Miscellaneous Process Patents (Class 423/659)
  • Patent number: 7846417
    Abstract: An ammonia converter and method are disclosed. The reactor can alter the conversion of ammonia by controlling the reaction temperature of the exothermic reaction along the length of the reactor to parallel the equilibrium curve for the desired product. The reactor 100 can comprise a shell 101 and internal catalyst tubes 109. The feed gas stream enters the reactor, flows through the shell 101, and is heated by indirect heat exchange with the catalyst tubes 109. The catalyst tubes 109 comprise reactive zones 122 having catalyst and reaction limited zones 124 that can comprise inert devices that function to both separate the reactive zones, increase heat transfer area, and reduce the temperature of the reaction mixture as the effluent passes through the catalyst tube 109.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 7, 2010
    Assignee: Kellogg Brown & Root LLC
    Inventors: Shashi P. Singh, David P. Mann, Anant Pisut
  • Patent number: 7780946
    Abstract: The present invention relates to a supported catalyst system. The supported catalyst of the present invention comprises an inorganic support having attached to at least one surface thereof non-acidic, hydrophillic, hydroxyl-containing organic R10 groups having no or substantially no surface charge in solution, and at least one linker capable of binding a catalytic species, e.g. an enzyme or an organometallic molecule, wherein the linker is attached to a catalytic species. The R10 groups preferably are selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —CH(OH)2CH3, —CH2CH(OH)2, —CH(OH)CH2(OH) and mixtures thereof. The presence of the R10 groups on the support surface prevents or reduces non-specific binding of the catalytic species with the support surface by minimizing hydrophobic interactions and providing no or substantially no surface charge in the region of the support having catalytic species attached thereto.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: August 24, 2010
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Richard Franklin Wormsbecher
  • Patent number: 7780926
    Abstract: Process for carrying out heat exchange reactions comprising introducing a reactant stream into a bed of catalytic material placed outside at least one double walled heat transfer tube in a heat exchange reactor contacting the reactant stream with the catalytic material in indirect heat exchange with a heat transfer medium present in the annular volume of the at least one double walled heat transfer tube, the annular volume comprising one or more spacer elements creating a helical flow path of the heat transfer medium around the inner heat transfer tube of the at least one double walled heat transfer tube. The invention also includes a heat exchange reactor for carrying out the above reaction.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: August 24, 2010
    Assignee: Haldor Topsøe A/S
    Inventors: Michael Boe, Søren Gyde Thomsen
  • Patent number: 7754186
    Abstract: The invention concerns a process for the extraction of acid or basic oxides contained in a vegetal matter, more specifically it concerns the extraction of silica from rice husks. The invention also concerns pure oxides extracted from vegetal matter. The invention also concerns the process for the extraction of carbon-rich oxide compositions from vegetal matter, and compositions obtained through said process.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: July 13, 2010
    Assignee: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
    Inventors: Milton F. De Souza, Paulo Dos Santos Batista, Jefferson B. L. Liborio
  • Patent number: 7678361
    Abstract: The present invention discloses a microreactor for performing heterogeneous catalytic reactions, being of plate or stack construction for industrial use, with provision made for chambers between the plates for the chemical reaction and for the heat removal. Inside the reaction chambers, catalyst material is applied to the internal walls or filled into recesses, and in all chambers there are spacers. In particular the slot-shaped reaction chambers have channels with a hydraulic diameter smaller than 1500 ?m and a ratio of free slot width to free slot height in the range of 10 to 450.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: March 16, 2010
    Assignees: UDHE GmbH, Deguesa AG
    Inventors: Georg Markowz, Johannes Albrecht, Johannes Ehrlich, Michael Jucys, Elias Klemm, Armin Lange De Oliveira, Reinhard Machnik, Juergen Rapp, Ruediger Schuette, Steffen Schirrmeister, Olaf Von Morstein, Hartmut Hederer, Martin Schmitz-Niederau
  • Patent number: 7670579
    Abstract: Nano-particles of calcium and phosphorous compounds are made in a highly pure generally amorphous state by spray drying a weak acid solution of said compound and evaporating the liquid from the atomized spray in a heated column followed by collection of the precipitated particles. Hydroxyapatite (HA) particles formed by such apparatus and methods are examples of particle manufacture useful in bone and dental therapies. Dual nozzle spraying techniques are utilized for generally insoluble compounds.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: March 2, 2010
    Assignee: American Dental Association Foundation
    Inventors: Laurence C. Chow, Limin Sun
  • Patent number: 7670393
    Abstract: A method for causing chemical reactions between fluids, comprising the steps of arranging a plurality of metal sheets for providing first fluid flow channels adjacent to and in heat transfer contact with second fluid flow channels between adjacent ones of the metal sheets, placing catalyst material within at least some of the flow channels, passing a first fluid mixture through the first fluid flow channels and a second fluid mixture through the second fluid flow channels, wherein the first fluid mixture is different from the second fluid mixture, each fluid mixture undergoing separate reactions, one of the reactions being endothermic while the other reaction is exothermic, and causing heat to transfer between the adjacent fluid flow channels.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: March 2, 2010
    Assignee: Compactgtl PLC
    Inventors: Michael Joseph Bowe, John William Stairmand, Ian Frederick Zimmerman, Jason Andrew Maude
  • Patent number: 7665328
    Abstract: A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: February 23, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Kerry M. Klingler, Bruce M. Wilding
  • Patent number: 7641890
    Abstract: The present invention provides a method for producing an inorganic fine particle comprising the step of: reacting two or more reaction solutions for forming an inorganic fine particle while the reaction solutions flow in a non-laminar flow state in a microchannel, thereby form the inorganic fine particle, and an inorganic fine particle produced by the production method. The method for producing an inorganic fine particle of the present invention can stably produce monodisperse inorganic fine particles of nanometer size and allows for flexible response to formulation conditions (e.g., varying flow rate ratios between reaction solutions to be mixed) and for high-throughput production.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: January 5, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Hideharu Nagasawa, Yasunori Ichikawa
  • Patent number: 7572433
    Abstract: The invention concerns a process for the extraction of acid or basic oxides contained in a vegetal matter, more specifically it concerns the extraction of silica from rice husks. The invention also concerns pure oxides extracted from vegetal matter. The invention also concerns the process for the extraction of carbon-rich oxide compositions from vegetal matter, and compositions obtained through said process.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: August 11, 2009
    Assignee: Fundacao de Amparo A Pesquisa Do Estado de Sao Paulo
    Inventors: Milton F. De Souza, Paulo Dos Santos Batista, Jefferson B. L. Liborio
  • Publication number: 20090196814
    Abstract: Provided is a compound having at least one neutral, positive or negative increased binding energy species formed from a one-electron atom having an atomic mass of at least four and at least one other element. The increased binding energy species has a binding energy greater than the binding energy of the corresponding ordinary species, or greater than the binding energy of any species for which the corresponding ordinary species is unstable or is not observed because the ordinary increased binding energy species' binding energy is less than a thermal energy at ambient conditions, or is negative.
    Type: Application
    Filed: June 16, 2008
    Publication date: August 6, 2009
    Inventor: Randell L. Mills
  • Patent number: 7568297
    Abstract: An improved vertical aeration system is provided for a grain bin having a sloped hopper bottom with a discharge opening. A pyramid frame includes legs with lower ends attachable to the hopper bottom. Concave perforated walls are attached to the legs. Braces extending between the legs provide structural support for the walls. An air duct extends upwardly and centrally into the interior of the frame, to supply air into the aeration system for flow outwardly through the perforated walls.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: August 4, 2009
    Assignee: Woodhaven Capital Corp.
    Inventors: Ken Pierson, Brian Macdonald, John Penner
  • Patent number: 7521039
    Abstract: The present invention is directed to photocatalytically active rutile titanium dioxide. The photocatalytically active rutile titanium dioxide of the present invention demonstrates enhanced activity in the visible light spectrum. It may be produced by neutralizing rutile seed to a higher pH than that at which it has traditionally been neutralized prior to washing and thermally treating the seed.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: April 21, 2009
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Claire Bygott, Michel Ries, Stephen P. Kinniard
  • Patent number: 7498001
    Abstract: The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: March 3, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Yufei Gao
  • Publication number: 20080299033
    Abstract: Methods for forming colloidal metal chalcogenide nanoparticles generally include terming soluble inorganic metal chalcogen cluster precursors, which are then mixed with a surfactant and heated to form the colloidal metal chalcogenide nanoparticles. The soluble inorganic metal chalcogen cluster precursors are generally formed using a hydrazine-based solvent. The methods can be used with main group and transition metals.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 4, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marissa A. Caldwell, Delia J. Milliron
  • Patent number: 7442360
    Abstract: The present invention includes methods and apparatuses that utilize microchannel technology and, more specifically in exemplary form, producing hydrogen peroxide using microchannel technology. An exemplary process for producing hydrogen peroxide comprises flowing feed streams into intimate fluid communication with one another within a process microchannel to form a reactant mixture stream comprising a hydrogen source and an oxygen source such as, without limitation, hydrogen gas and oxygen gas. Thereafter, a catalyst is contacted by the reactant mixture and is operative to convert a majority of the reactant mixture to hydrogen peroxide that is withdrawn via an egressing product stream. During the hydrogen peroxide chemical reaction, exothermic energy is generated. This exothermic energy is absorbed by the fluid within the microchannel as well as the microchannel itself.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: October 28, 2008
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Bin Yang, William Allen Rogers, Jr., Paul William Neagle, Sean P. Fitzgerald, Kai Tod Paul Jarosch, Dongming Qiu, David J. Hesse, Michael Lamont
  • Patent number: 7442816
    Abstract: A new composition, SbVPO6+?, in which 0??? 1.5, has been prepared. Crystals of the compound have been grown by several methods, and the crystal structure has been determined. It is related in structure to vanadyl pyrophosphate (VPO), an important selective oxidation catalyst. The compound has shown utility as an oxidation catalyst.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: October 28, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Paul Douglas Vernooy
  • Patent number: 7435405
    Abstract: By suppressing oxidation of sulfide minerals in sulfide ore due to bacteria or the like, this invention prevents the elution of heavy metals from the sulfide ore, and reduces the decrease in flotation performance when processing sulfide ore that is stored in a stockpile. Also, the invention makes it easier to process acidic wastewater from a stockpile or tailings dumpsite. In order to accomplish this, oxidation of sulfide minerals in sulfide ore is suppressed by adding an antioxidant, which contains plant polyphenol and whose main component is an organic acid that contains a carboxyl group, to the sulfide ore stored in a stockpile or tailings dumpsite.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: October 14, 2008
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshiyuki Tanaka, Ryoichi Nakayama, Hideyuki Okamoto, Masaki Imamura
  • Publication number: 20080206129
    Abstract: A compound, such as an organic compound, can be transformed utilizing a melted metal alloy by generating an energy gradient in a system that includes the compound and the alloy. Accordingly, provided are methods for transforming compounds and related apparatuses.
    Type: Application
    Filed: January 15, 2008
    Publication date: August 28, 2008
    Inventors: Alexandr Ivanovich Vygonyaylo, Alec Y. Fesenko
  • Patent number: 7416718
    Abstract: Hydrogen peroxide is prepared by an auto-oxidation method via oxidation in a microreactor. A working solution containing a reactive carrier compound is hydrogenated with hydrogen in a first step and is subsequently oxidized in a microreactor to produce hydrogen peroxide.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 26, 2008
    Assignee: FMC Corporation
    Inventors: Dalbir S. Sethi, Emmanuel A. Dada, Kevin Hammack, Xinliang Zhou
  • Patent number: 7407639
    Abstract: The present invention relates to a method of preparing particles of a defined size and morphology, using a reaction of reactants, wherein the reaction is carried out in the presence of rotational forces and wherein the reactants are separated from each other by means of a contactor. The present method is suitable for preparing articles having a particle size from 10-2000 nm.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: August 5, 2008
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Earl Lawrence Vincent Goetheer, Xiaojun Zhu, Leo Jacques Pierre Van Den Broeke, Hubertus Wilhelmus Piepers, Johannes Theodorus Faustinus Keurentjes, Adelbert Antonius Henricus Drinkenburg, Arjan Willem Verkerk
  • Patent number: 7402368
    Abstract: Hydrophobic inorganic fine particles characterized by being a mixture of at least small-particle-diameter inorganic fine particles having an average primary particle diameter of 5 to 25 nm and having a maximum peak particle diameter of 20 nm or less and large-particle-diameter inorganic fine particles having an average primary particle diameter which is 1.5 to 100 times the average primary particle diameter of the small-particle-diameter inorganic fine particles; the mixture being a mixture having been treated in the same treating tank to subject both the small-particle-diameter inorganic fine particles and large-particle-diameter inorganic fine particles simultaneously to hydrophobic treatment.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: July 22, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshihiro Ogawa, Takashige Kasuya, Kaori Hiratsuka
  • Patent number: 7371361
    Abstract: An ammonia converter system and method are disclosed. The reactor can alter the conversion of ammonia by controlling the reaction temperature of the exothermic reaction along the length of the reactor to parallel the equilibrium curve for the desired product. The reactor 100 can comprise a shell 101 and internal catalyst tubes 109. The feed gas stream enters the reactor, flows through the shell 101, and is heated by indirect heat exchange with the catalyst tubes 109. The catalyst tubes 109 comprise reactive zones 122 having catalyst and reaction limited zones 124 that can comprise inert devices that function to both separate the reactive zones, increase heat transfer area, and reduce the temperature of the reaction mixture as the effluent passes through the catalyst tube 109.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: May 13, 2008
    Assignee: Kellogg Brown & Root LLC
    Inventors: Shashi P. Singh, David P. Mann, Anant Pisut
  • Publication number: 20080090394
    Abstract: A method to fabricate semiconductor nanocrystals which comprises dissolving a metal source in a first solvent that contains at least one functional —OH group to form a mixture and heating the mixture to form a solution 1 and dissolving a X source in a second solvent which contains at least one functional —OH group, to form a solution 2 and mixing solution 2 and then combining solution 2 into solution 1, and heating and separating the solution out, to produce semiconductor nanocrystals.
    Type: Application
    Filed: August 24, 2005
    Publication date: April 17, 2008
    Applicant: UNIVERSITY OF DELAWARE
    Inventors: John Q. Xiao, Yuwen Zhao
  • Patent number: 7354561
    Abstract: A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: April 8, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Patent number: 7351396
    Abstract: A method for removing impurities from an aqueous mixture or purified aqueous by extracting the aqueous mixture or purified aqueous mixture with an extraction solvent in an extraction zone to form an extract stream and the raffinate stream; and optionally separating the extract stream and a solvent rich stream in a separation zone to form a high boiling point organic impurities stream and a recovered extraction solvent stream.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: April 1, 2008
    Assignee: Eastman Chemical Company
    Inventors: Robert Lin, Marcel de Vreede
  • Patent number: 7348295
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using a hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium) dication as a structure-directing agent, and its use in gas separations.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: March 25, 2008
    Assignee: Chevron Corporation
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Publication number: 20080038176
    Abstract: The invention relates to unsymmetrical nanoscale or mesoscopic particles, and to a method for preparing the same. Said particles are characterized by a surface F1 and the zone Z2 carries groups F2 different from the groups F1, the zone Z1 being free of groups F2 and the zone Z2 being free of groups F1. The method of preparation comprises the following steps: 1) the zone Z2 of the surface of the initial particles is masked by fixing a polymer nodule thereto; 2) the masked particles obtained at the end of step 1) are treated in order to modify the nonmasked surface zone Z1 thereof; 3) the polymer nodule is removed after modifying the zone Z1; 4) optionally, the surface of the zone Z2 of the particles is modified following the demasking process.
    Type: Application
    Filed: November 4, 2004
    Publication date: February 14, 2008
    Applicants: Centre National De La Recherche Scientifique, Cpe Lyon Formation Continue Et Recherche, Universite Paul Sabatier, Universite Des Sciences Et Technologies
    Inventors: Etienne Duguet, Celine Poncet-Legrand, Serge Ravaine, Elodie Bourgeat-Lami, Stephane Reculusa, Christophe Mingotaud, Marie-Helene Delville, Franck Pereira
  • Patent number: 7314845
    Abstract: The present invention relates to a supported catalyst system. The supported catalyst of the present invention comprises an inorganic support having attached to at least one surface thereof non-acidic, hydrophilic, hydroxyl-containing organic R10 groups having no or substantially no surface charge in solution, and at least one linker capable of binding a catalytic species, e.g. an enzyme or an organometallic molecule, wherein the linker is attached to a catalytic species. The R10 groups preferably are selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —CH(OH)2CH3, —CH2CH(OH)2, —CH(OH)CH2(OH) and mixtures thereof. The presence of the R10 groups on the support surface prevents or reduces non-specific binding of the catalytic species with the support surface by minimizing hydrophobic interactions and providing no or substantially no surface charge in the region of the support having catalytic species attached thereto.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: January 1, 2008
    Inventor: Richard Franklin Wormsbecher
  • Patent number: 7297323
    Abstract: A method of manufacturing fine particles of the invention includes introducing a reactive gas flow containing a fine particle source material into a reactor from one side, growing fine particles in a gas phase by heating the fine particle source material in the reactive gas flow, introducing a diluting gas flow into the reactor from another side being almost counter-flow to the reactive gas flow, equalizing flow rates of the reactive gas flow and the diluting gas flow substantially with respect to a cross section of a flow channel, and then stopping growth of the fine particles by merging the reactive gas flow and the diluting gas flow.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: November 20, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Isao Matsui
  • Patent number: 7297324
    Abstract: Microchannel devices and method of use are disclosed wherein a reaction microchamber 52 is in thermal contact with a heat exchange channel 61. An equilibrium limited exothermic chemical process occurs in the reaction microchamber 52. Sufficient heat is transferred to the heat exchange channels to substantially lower the temperature in the reaction microchamber 52 down its length to substantially increase at least one performance parameter of the exothermic chemical process relative to isothermal operation. Optionally, an endothermic reaction occurs in the heat exchange channel 61 which is sustained by the exothermic chemical process occurring the exothermic reaction chamber. Both the reaction chamber 52 and the heat exchange channel 61 can be of micro dimension. Catalyst 75 can be provided in the microchamber 52 in sheet form such that reactants flow by the catalyst sheet.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: November 20, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, David L. King, Greg A. Whyatt, Christopher M. Fischer, Robert S. Wegeng, Kriston P. Brooks
  • Publication number: 20070253885
    Abstract: A steam stripping device for an inorganic processing solution is provided, which includes a steam stripping unit for heat stripping the inorganic processing solution; a heat exchanging unit coupled to the steam unit for heating the inorganic processing solution; and a desuperheating unit for decreasing the temperature of a steam when overheated before the steam is fed into the heat exchanging unit by cooling liquid. The device can be applied to the inorganic processing solution for removing organic contaminants contained therein. By the provision of the desuperheating unit, the adverse influence on the inorganic processing solution caused by partially superheating can be prevented.
    Type: Application
    Filed: March 28, 2007
    Publication date: November 1, 2007
    Applicant: China Petrochemical Development Corporation
    Inventors: Shu-Hung Yang, Shou-Li Luo
  • Patent number: 7276223
    Abstract: A gas/liquid reaction with a liquid containing at least one chemical compound in solution which can react with a gas in the presence of a solid catalyst maintained in suspension in the liquid, the reaction being carried out with separation (recovery) of said solid catalyst by filtering. Recirculating a fraction of the reacted solution without involving any additional pump or ejector, wherein the recirculated fraction provides for a primary filter for reacted solution being tangentially skimmed over.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: October 2, 2007
    Assignee: Technip France
    Inventors: Marc Dietrich, Jose Luis Hernandez
  • Patent number: 7250151
    Abstract: Integrated Combustion Reactors (ICRS) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: July 31, 2007
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, Yong Wang, Thomas Forte, Robert Jetter
  • Patent number: 7250150
    Abstract: A chemical reaction is performed with separation of the product(s) and reactant(s) by pressure swing adsorption (PSA), using an apparatus having a plurality of adsorbers cooperating with first and second valve assemblies in a PSA module. The PSA cycle is characterized by multiple intermediate pressure levels between higher and lower pressure of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, entering from compressor stage(s) or exiting into exhauster or expander stages, under substantially steady conditions of flow and pressure. The PSA module comprises a rotor containing the adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor. The reaction may be performed within a portion of the rotor containing a catalyst.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: July 31, 2007
    Assignee: QuestAir Technology, Inc.
    Inventors: Bowie G. Keefer, Denis J. Connor
  • Patent number: 7214363
    Abstract: Composite microparticles having thin coating layers can be simply prepared by bringing a host particle precursor into contact with a flame generated in a burner movably mounted at the bottom of a coating apparatus, by introducing the precursor in the form of a vapor or micronized liquid droplets upwardly into the burner, to obtain host particles; and introducing a gaseous coating precursor upwardly toward the host particles in or around the flame, the coating precursor being protected by an inert gas introduced therearound such that the formation of particles derived from the coating precursor itself is prevented.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 8, 2007
    Assignee: Seoul National University Industry Foundation
    Inventors: So won Sheen, Man Soo Choi
  • Patent number: 7195747
    Abstract: A novel process for continuously mixing and reacting at least two fluids are disclosed. Excellent mixing and superior pressure drop characteristics are achieved using cyclone mixing where at least two supply channels feed a mixing chamber to create a vortex of the fluids to be mixed. The alignment of the supply channels is such that fluids are introduced into the chamber at both tangential and radial directions. In the case of gas/liquid mixing, particularly advantageous is the injection of the liquid stream tangentially and the gas stream radially. Reaction of the fluids can take place within the mixing chamber or in a separate reactor in fluid communication with the mixing chamber outlet. The process is especially useful for reacting potentially explosive mixtures of reactants where a homogeneous reactor feed mixture is critical to maintaining a non-explosive environment.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: March 27, 2007
    Assignee: UOP LLC
    Inventors: Kurt M. Vanden Bussche, Suheil F. Abdo, Anil R. Oroskar
  • Patent number: 7150862
    Abstract: A method of manufacturing a powder, by which it is possible to adjust the strength of the obtained powder is provided. The manufacturing method of a powder involves a step of preparing a slurry containing agglomerated particles of a synthetic material which is produced by reacting a first material and a second material under agitation, and a step of drying the slurry to obtain a powder of the synthetic material. The method has a feature that the particle size of the agglomerated particles is adjusted by, in the step of preparing a slurry, controlling agitation power for agitating the slurry. In the step of preparing a slurry, it is preferable that the slurry is initially agitated at a first agitation power, and at the time when the viscosity of the slurry approaches its maximum value, or at the time when the pH value of the slurry reaches the vicinity of the isoelectric point of the synthetic material, the agitation power is lowered from the first agitation power to a second agitation power.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: December 19, 2006
    Assignee: PENTAX Corporation
    Inventors: Tsuyoshi Ishikawa, Masanori Nakasu, Takatoshi Kudou, Yoshiyuki Ogawara, Tsutomu Takahashi, Katsumi Kawamura
  • Patent number: 7144568
    Abstract: Described is a process and a device for carrying out a reaction in liquid medium during which evolution of gas occurs. The process can be applied in particular to a reaction employing a peroxide such as hydrogen peroxide and, in particular, to the reduction of chlorine present in an aqueous effluent.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: December 5, 2006
    Assignee: Arkema France
    Inventors: Jean Philippe Ricard, Joel Choupeaux, Jean Michel Delassus
  • Patent number: 7101525
    Abstract: The present invention relates to a catalytic device for the implementation of a reaction in a gaseous medium at high temperature, such as, for example, the synthesis of HCN or the oxidation of ammonia, comprising: at least one textured material (1) which is effective as catalyst for the said reaction, a support (2) comprising at least one ceramic part (3), the structure of which makes possible the passage of the gases, the said part (3) of the said support (2) having a corrugated face (6), so that the increase in surface area (?) produced by the corrugations with respect to a flat surface is at least equal to that (?) calculated for sawtooth corrugations and of between approximately 1.1 and approximately 3, the said textured material (1) being positioned so that it is held against the corrugated face (6) of the said part (3) of the said support (2) and follows the form thereof.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: September 5, 2006
    Assignee: Butachimie
    Inventor: Joseph Steffen
  • Patent number: 7097787
    Abstract: A method of partially oxidizing a feed gas comprises providing a reactor containing a catalyst, providing a gas distributor comprising a body having a plurality of channels therethrough and a plurality of outlets from said channels for distributing gas across the catalyst, feeding the feed gas and the oxygen-containing gas into the gas distributor and allowing the feed gas and the oxygen-containing gas to flow through the gas distributor and out through the outlets into contact with the catalyst. The gas distributor preferably comprises a micro-channel gas distributor, which can be assembled by providing a plurality of etched plates defining flow channels, and stacking and fusing the plates. The reactant gases can be mixed within the gas distributor or maintained separately until they have exited the gas distributor.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: August 29, 2006
    Assignee: ConocoPhillips Company
    Inventors: Guy H. Lewis, Chien-Ping Pan, Harold A. Wright, David H. Anderson, David M. Minahan, Vincent H. Melquist, Cemal Ercan, Gloria I. Straguzzi, Stephen R. Landis, Phillipp R. Ellison
  • Patent number: 7090827
    Abstract: A process for immobilizing metallic sodium in glass form. The process comprises: (A) introducing in a dispersed state, into a reactor, an amount of a vitrified matrix precursor, metallic sodium and iron oxide (Fe2O3) sufficient to ensure oxidation of the metallic sodium; (B) producing a homogeneous mixture of these constituents; (C) heating the mixture to a temperature between 1000–1600° C. to form a molten homogeneous mixture in which the sodium introduced in (A) is converted to sodium oxide; and (D) recovering and cooling the molten mixture to obtain a vitrified matrix having a homogeneous composition, which matrix incorporates the sodium introduced in (A) as a constituent oxide. In a particular embodiment, the process may be used for the containment of metallic sodium containing radioactive elements.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: August 15, 2006
    Assignee: Technip France
    Inventors: Philippe Mulcey, Jean-Yves Frayer
  • Patent number: 7078130
    Abstract: This invention provides novel stable metallic mesoporous transition metal oxide molecular sieves and methods for their production. The sieves have high electrical conductivity and may be used as solid electrolyte devices, e.g., in fuel cells, as sorbents, e.g. for hydrogen storage, and as catalysts. The invention also provides room temperature activation of dinitrogen, using the sieves as a catalyst, which permits ammonia production at room temperature.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: July 18, 2006
    Assignee: University of Windsor
    Inventor: David M. Antonelli
  • Patent number: 7078012
    Abstract: A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: July 18, 2006
    Assignee: Eattelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Kerry M. Klingler, William T. Zollinger
  • Patent number: 7070757
    Abstract: Catalysts produced by electroless deposition of at least one platinum metal on a nonporous nonmetallic support can be used for the synthesis of hydrogen peroxide from the elements and for the hydrogenation of organic compounds.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: July 4, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Fischer, Thomas Butz
  • Patent number: 7070751
    Abstract: The present invention provides a reactor for the gas-phase reaction of commercially available gases in the presence of an inert carrier gas to form product gas. The reactor has a streamlined, compact configuration and at least one solids collection and removal system downstream of the reactor, where solids are efficiently removed from the product gas stream, leaving high purity product gas. The removal system allows for a simple reactor design, which is easy to clean and operates continuously over longer periods of time.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: July 4, 2006
    Assignee: Bristol-Myers Squibb Co.
    Inventors: Srinivas Tummala, Shun Wang Leung, Ehrlic T. Lo, Mario Moisés Alvarez
  • Patent number: 7056485
    Abstract: The invention is directed to a continuous hydrogenation process in which a hydrogenable compound is dissolved in a working solution with hydrogen and a heterogeneous catalyst. At least part of the hydrogen-containing waste hydrogenation gas generated in the reaction is compressed and then recycled into the hydrogenation reactor. A jet pump is used for the compression of the waste hydrogenation gas and a liquid or gaseous feedstock of the hydrogenation process is used as the motive agent. Preferred motive agents are the hydrogenation gas or a working solution recycled into the process. The process is particularly suitable for performing the hydrogenation step in the anthraquinone process for the production of hydrogen peroxide.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: June 6, 2006
    Assignee: Degussa AG
    Inventors: Matthias Creutz, Hubertus Eickhoff, Bernhard Maurer
  • Patent number: 7045114
    Abstract: Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: May 16, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Robert S. Wegeng, Yufei Gao
  • Patent number: 7018605
    Abstract: A method of sulfidation removal of zinc using hydrogen sulfide is provided, desirably at a temperature at 60° C. or lower, wherein in a container that is pressurized at 0.1 MPa or less with respect to atmospheric pressure, by making the pH of the solution 1.5 to 4.0, and the concentration of hydrogen sulfide in gas 2 volume % or greater in equilibrium with the hydrogen sulfide dissolved in the solution, the zinc in solution is removed by sulfidation to 1 mg/liter or less.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: March 28, 2006
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroshi Kobayashi, Yoshitomo Ozaki, Masaki Imamura
  • Patent number: 7011807
    Abstract: Supported reactive catalysts having a controlled coordination structure and methods for their production are disclosed. The supported catalysts of the present invention are useful for the preparation of hydrogen peroxide with high selectivity in addition to other chemical conversion reactions. The supported catalyst comprises catalyst particles having top or outer layer of atoms in which at least a portion of the atoms exhibit a controlled coordination number of 2. The catalyst and methods may be used for the concurrent in situ and ex situ conversion of organic compounds. In addition, a process is provided for catalytically producing hydrogen peroxide from hydrogen and oxygen feeds by contacting them with the catalysts of the invention and a suitable organic liquid solvent having a Solvent Selection Parameter (SSP) between 0.14×10?4 and 5.0×10?4.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: March 14, 2006
    Assignee: Headwaters Nanokinetix, Inc.
    Inventors: Bing Zhou, Michael Rueter, Sukesh Parasher