selected from hydrochloric acid, sulfuric acid, or nitric acid, whereby 90% or more of niobium and/or tantalum can be leached out.Type: GrantFiled: February 9, 2022Date of Patent: May 21, 2024Assignee: Fukuoka Institute of TechnologyInventors: Hironari Kubo, Takuto Nishida, Sayaka Masuda
-
Patent number: 11957996Abstract: Disclosed is a microwave chemical method for totally extracting fluorine and rare earth from bastnaesite concentrate, including: alkaline conversion defluorination of bastnaesite through microwave irradiation, microwave-assisted leaching of fluorine, solid-liquid separation of leaching solution and microwave-assisted leaching of rare earth. The rare earth hydrochloric acid solution for leaching contains no fluorine ion, so that the fluorine interference of subsequent processes such as impurity removal can be completely avoided; the fluorine and the rare earth are leached with microwaves, which does not need the stirring, so that the automatic control is easy to implement; the fluorine and rare earth leaching speed is high, the leaching time is short and the complete leaching of fluorine and little residual alkali in the slag can be realized by two-time leaching; and no fluorine-containing waste water is discharged, and the total extraction of the rare earth can be realized by one-time leaching.Type: GrantFiled: April 26, 2021Date of Patent: April 16, 2024Assignee: Sichuan Normal UniversityInventors: Shilin Zhao, Hongcheng Zhang, Jun Ma, Yang Liao, Liyang Han, Meng Jiang, Hao Huang, Chaoqun Li, Xiaoting Li, Hongyan Shang
-
Patent number: 11795138Abstract: The invention relates to a use of a fluorination gas, and the elemental fluorine (F2) is present in a high concentration, for example, in a concentration of elemental fluorine (F2), especially of equal to much higher than 15 or even 20% by volume, and to a process for the manufacture of a fluorinated compound by direct fluorination employing a fluorination gas, wherein the elemental fluorine (F2) is present in a high concentration. The process of the invention is directed to the manufacture of a fluorinated compound, for the exception of fluorinated benzene, by direct fluorination. Especially the invention is of interest in the preparation of fluorinated organic compounds, final products and as well intermediates, for usage in agro-, pharma-, electronics-, catalyst, solvent and other functional chemical applications. The fluorination process of the invention may be performed batch-wise or in a continuous manner.Type: GrantFiled: January 11, 2022Date of Patent: October 24, 2023Inventors: Changyue Zhou, Hongjun Du, Wenting Wu
-
Patent number: 11728490Abstract: The present disclosure provides an electrochemical cell that includes an electrically conductive material layer, a precursor material disposed on or adjacent to a first surface of the electrically conductive material layer, and an electroactive material layer disposed on or adjacent to the precursor material. In certain variations, the precursor material forms a continuous layer and a solid-electrolyte interface layer is disposed on or adjacent to an exposed surface of the electroactive material layer. In other variations, the precursor material forms a plurality of distinct precursor structures disposed on the first surface of the electrically conductive material layer in a predetermined pattern, such that at least a portion of each distinct precursor structure is unobstructed by the electroactive material layer. The distinct precursor structures are configured to form surface structures that chemically attach the solid-electrolyte interface layer and the electrically conductive material layer.Type: GrantFiled: April 22, 2021Date of Patent: August 15, 2023Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Robert D. Schmidt, Gayatri V. Dadheech
-
Patent number: 11697594Abstract: A method for recycling spent carbon cathode of aluminum electrolysis includes the following steps: (1) crushing and sieving spent carbon cathode, to obtain carbon particles; (2) mixing the carbon particles with a sulfuric acid solution, to obtain a slurry A, and then performing pressure leaching, to obtain a slurry B; (3) evaporating and concentrating the slurry B until a mass percentage of water is lower than 8%, to obtain a slurry C; (4) adding concentrated sulfuric acid to the slurry C to obtain a slurry D, then roasting the slurry D at 150-300° C. for 0.5-10 h, and then roasting at 300-600° C. for 0.5-8 h, to obtain the roasted carbon; and calcining the roasted carbon at a high temperature, to obtain the purified carbon, or mixing the roasted carbon with a leaching agent, and performing leaching, filtering, and washing, to obtain the purified carbon.Type: GrantFiled: January 16, 2021Date of Patent: July 11, 2023Assignee: CENTRAL SOUTH UNIVERSITYInventors: Yanqing Lai, Zhongliang Tian, Kai Yang, Yifan Li, Peiyu Gong, Bo Hong, Jie Li
-
Patent number: 11075076Abstract: A method for manufacturing a semiconductor device is provided. In the method, impurities contained in a first layer formed on a substrate are removed by heating the first layer. On the first layer, a second layer is formed containing a component that forms a substance that is able to vaporize by reacting with the impurities.Type: GrantFiled: November 20, 2018Date of Patent: July 27, 2021Assignee: Tokyo Electron LimitedInventors: Takahito Umehara, Masato Koakutsu
-
Publication number: 20150034500Abstract: A metal organic framework (MOF) includes a coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas. A porous organic polymer (POP) includes polymerization product from at least a plurality of organic monomers, where the organic monomers are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas.Type: ApplicationFiled: August 4, 2014Publication date: February 5, 2015Inventors: Han Sung KIM, Mitchell Hugh WESTON, Patrick FULLER, Paul Wai-Man SIU
-
Publication number: 20140376351Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.Type: ApplicationFiled: June 24, 2014Publication date: December 25, 2014Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
-
Patent number: 8911631Abstract: According to one embodiment, a fluorine recovering apparatus includes a precipitating device allowing fluoride ion-containing water to react with calcium source to form precipitate, a mixing tank mixing a filter aid including particles of a magnetic material having a diameter of 0.5 to 5 ?m with a dispersion medium to produce slurry, a filter aid feeder to the mixing tank, a solid-liquid separator with a filter depositing a filter aid layer, and depositing the precipitate on the filter aid layer, a cleaning mechanism removing the filter aid and the precipitate, a separating tank separating the filter aid and the precipitate, and a returning mechanism returning the filter aid to the filter aid feeder.Type: GrantFiled: May 9, 2012Date of Patent: December 16, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Taro Fukaya, Kenji Tsutsumi, Atsushi Yamazaki, Ichiro Yamanashi, Shuji Seki
-
Publication number: 20140332785Abstract: A method of preparing an organic light-emitting device having excellent sealing characteristics against external environment and flexibility.Type: ApplicationFiled: July 25, 2014Publication date: November 13, 2014Inventor: Jin-Woo Park
-
Patent number: 8867692Abstract: Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.Type: GrantFiled: July 29, 2009Date of Patent: October 21, 2014Assignee: Battelle Memorial InstituteInventors: Randall D. Scheele, Bruce K. McNamara
-
Publication number: 20140284526Abstract: The present invention is directed to processing techniques and systems of metal fluoride based material, including but not limited to nickel difluoride, copper difluoride, manganese fluoride, chromium fluoride, bismuth fluoride, iron trifluoride, iron difluoride, iron oxyfluoride, metal doped iron fluorides, e.g., FexM1-xFy (M=metals, which can be Co, Ni, Cu, Cr, Mn, Bi and Ti) materials. An exemplary implementation involves mixing a first compound comprising a metal material, nitrogen, and oxygen to a second compound comprising hydrogen fluoride. The mixed compound is milled to form metal fluoride precursor and a certain byproduct. The byproduct is removed, and the metal fluoride precursor is treated to form iron trifluoride product. There are other embodiments as well.Type: ApplicationFiled: March 21, 2014Publication date: September 25, 2014Applicant: QuantumScape CorporationInventor: Jon Shan
-
Patent number: 8778291Abstract: A process for treating a zirconia-based material comprises reacting, in a reaction step, the zirconia-based material with ammonium bifluoride, NH4F.HF. An ammonium fluorozirconic compound is produced.Type: GrantFiled: July 29, 2010Date of Patent: July 15, 2014Assignee: The South African Nuclear Energy Corporation LimitedInventors: Johannes Theodorus Nel, Wilhelmina Du Plessis, Philippus Lodewyk Crouse, Nelius Dempers Retief
-
Patent number: 8771626Abstract: This invention relates to a process for purifying at least one of perfluoromethane and nitrogen trifluoride from a mixture thereof using an ionic liquid. The process may be performed by a technique such as extractive distillation or absorption wherein at least one ionic liquid is used as the entraining agent or absorbent, respectively.Type: GrantFiled: May 30, 2007Date of Patent: July 8, 2014Assignee: E I du Pont de Nemours and CompanyInventors: Mark Brandon Shiflett, Akimichi Yokozeki
-
Patent number: 8641996Abstract: A cyclic preparation method including the following steps: a) boric acid or boric anhydride is added with hydrofluoric acid and then with potassium sulfate for reaction to generate potassium fluoborate; titanium-iron concentrate is added with hydrofluoric acid and then with potassium sulfate for reaction to generate potassium fluotitanate; B) the potassium fluoborate is mixed with the potassium fluotitanate, and the mixture reacts with aluminum to generate titanium boride and potassium cryolite; C) the potassium cryolite is sucked out and then fed into a rotary reaction kettle together with concentrated sulfuric acid, hydrogen fluoride gas as well as potassium sulfate and potassium aluminum sulfate are generated by reaction in the rotary reaction kettle, and the hydrogen fluoride gas is collected and then dissolved in water to obtain hydrofluoric acid aqueous solution; and D) the obtained hydrofluoric acid aqueous solution and potassium sulfate aqueous solution are recycled.Type: GrantFiled: December 9, 2012Date of Patent: February 4, 2014Assignee: Shenzhen Sunxing Light Alloys Materials Co., Ltd.Inventors: Xuemin Chen, Yueming Yu, Qingdong Ye, Jun Yang, Zhi Zhou
-
Patent number: 8628644Abstract: The present invention relates to a process for separating close-boiling and azeotropic components of mixtures, wherein said mixtures contain at least one hydrofluorocarbon compound, using at least one ionic liquid.Type: GrantFiled: September 22, 2006Date of Patent: January 14, 2014Assignee: E I du Pont Nemours and CompanyInventors: Mark B. Shiflett, Akimichi Yokozeki
-
Patent number: 8574526Abstract: A cyclic preparation method for producing titanium boride from intermediate feedstock sodium-based titanium-boron-fluorine salt mixture and producing sodium cryolite as byproduct, which comprises the steps: a) boric acid or boric anhydride is added with hydrofluoric acid and then with sodium carbonate solution for concentration and crystallization to generate sodium fluoborate; titanium-iron concentrate is added with hydrofluoric acid and then with sodium carbonate and sodium hydroxide to obtain sodium fluotitanate; B) the sodium fluoborate is mixed with the sodium fluotitanate, and the mixture reacts with aluminum to generate titanium boride and sodium cryolite; C) the sodium cryolite is sucked out and then fed into a rotary reaction kettle together with concentrated sulfuric acid, hydrogen fluoride gas as well as sodium sulfate and sodium aluminum sulfate are generated by reaction in the rotary reaction kettle, and the hydrogen fluoride gas is collected and then dissolved in water to obtain hydrofluoric aciType: GrantFiled: December 8, 2012Date of Patent: November 5, 2013Assignee: Shenzhen Sunxing Light Alloys Materials Co., Ltd.Inventors: Xuemin Chen, Yueming Yu, Qingdong Ye, Jun Yang, Zhi Zhou
-
Patent number: 8454925Abstract: In a non-aqueous electrolyte secondary battery, in order to adjust a cathode active material in which guest cation such as Na and Li is included, alkaline metal fluoride which is expressed by a general formula AF and transition metal fluoride which is expressed by a formula M? F2 are subjected to a mechanical milling process to produce metal fluoride compound AM? F3. The mechanical milling process desirably uses a planetary ball mill.Type: GrantFiled: November 16, 2007Date of Patent: June 4, 2013Assignees: Mitsubishi Heavy Industries, Ltd., Kyushu University, National University CorporationInventors: Shigeto Okada, Manabu Nishijima, Takayuki Doi, Jun-ichi Yamaki, Irina D. Gocheva, Toshiyasu Kiyabu
-
Publication number: 20130136686Abstract: Methods for producing aluminum trifluoride by acid digestion of fluoride salts of alkali metal or alkaline earth metal and aluminum, optionally, in the presence of a source of silicon; methods for producing silane that include acid digestion of by-products of silane production to produce aluminum trifluoride.Type: ApplicationFiled: January 28, 2013Publication date: May 30, 2013Applicant: MEMC ELECTRONIC MATERIALS, INC.Inventor: MEMC ELECTRONIC MATERIALS, INC.
-
Patent number: 8388925Abstract: Methods for producing aluminum trifluoride by acid digestion of fluoride salts of alkali metal or alkaline earth metal and aluminum, optionally, in the presence of a source of silicon; methods for producing silane that include acid digestion of by-products of silane production to produce aluminum trifluoride.Type: GrantFiled: December 15, 2010Date of Patent: March 5, 2013Assignee: MEMC Electronic Materials, Inc.Inventors: Puneet Gupta, Satish Bhusarapu
-
Publication number: 20130048924Abstract: The described invention provides compositions related to an electronically insulating amorphous or nanocrystalline mixed ionic conductor composition comprising a metal fluoride composite to which an electrical potential is applied to form 1) a negative electrode, and 2) a positive electrode, wherein the negative electrode and positive electrode are formed in situ.Type: ApplicationFiled: November 9, 2010Publication date: February 28, 2013Inventors: Glenn G. Amatucci, Anna Halajko, Fadwa Badway
-
Publication number: 20130011329Abstract: A process for treating a zirconia-based material comprises reacting, in a reaction step, the zirconia-based material with ammonium bifluoride, NH4F.HF. An ammonium fluorozirconic compound is produced.Type: ApplicationFiled: July 29, 2010Publication date: January 10, 2013Inventors: Willem Liebenberg Retief, Nelius Dempers Refief, Johannes Theodorus Nel, Wilhelmina Du Plessis, Philippus Lodewyk Crouse
-
Publication number: 20120288435Abstract: According to one embodiment, a fluorine recovering apparatus includes a precipitating device allowing fluoride ion-containing water to react with calcium source to form precipitate, a mixing tank mixing a filter aid including particles of a magnetic material having a diameter of 0.5 to 5 ?m with a dispersion medium to produce slurry, a filter aid feeder to the mixing tank, a solid-liquid separator with a filter depositing a filter aid layer, and depositing the precipitate on the filter aid layer, a cleaning mechanism removing the filter aid and the precipitate, a separating tank separating the filter aid and the precipitate, and a returning mechanism returning the filter aid to the filter aid feeder.Type: ApplicationFiled: May 9, 2012Publication date: November 15, 2012Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Taro Fukaya, Kenji Tsutsumi, Atsushi Yamazaki, Ichiro Yamanashi, Shuji Seki
-
Patent number: 8231855Abstract: Disclosed is a method for an energy-efficient improvement in the production of sulfur hexafluoride, and eliminates the generation of other byproducts. The process is an oxidative fluorination of sulfur tetrafluoride by CoF3/F2, where CoF3 is solid stationary phase that can be regenerated.Type: GrantFiled: December 28, 2010Date of Patent: July 31, 2012Inventor: Bamidele A. Omotowa
-
Publication number: 20120172210Abstract: The invention aims at providing a platinum black material, without using an expensive and rare material, which is excellent in CO poisoning inhibiting effect, H2S poisoning inhibiting effect, SO4 poisoning inhibiting effect and HCHO poisoning inhibiting effect, and a method for fluorinating platinum black. The platinum black material is characterized by fluorine adsorbed on its surface. The method for fluorinating platinum black is characterized by allowing platinum black to stand in a mixed gas atmosphere of n inert gas and fluorine in a low-pressure chamber to make fluorine adsorbed on the surface of the platinum black.Type: ApplicationFiled: July 6, 2011Publication date: July 5, 2012Applicants: STELLA CHEMIFA CORPORATIONInventors: Masayoshi ISHIDA, Shinji HASHIGUCHI, Yasutaka TASHIRO
-
Publication number: 20120141407Abstract: Compositions for the use of sewage or wastewater treatment, controlling odors or a combination thereof are disclosed, wherein the composition comprises at least one iron-based compound. Furthermore, methods of reducing the odors in a sewage or wastewater system are disclosed that include: adding a composition comprising at least one iron-based compound to a sewage or wastewater system. As used herein, the phrase “at least one iron-based compound” includes ferrous chloride, ferric chloride, ferrous sulfate, ferrate, polyferric sulfate, Ferix-3 (Fe2(SO4)3H2O) or a combination thereof.Type: ApplicationFiled: September 28, 2011Publication date: June 7, 2012Inventors: Carla Dillon, Brian Reed, Talebi Mahin
-
Publication number: 20110287940Abstract: An optical element is disclosed which includes transparent superconductor material.Type: ApplicationFiled: April 9, 2009Publication date: November 24, 2011Inventor: Daniel Brandt
-
Patent number: 8057779Abstract: There is provided a process for the production of iodine pentafluoride which avoids the problems of the production process of iodine pentafluoride of the prior art as much as possible, and which carries out the reaction of fluorine and iodine moderately, so that iodine pentafluoride is produced more safely and more productively. In the process for the production of iodine pentafluoride by reacting fluorine and iodine, fluorine is supplied to the gas phase 14 which is adjacent to the liquid phase 12 of iodine pentafluoride which contains iodine.Type: GrantFiled: October 18, 2007Date of Patent: November 15, 2011Assignee: Daikin Industries, Ltd.Inventors: Hitoshi Yoshimi, Tatsuya Hirata, Tomohiro Isogai, Takashi Shibanuma
-
Publication number: 20110158896Abstract: Methods for producing aluminum trifluoride by acid digestion of fluoride salts of alkali metal or alkaline earth metal and aluminum, optionally, in the presence of a source of silicon; methods for producing silane that include acid digestion of by-products of silane production to produce aluminum trifluoride.Type: ApplicationFiled: December 15, 2010Publication date: June 30, 2011Applicant: MEMC ELECTRONIC MATERIALS, INC.Inventors: Puneet Gupta, Satish Bhusarapu
-
Patent number: 7968074Abstract: The method produces low-stress, large-volume crystals with low birefringence and uniform index of refraction. The method includes growing the crystal with larger than desired dimensions including diameter and height from a melt; cooling and tempering the crystal with the larger than desired dimensions and after the cooling and tempering removing edge regions of the crystal with the larger than desired dimensions so that a diameter reduction and a height reduction of at least five percent occurs respectively and so that the crystal has the desired dimensions of diameter and height. No further tempering takes place after removing of the edge regions.Type: GrantFiled: February 22, 2005Date of Patent: June 28, 2011Assignee: Hellma Materials GmbH & Co. KGInventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
-
Publication number: 20110135555Abstract: Disclosed is a process for producing a fluoride gas that can produces fluoride gases such as BF3, SiF4, GeF4, PF5 or AsF5 at a reduced production cost in a simple manner. The process is characterized in that a compound containing an atom, which, together with a fluorine atom, can form a polyatomic ion, is added to a hydrogen fluoride solution to produce the polyatomic ion in a hydrogen fluoride solution and to evolve a fluoride gas comprising the fluorine atom and the atom that, together with the fluorine atom, can form a polyatomic ion.Type: ApplicationFiled: June 8, 2009Publication date: June 9, 2011Applicant: STELLA CHEMIFA CORPORATIONInventors: Masahide Waki, Tatsuhiro Yabune, Kazuhiro Miyamoto, Kazutaka Hirano
-
Patent number: 7947392Abstract: The present invention relates to primary and secondary electrochemical energy storage systems, particularly to such systems as battery cells, which use materials that take up and release ions as a means of storing and supplying electrical energy. The present positive electrode composition comprises a nanocrystalline bismuth fluoride compound, which comprises Bi+3, and has a maximum energy density of 7170 Wh/l?1.Type: GrantFiled: September 30, 2005Date of Patent: May 24, 2011Inventors: Glenn G. Amatucci, Fadwa Badway, Mathieu Bervas
-
Publication number: 20110110844Abstract: Manganese tetrafluoride is prepared by a reaction between manganese difluoride or manganese trifluoride particles and elemental fluorine. During the reaction, surfaces of the particles are rendered fresh, e.g. by mechanical impact on the particles. Thereby, also agglomeration, sintering or vitrification of the particles is prevented. The impact is not so intensive that the particles would be crushed.Type: ApplicationFiled: December 9, 2008Publication date: May 12, 2011Applicant: SOLVAY FLUOR GMBHInventors: Ulrich Seseke-Koyro, Placido Garcia-Juan, Stefan Palsherm, Alf Schulz
-
Publication number: 20110038809Abstract: The present invention provides methods for treating or preventing diseases and disorders caused by iron-dependent pathogenic microorganisms, such as bacteria, fungi, and parasites, by applying a gallium compound to an affected area. In particular, the present invention provides methods for treating or preventing dental caries, vaginal infections, skin infections, and so forth. Gallium compounds can be formulated as toothpaste, mouthwash, cream, ointment, gel, solution, eye drops, suppository, and the like. Furthermore, the invention provides methods for controlling microbial growth on environmental surfaces, including those of toothbrush, denture, dental retainer, contact lens, catheter, food stuff, and so forth. In addition, the present invention provides animal feeds which contain gallium compounds that promote the animal growth and prevent the animals from infections as well as protect consumers from post processing infections.Type: ApplicationFiled: October 31, 2006Publication date: February 17, 2011Inventors: Daniel P. Perl, Sharon Moalem
-
Publication number: 20110024683Abstract: For a continuous process for preparing rare-earth doped Group 2 or Group 3 metal fluoride nanoparticles comprising a confluence of feed streams of reagents, a method is provided for controlling particle size by adjustment in the flow rate of the streams.Type: ApplicationFiled: August 3, 2009Publication date: February 3, 2011Applicant: E. I. DU PONT DE NEMOURS AND COMPANYInventor: PAUL GREGORY BEKIARIAN
-
Patent number: 7875752Abstract: The present invention provides a method for conducting a chemical reaction in a non-fluorous medium using a fluorous compound in the presence of a solid adsorbant containing a fluorous domain and at least one chemical reactant, comprising contacting the fluorous compound and at least one chemical reactant under conditions that form at least one product.Type: GrantFiled: September 17, 2003Date of Patent: January 25, 2011Assignee: Fluorous Technologies IncorporatedInventors: John Andrew Gladysz, Marc Oliver Wende, Dennis P. Curran
-
Publication number: 20100322837Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.Type: ApplicationFiled: June 19, 2009Publication date: December 23, 2010Inventor: Seth Adrian Miller
-
Patent number: 7846232Abstract: A method of producing titanium metal from a titanium-containing material includes the steps of producing a solution of M?TiF6 from the titanium-containing material, selectively precipitating M?2TiF6 from the solution by the addition of (M?)aXb and using the selectively precipitated M?2TiF6 to produce titanium. M? is a cation of the type which forms a hexafluorotitanate, M? is selected from ammonium and the alkali metal cations, X is an anion selected from halide, sulphate, nitrite, acetate and nitrate and a and b are 1 or 2.Type: GrantFiled: December 8, 2009Date of Patent: December 7, 2010Assignee: Adams & AdamsInventor: Gerard Pretorius
-
Publication number: 20100278685Abstract: A method for the production of titanium trifluoride from a titanium-containing material, includes the steps of producing a fluoride solution of Ti(IV) from the titanium-containing material and reducing the Ti(IV) in the solution with a transition metal or an alloy of the transition metal. The transition metal is selected from manganese, iron, cobalt, nickel and zinc. An ammonium containing salt and either ammonia or ammonium fluoride are added to the resulting solution containing Ti(III) to produce a precipitate, and the precipitate is pyrolysed to produce titanium trifluoride.Type: ApplicationFiled: December 29, 2008Publication date: November 4, 2010Inventor: Gerard Pretorius
-
Patent number: 7740820Abstract: A method of producing a fluoroapatite is provided. The method comprises preparing a slurry containing a hydroxyapatite which has at least one hydroxyl group, preparing a hydrogen fluoride-containing solution containing a hydrogen fluoride, mixing the hydrogen fluoride-containing solution with the slurry to obtain a mixture to thereby adjust a pH of the mixture in the range of 2.5 to 5, and reacting the hydroxyapatite with the hydrogen fluoride in the mixture in a state that the pH of the mixture is adjusted within the above range to thereby obtain the fluoroapatite by substituting the at least one hydroxyl group of the hydroxyapatite with fluorine atom of the hydrogen fluoride. The method can produce the fluoroapatite having improved acid resistance by reducing an impurity, such as ammonia, derived from a raw material to a low or very low level. Further, a fluoroapatite having high acid resistance is also provided. Furthermore, an adsorption apparatus using such a fluoroapatite is provided.Type: GrantFiled: August 1, 2008Date of Patent: June 22, 2010Assignee: Hoya CorporationInventors: Tsuyoshi Ishikawa, Yoshiyuki Ogawara, Tomohiko Yoshitake, Yukiko Murakami
-
Publication number: 20100104497Abstract: Disclosed herein are a method of preparing tungsten hexafluoride (WF6) gas by fluidizing tungsten powder with inert gas in a reactor and fluorinating the fluidized tungsten powder with fluorine (F2) or nitrogen trifluoride (NF3) gas, and an apparatus (including fluidized bed reactor) for carrying out the method. The fluidized bed reactor shows a reaction efficiency of higher than 99% when being used to prepare tungsten hexafluoride.Type: ApplicationFiled: February 19, 2009Publication date: April 29, 2010Applicant: FOOSUNG Co., Ltd.Inventors: Hyang Ja JANG, Jong Yool Yang, Chul Ho Kim, Young Gu Cho, Jung Eun Lee, Yuichi Ilkubo
-
Patent number: 7691351Abstract: The present invention is directed to a method for treatment of a gas stream comprising silicon tetrafluoride and hydrogen chloride. For example, the present invention is directed to a method for treatment of such a gas stream that involves contacting the gas stream with a metal that reacts with the hydrogen chloride to provide a treated gas stream having reduced hydrogen chloride content. The present invention is further directed to methods for subjecting silicon tetrafluoride and hydrogen chloride-containing gas streams to elevated pressure to provide gas streams suitable for transport.Type: GrantFiled: September 2, 2008Date of Patent: April 6, 2010Assignee: MEMC Electronic Materials, Inc.Inventors: Vithal Revankar, Jameel Ibrahim
-
Patent number: 7666379Abstract: A process and apparatus is provided for the purification of binary halide fluid. The process and apparatus purifies the binary halide fluid by selectively removing Bronsted acid impurities and/or volatile oxygen containing impurities present in the binary halide. A regenerable adsorbent polymer is utilized to remove the Bronsted acid impurities from the binary halide fluid and a volatile oxide adsorbent having a specific adsorption capacity for the volatile oxide impurity is utilized to remove the volatile oxide from the binary halide when in gaseous form.Type: GrantFiled: December 2, 2005Date of Patent: February 23, 2010Assignee: Voltaix, Inc.Inventors: Leisl Dukhedin-Lalla, German Shekk, John P. de Neufville, Michael Pikulin
-
Patent number: 7625502Abstract: Crystalline scintillator materials comprising nano-scale particles of metal halides are provided. The nano-scale particles are less than 100 nm in size. Methods are provided for preparing the particles. In these methods, ionic liquids are used in place of water to allow precipitation of the final product. In one method, the metal precursors and halide salts are dissolved in separate ionic liquids to form solutions, which are then combined to form the nano-crystalline end product. In the other methods, micro-emulsions are formed using ionic liquids to control particle size.Type: GrantFiled: March 26, 2007Date of Patent: December 1, 2009Assignee: General Electric CompanyInventors: Brent Allen Clothier, Sergio Paulo Martins Loureiro, Alok Srivastava, Venkat Subramaniam Venkataramani
-
Patent number: 7592287Abstract: The present invention is related to a method for preparing an amorphous metal fluoride of the formula MX+FX?? comprising the steps of a) providing a precursor, whereby the precursor comprises a structure having a formula of Mx+F(x??)?yBy; and b) reacting the precursor with a fluorinating agent generating the amorphous metal flouride having a formula of Mx+Fx??, whereby M is selected from the group comprising metals of the second, third and fourth main group and any subgroup of the periodic table, B is a coordinately bound group; x is any integer of 2 or 3; y is any integer between 1 and 3; ? is 0 to 0.1; and x??>y.Type: GrantFiled: January 7, 2004Date of Patent: September 22, 2009Assignee: Humboldt-Universitaet Zu BerlinInventors: Erhard Kemnitz, Udo Gross, Stephan Ruediger
-
Patent number: 7524480Abstract: Disclosed is a process for producing manganese fluoride, comprising a step (1) of allowing a manganese compound such as MnF2 having been dried at a temperature of not lower than 100° C. to react with a fluorinating agent such as F2 at a temperature of 50 to 250° C. and a step (2) of further allowing a product obtained in the step (1) to react with a fluorinating agent at a temperature of 250 to 450° C. According to this process, manganese fluoride capable of generating a fluorine gas can be easily and inexpensively produced on a mass scale under the conditions of low temperature and low pressure without going through steps of sublimation and solidification.Type: GrantFiled: September 8, 2005Date of Patent: April 28, 2009Assignee: Show A Denko K.K.Inventors: Masakazu Oka, Naoki Asaga, Tomoyuki Fukuyo
-
Publication number: 20090074646Abstract: The efficiency of an etching process may be increased in various ways, and the cost of an etching process may be decreased. Unused etchant may be isolated and recirculated during the etching process. Etching byproducts may be collected and removed from the etching system during the etching process. Components of the etchant may be isolated and used to general additional etchant. Either or both of the etchant or the layers being etched may also be optimized for a particular etching process.Type: ApplicationFiled: September 12, 2008Publication date: March 19, 2009Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.Inventors: Teruo Sasagawa, Xiaoming Yan
-
Publication number: 20090068086Abstract: Apparatus and methods for purifying WF6 gas by using carbonaceous materials are described. The apparatus and methods are particularly useful for removing high volatility impurities and for removing transition metal impurities, particularly chromium and molybdenum.Type: ApplicationFiled: September 7, 2007Publication date: March 12, 2009Inventors: Richard Allen Hogle, Ce Ma, Dennis Precourt, Walter Hugh Whitlock