By Reaction Of Impurities In A Stream Containing Elemental Hydrogen Patents (Class 423/658.3)
-
Patent number: 12123418Abstract: In a compression process in a dynamic compressor having at least one first and one second compression stages, a first gas having a first molecular weight of less than 10 g/mol is compressed, at least one second fluid having a second molecular weight greater than 50 g/mol is mixed with the first gas to form a third gas to be compressed having a molecular weight greater than 10 g/mol, the third gas is sent to the first compression stage, the third gas is cooled in a first heat exchanger downstream of the first compression stage, where it is partially condensed, the partially condensed third gas is sent to a first phase separator to form a fourth gas having a lower molecular weight than the third gas and a first condensed liquid having a higher molecular weight than the third gas, the fourth gas is sent from the first phase separator to the second compression stage, the fourth gas compressed in the second compression stage is sent to cool in a second heat exchanger where it partially condenses, and the partiallyType: GrantFiled: July 20, 2020Date of Patent: October 22, 2024Assignee: L'Air Liquide, Societe Anonyme Pour l'Etude et l'Exploitation des Procedes Georges ClaudeInventor: Patrick Le Bot
-
Patent number: 10494257Abstract: The invention relates to a method and to a plant for chemical looping oxidation-reduction combustion (CLC) of a gaseous hydrocarbon feed, for example natural gas essentially containing methane. According to the invention, catalytic steam reforming of the feed is performed between two successive feed combustion steps on contact with an oxidation-reduction active mass in form of particles. The reforming catalyst is arranged in a fixed bed in an intermediate reforming zone (130) between the two reduction zones (120, 140) where the two combustion steps are conducted.Type: GrantFiled: December 1, 2015Date of Patent: December 3, 2019Assignees: IFP ENERGIES NOUVELLES, TOTAL RAFFINAGE CHIMEInventors: Tiago Sozinho, Mahdi Yazdanpanah, Florent Guillou, Ann Cloupet, Stephane Bertholin, Hélène Stainton
-
Patent number: 9522825Abstract: A method of converting CO2 may include mixing a reducing material reforming agent including one selected from a reaction product of a CO2 absorbing material (Cabs) and CO2, a reaction product of a CO2 absorbing material (Cabs), CO2, and H2O, and a combination thereof with a reducing material to provide a CO2 converting material (also referred to herein as a CO2 converted material). The CO2 absorbing material (Cabs) may include one selected from a metal, a metal oxide, a metal carbonate, a metal bicarbonate, and a combination thereof.Type: GrantFiled: November 30, 2011Date of Patent: December 20, 2016Assignee: Samsung Electronics Co., Ltd.Inventors: Jeong-Gil Seo, Seon-Ah Jin, Kyo-Sung Park, Hyun Chul Lee, Sang Min Ji
-
Patent number: 9337505Abstract: A process of reforming a liquid fuel comprising from greater than 50 ppmw sulfur to less than 400 ppmw sulfur, the process comprising contacting a liquid hydrocarbon fuel comprising one or more organosulfur compounds in a concentration from greater than 50 ppmw to less than 400 ppmw sulfur with an oxidant and steam or water, the contacting occurring in a catalyst bed comprising a reforming catalyst deposited on an ultra-short-channel-length metal substrate, such that the process is conducted at a peak catalyst temperature greater than 950° C. so as to produce a reformate mixture comprising hydrogen and carbon monoxide.Type: GrantFiled: March 31, 2012Date of Patent: May 10, 2016Assignee: PRECISION COMBUSTION, INC.Inventors: Subir Roychoudhury, Christian Junaedi, Dennis E. Walsh
-
Patent number: 9017642Abstract: A process for reducing free oxygen in a hydrocarbon gas stream comprises the steps of (i) forming a gas mixture containing hydrogen from a hydrocarbon, (ii) mixing the hydrogen gas mixture with a gaseous hydrocarbon stream containing free oxygen, and (iii) passing the resulting hydrocarbon gas mixture over a conversion catalyst that converts at least a portion of the free oxygen present in the gaseous hydrocarbon to steam.Type: GrantFiled: March 5, 2007Date of Patent: April 28, 2015Assignee: Johnson Matthey PLCInventors: Peter John Herbert Carnell, Martin Fowles, Raymond Anthony Hadden, Suzanne Rose Ellis
-
Publication number: 20150078988Abstract: A process involves separating hydrogen that is produced from a reformer. Specifically, the products, which include hydrogen, CO2 and hydrocarbons, are added to a CaO bed. The CaO reacts with the CO2 to form CaCO3, thereby removing CO2 from the products. The remaining products (e.g., hydrocarbons and hydrogen) may be separated using a hydrogen-sensitive membrane. This membrane will produce a refined, purified supply of hydrogen gas.Type: ApplicationFiled: August 28, 2014Publication date: March 19, 2015Inventor: Ashok V. Joshi
-
Patent number: 8940263Abstract: Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.Type: GrantFiled: April 10, 2013Date of Patent: January 27, 2015Assignee: Air Products and Chemicals, Inc.Inventors: Timothy Christopher Golden, Jeffrey Raymond Hufton, Mohammad Ali Kalbassi, Garret C. Lau, Christine Waweru, Christopher James Raiswell, Christopher Suggitt, Daniel Patrick Zwilling
-
Publication number: 20140271451Abstract: The present invention relates to a process for purifying a gas stream comprising hydrogen sulfide or mercaptans, or mixtures thereof. The gas stream can be a sour natural gas stream, a landfill gas or an industrial gas stream. The process comprises contacting the gas stream at effective absorption conditions including an absorption temperature less than about 300° C. with a solid absorbent effective to absorb the hydrogen sulfide, or mercaptans or mixtures thereof to provide a purified gas stream. Method is useful for treating gas streams having up to 90 vol-% hydrogen sulfide, or treating highly pure hydrogen streams. The invention is useful as a guard bed for fuel cells and sensitive laboratory instruments. The invention can also be employed to treat steam reformer product hydrogen streams without the need for further compression of the product hydrogen streams.Type: ApplicationFiled: March 13, 2013Publication date: September 18, 2014Applicant: TERRAVIRE, CORP.Inventors: JAMES P. BUCCINI, WOLFGANG H. KOCH, RAYMOND C. STENGER, JAMES A. WASAS
-
Publication number: 20140182300Abstract: A method and system for capturing and isolating carbon dioxide and hydrogen gases from a high temperature synthesis gas stream containing a substantial amount of CO and sulfur compounds for use as a “clean” supplemental fuel, comprising the steps of reducing the temperature of the high temperature synthesis gas stream, removing substantially all of the sulfur compounds present in the synthesis gas, converting a first portion of CO to carbon dioxide in a first high temperature water-gas shift reaction, converting a second portion of CO to carbon dioxide using a second low temperature water-gas shift reaction, converting a third portion of CO to carbon dioxide using a third low temperature water-gas shift reaction and then separating out substantially all hydrogen present in the treated synthesis gas stream.Type: ApplicationFiled: December 28, 2012Publication date: July 3, 2014Applicant: GENERAL ELECTRIC COMPANYInventors: Thirumala Reddy Nagarjuna Reddy, Ashok Kumar ANAND, Mahendhra MUTHURAMALINGAM
-
Publication number: 20140170061Abstract: “A hydrogen purification process is provided. This process includes separating hydrogen from a hydrogen containing stream in at least two sequential palladium membrane purification zones, wherein each purification zone has a permeate side, wherein the permeate side pressure of purification zones are not the same.Type: ApplicationFiled: December 18, 2012Publication date: June 19, 2014Applicant: L'Air Liquide Societe Anonyme Pour l'Etude et l'Exploitation des Precedes Georges ClaudeInventor: L'Air Liquide Societe Anonyme Pour l'Etude et l'Exploitation des Precedes Georges Claude
-
Publication number: 20140158939Abstract: A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.Type: ApplicationFiled: May 13, 2013Publication date: June 12, 2014Applicant: The Ohio State University Research FoundationInventors: Shwetha Ramkumar, Liang-Shih Fan
-
Publication number: 20140127597Abstract: A method of operating a hydrogen generator includes: a step (a) of generating a hydrogen-containing gas by a hydrogen generation unit by using a raw material in the hydrogen generation unit; a step (b) of removing a sulfur compound from the raw material by a hydrodesulfurizer which is heated by heat transferred from the hydrogen generation unit; and a step (c) of performing an operation of supplying the raw material to the hydrogen generation unit after stopping the generating of the hydrogen-containing gas by the hydrogen generation unit. The step (c) is not performed unless, at least, a temperature of the hydrodesulfurizer is such a temperature at which carbon deposition from the raw material is suppressed.Type: ApplicationFiled: March 1, 2013Publication date: May 8, 2014Applicant: PANASONIC CORPORATIONInventors: Chie Harada, Hidenobu Wakita, Seiji Fujihara, Tomoyuki Nakajima, Takahiro Kusuyama, Kiyoshi Taguchi
-
Publication number: 20130315818Abstract: A gas compressor comprises a source of high pressure fluid and a pressure vessel having a gas inlet for the gas to be compressed, a gas outlet for the compressed gas and a fluid inlet for the high pressure fluid. The compressor is arranged to introduce the high pressure fluid into the pressure vessel via the fluid inlet whereby to compress a volume of gas in the pressure vessel.Type: ApplicationFiled: February 7, 2012Publication date: November 28, 2013Inventor: Amitava Roy
-
Patent number: 8591850Abstract: In operating the carbon monoxide removal reactor or the fuel reforming system, there is provided a technique for removing carbon monoxide in a stable manner for an extended period of time. In a method of removing carbon monoxide including an introducing step of introducing a reactant gas including mixture gas and an oxidizer added thereto to a carbon monoxide removal reactor forming in its casing a catalyst layer comprising a carbon monoxide removal catalyst for removing carbon monoxide contained in the mixture gas and an removing step of removing the carbon monoxide by causing the oxidizer to react with the mixture gas on the carbon monoxide removal catalyst, in said introducing step, the reactant gas of 100° C. or lower is introduced to the carbon monoxide removal reactor.Type: GrantFiled: March 25, 2002Date of Patent: November 26, 2013Assignee: Osaka Gas Co., Ltd.Inventors: Mitsuaki Echigo, Takeshi Tabata, Osamu Yamazaki
-
Patent number: 8460634Abstract: A system and process are provided for extracting a substance from a molecular combination. The process comprises heating the molecular combination to dissociate the molecular combination into cations and anions, moving the cations and anions through a magnetic field to separate cations and anions, and isolating cations from anions with a barrier. The system comprises a non-conductive conduit for guiding an ionized particle stream, a magnetic field source for creating a magnetic field through which the ionized particle stream moves, and a barrier located in the conduit. The ionized particle stream has a velocity relative to the conduit, and the magnetic field source is oriented relative to the velocity of the ionized particle stream so that cations are separated from anions as the ionized particle stream moves through the magnetic field. The barrier is oriented in the conduit so that cations are isolated from anions after separation.Type: GrantFiled: February 1, 2012Date of Patent: June 11, 2013Assignee: Elementary Energy, Inc.Inventor: Timothy O. Nichols
-
Publication number: 20120267577Abstract: A method and system for processing an input fuel gas and steam to produce separate CO2 and output fuel gas streams. The method comprises the steps of using a decarboniser segment for reacting at least a solid sorbent reacts with the fuel gas and steam to remove carbon from the input fuel gas and to produce the output fuel gas stream in an exhaust gas from the decarboniser; using a calciner segment for reacting the solid sorbent from the decarboniser segment therein to release the CO2 into the CO2 gas stream; wherein CO2 partial pressures and temperatures in the decarboniser and calciner segments respectively are controlled such that the temperature in the decarboniser segment is higher than the temperature in the calciner.Type: ApplicationFiled: August 25, 2010Publication date: October 25, 2012Applicant: Calix LimitedInventors: Mark Geoffrey Sceats, Julian Westley Dinsdale
-
Patent number: 7959879Abstract: Disclosed is an optimized process and apparatus for more efficiently producing aromatic dicarboxylic acids (e.g., terephthalic acid). In one embodiment the process/apparatus reduces costs by recovering and purifying residual terephthalic acid present in the liquid phase of an initial oxidation slurry. In another embodiment the process apparatus reduces costs associated with hydrogenation by forming a final composite product containing unhydrogenated acid particles.Type: GrantFiled: March 18, 2008Date of Patent: June 14, 2011Assignee: Grupo Petrotemex, S.A. de C.V.Inventors: Robert Lin, Marcel de Vreede
-
Publication number: 20110033373Abstract: A multi-fluidized bed water-gas shift reactor wherein a specific syngas containing a high concentration of carbon monoxide produced by gasification of a heavy carbon source such as coal, vacuum residue, glycerin, etc., is in contact with water under a catalyst so as to produce hydrogen and, in addition, a method for production of hydrogen using the foregoing reactor are disclosed. In other words, the disclosure describes a multi-fluidized bed water-gas shift reactor containing low and high temperature catalysts as well as steam and a method for production of hydrogen using the same, wherein 30 to 70% carbon monoxide in the syngas as a gas mixture containing hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, hydrogen monoxide, and the like, which are generated through partial oxidation and vapor gasification at 900 to 1,600° C., may be favorably converted into hydrogen without mixing both of the catalysts.Type: ApplicationFiled: November 10, 2009Publication date: February 10, 2011Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: See Hoon LEE, Jae Ho KIM, Jung Min SHON
-
Patent number: 7837953Abstract: Provided are improved carbon monoxide removal articles and processes for treating hydrogen gas streams to achieve very low threshold levels of carbon monoxide. The articles have a substrate with an inlet end, an outlet end, a length extending between the inlet end to the outlet end, wall elements and a plurality of cells defined by the wall elements. A first layer is deposited on the wall elements from the inlet end and extending at least partially toward the outlet end. The first layer has a preferential carbon monoxide oxidation catalyst. A second layer contains a methanation catalyst, and is deposited on at least part of the first layer from the outlet end. The second layer has a length that is about 10-70% of the substrate length.Type: GrantFiled: June 22, 2006Date of Patent: November 23, 2010Assignee: BASF CorporationInventor: Lawrence Shore
-
Publication number: 20100086814Abstract: Disclosed in a catalyst which enables to reduce the carbon monoxide concentration in a product gas to 5 ppm by volume or less when carbon monoxide in a raw material gas containing hydrogen and carbon monoxide is selectively oxidized. The catalyst comprises a support of an inorganic oxide and ruthenium loaded thereon, and the relative loading depth X(Ru) of ruthenium in the radial direction in a redial cross-section of the catalyst satisfies the requirement defined by the following formula (1) X(Ru)?15??(1).Type: ApplicationFiled: December 17, 2007Publication date: April 8, 2010Applicant: NIPPON OIL CORPORATIONInventors: Yasuyuki Iwasa, Takaya Matsumoto
-
Patent number: 7682597Abstract: The invention relates to a method for extracting hydrogen from a gas containing methane, especially natural gas. Hydrocarbons contained in the gas are catalytically broken down in a reformer (4) by steam in order to form hydrogen, carbon monoxide and carbon dioxide. Catalytic conversion of the obtained carbon monoxide with steam occurs in a downstream conversion step in order to form carbon monoxide and water. Carbon dioxide is removed from the converted gas flow (8) by gas washing (7), and the washed hydrogen-rich gas flow (10) is subsequently divided in a pressure-swing adsorption system (11) into a product gas flow (12) made of hydrogen and a waste gas flow (13). The waste gas flow (13) is introduced with hydrogen (14), which is separated from the gas flow (10) after gas washing, into a reformer (4) which is essentially a carbon-free combustible gas, and is combusted there. The invention also relates to a system for carrying out the method.Type: GrantFiled: July 24, 2004Date of Patent: March 23, 2010Assignee: Uhde GmbHInventors: Michael Blumenfeld, Vincent Liu, Bernd Mielke, Marcus Michel
-
Publication number: 20090263316Abstract: A process for producing hydrogen, comprising the steps of: (a) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam and sulfur and halide contaminants in the form of H2S, COS and HX, where X is a halide; (b) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (c) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (d) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof. The CaO may have a surface area of at least 12.0 m2/g and a pore volume of at least 0.Type: ApplicationFiled: March 24, 2009Publication date: October 22, 2009Applicant: The Ohio State UniversityInventors: Mahesh V. Iyer, Liang-Shih Fan, Shwetha Ramkumar
-
Patent number: 7588746Abstract: The present invention relates to a novel process for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO2) and other oxidizing agents.Type: GrantFiled: May 10, 2006Date of Patent: September 15, 2009Assignee: University of Central Florida Research Foundation, Inc.Inventors: Nazim Z. Muradov, Franklyn Smith, Ali Tabatabaieraissi
-
Publication number: 20090162268Abstract: A method for separating a reactive gas from a feed gas mixture is disclosed. The method includes reacting the reactive gas with a bed of reactive solid in an exothermic reaction to create a second solid and a product gas from which the reactive gas is depleted. The product gas is removed and the heat from the reaction is used to liberate the reactive gas from the second solid in an endothermic reaction which yields the reactive solid. The reactive gas is removed and sequestered. Heat reservoir material is included in the bed to retain the heat in support of the endothermic reaction. A device for executing the method having an insulated chamber holding the bed, as well as process units formed of multiple beds are also disclosed. The process units allow the method to be operated cyclically, providing a continuous flow of feed gas, reactive gas and product gas.Type: ApplicationFiled: December 19, 2007Publication date: June 25, 2009Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Jeffrey Raymond Hufton, Robert Quinn, Vincent White, Rodney John Allam
-
Publication number: 20080134686Abstract: The invention relates to a method for producing hydrogen and power from a synthesis gas that contains CO, H2 and H2S. The synthesis gas is separated into two partial streams, vapor is added to the first partial stream of synthesis gas, out a CO conversion is carried out at a temperature of 220° C. to 500° C., pure hydrogen is obtained from the converted synthesis gas in a pressure swing absorption device and a residual PSA gas is produced. The second partial stream of synthesis gas is fed to a power-generating gas turbine for combustion, H2S and optionally other sulfur-containing components are removed in one or more separators that are arranged in any position in the process, however, before entry into the gas turbine, the residual PSA gas is mixed with nitrogen, the gas mixture so obtained is compressed and the compressed gas mixture is admixed to the partial stream of synthesis gas that is fed to the power-generating gas turbine.Type: ApplicationFiled: December 21, 2005Publication date: June 12, 2008Applicant: Kathrein-Werke KGInventor: Johannes Menzel
-
Patent number: 7166269Abstract: A monometal (1) is contacted with deuterated acidic water solution (2) in which at least some of hydrogen atoms contained in acidic water solution are substituted for deuterium atoms, thereby to generate hydrogen gas. With this, a great amount of hydrogen gas can be generated in a short period of time.Type: GrantFiled: February 20, 2002Date of Patent: January 23, 2007Inventors: Yoshirou Tanaka, Seizo Kato
-
Patent number: 6893482Abstract: The present invention is directed to a system for recovering metal values from metal-bearing materials. During a reactive process, a seeding agent is introduced to provide a nucleation site for the crystallization and/or growth of solid species which otherwise tend to passivate the reactive process or otherwise encapsulate the metal value, thereby reducing the amount of desired metal values partially or completely encapsulated by such material. The seeding agent may be generated in a number of ways, including the recycling of residue or the introduction of foreign substances. Systems embodying aspects of the present invention may be beneficial for recovering a variety of metals such as copper, gold, silver, nickel, cobalt, molybdenum, zinc, rhenium, uranium, rare earth metals, and platinum group metals from any metal-bearing material, such as ores and concentrates.Type: GrantFiled: August 27, 2003Date of Patent: May 17, 2005Assignee: Phelps Dodge CorporationInventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, David R. Baughman, Philip Thompson, Wayne W. Hazen, Roland Schmidt
-
Publication number: 20040184987Abstract: A method for producing highly pure, hydrogen gas, of high pressure, if desired, by generating, in a reaction zone, hydrogen gas in the presence of one or more other gases and/or supercritical fluids; and the separation of at least some of the hydrogen gas by a separation zone having hydrogen selective permeability, whereby the separated hydrogen gas is substantially pure.Type: ApplicationFiled: March 10, 2003Publication date: September 23, 2004Inventors: Terry A. Ring, William Freise, Brett Maylett, Matthew Fisher
-
Patent number: 6790247Abstract: An apparatus for carrying out a multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of reaction zones arranged in an insulated, box-shaped, compact fuel processor. The multi-step process includes preheating the hydrocarbon fuel utilizing integration with the inherent exothermic processes utilized with the fuel processor, reacting the preheated hydrocarbon fuel to form the hydrogen rich gas, and purifying the hydrogen rich gas to produce a gas that is suitable for consumption in a fuel cell.Type: GrantFiled: April 26, 2002Date of Patent: September 14, 2004Assignee: Texaco Inc.Inventors: Robert Childress, John R. Farrell, Wendell B. Leimbach, James W. Marshall
-
Patent number: 6733741Abstract: The present invention provides a method and apparatus for activating a hydrogen-absorbing alloy. An embodiment of the present invention includes, compressing and supplying hydrogen from a first container in a hydrogen release condition to a second container in a hydrogen absorption condition via hydrogen piping, which connects the first and second containers, and supplying heat released from the second container to the first container via heating medium piping, which connects the first and second containers, and reversing the hydrogen flow direction and heat supply direction.Type: GrantFiled: September 5, 2001Date of Patent: May 11, 2004Assignee: Toyota Jidosha Kabushiki KaishaInventor: Kenji Nakamura
-
Patent number: 6626979Abstract: The present invention is directed to a process for recovering metal values from metal-bearing materials. During a reactive process, a seeding agent is introduced to provide a nucleation site for the crystallization and/or growth of solid species which otherwise tend to passivate the reactive process or otherwise encapsulate the metal value, thereby reducing the amount of desired metal values partially or completely encapsulated by such material. The seeding agent may be generated in a number of ways, including the recycling of residue or the introduction of foreign substances. Processes embodying aspects of the present invention may be beneficial for recovering a variety of metals such as copper, gold, silver, nickel, cobalt, molybdenum, zinc, rhenium, uranium, rare earth metals, and platinum group metals from any metal-bearing material, such as ores and concentrates.Type: GrantFiled: September 9, 2002Date of Patent: September 30, 2003Assignee: Phelps Dodge CorporationInventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, David R. Baughman, Philip Thompson, Wayne W. Hazen, Roland Schmidt
-
Patent number: 6451088Abstract: The present invention is directed to a process for recovering metal values from metal-bearing materials. During a reactive process, a seeding agent is introduced to provide a nucleation site for the crystallization and/or growth of solid species which otherwise tend to passivate the reactive process or otherwise encapsulate the metal value, thereby reducing the amount of desired metal values partially or completely encapsulated by such material. The seeding agent may be generated in a number of ways, including the recycling of residue or the introduction of foreign substances. Processes embodying aspects of the present invention may be beneficial for recovering a variety of metals such as copper, gold, silver, nickel, cobalt, molybdenum, zinc, rhenium, uranium, rare earth metals, and platinum group metals from any metal-bearing material, such as ores and concentrates.Type: GrantFiled: July 25, 2001Date of Patent: September 17, 2002Assignee: Phelps Dodge CorporationInventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, David R. Baughman, Philip Thompson, Wayne W. Hazen, Roland Schmidt
-
Patent number: 6287529Abstract: In a method and apparatus for selective catalytic oxidation of carbon monoxide, the gas mixture and an additionally added oxidizing gas are conducted through a reactor containing the catalyst. Oxidizing gas is added at several points along the mixed gas flow path with a controlled or regulated through flow volume. The mixed gas stream is cooled passively by static mixing structures located in the inlet area of the CO-oxidation reactor. By controlling exothermal CO oxidation along the reactor path, a very variable process guidance is provided, that can be adjusted to individual situations.Type: GrantFiled: November 17, 1998Date of Patent: September 11, 2001Assignee: DaimlerChrysler AGInventors: Dietmar Heil, Barbara Strobel, Norbert Wiesheu, Detlef zur Megede, Uwe Benz
-
Patent number: 6206951Abstract: The invention relates to a method for leaching sulfidic nickel matte and particularly copper rich nickel matte, as well as for leaching said matte together with a metallic copper and/or copper-nickel matte. The leach of nickel matte is carried out as pressure leach in one or several stages by means of copper sulfate.Type: GrantFiled: March 12, 1999Date of Patent: March 27, 2001Inventor: Sigmund Fugleberg