Cancer Cell Patents (Class 424/155.1)
  • Patent number: 8895001
    Abstract: Provided are methods of suppressing growth of triple negative breast tumors and basal-like breast tumors by contacting tumor cells with an ErbB3 inhibitor, e.g., an anti-ErbB3 antibody. Also provided are methods for treating triple negative breast cancer or basal-like breast cancer in a patient by administering to the patient an ErbB3 inhibitor, e.g., an anti-ErbB3 antibody. The treatment methods can further comprise selecting a patient having a triple negative breast cancer or basal-like breast cancer and then administering an ErbB3 inhibitor to the patient. The treatment methods also can further comprise administering at least one additional anti-cancer agent to the patient in combination with the ErbB3 inhibitor.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: November 25, 2014
    Assignee: Merrimack Pharmaceuticals, Inc.
    Inventors: Victor Moyo, Gabriela Garcia
  • Publication number: 20140335100
    Abstract: This invention provides a composition comprising an effective amount of glucan capable of enhancing efficacy of antibodies. This invention further provides the above compositions and a pharmaceutically acceptable carrier. This invention also provides a method for treating a subject with cancer comprising administrating the above-described composition to the subject. This invention provides a composition comprising effective amount of glucan capable of enhancing efficacy of vaccines. This invention also provides a method of treating a subject comprising administrating the above pharmaceutical composition to the subject. This invention provides a composition comprising effective amount of glucan capable of enhancing efficacy of natural antibodies. This invention provides a composition comprising effective amount of glucan capable of enhancing host immunity. This invention also provides a composition comprising effective amount of glucan capable of enhancing the action of an agent in preventing tissue rejection.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 13, 2014
    Inventor: Nai-Kong V. CHEUNG
  • Patent number: 8883147
    Abstract: An Fc variant of a parent Fc polypeptide, wherein said Fc variant exhibits altered binding to one or more Fc?Rs, wherein said Fc variant comprises at least one amino acid insertion in the Fc region of said parent Fc polypeptide.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: November 11, 2014
    Assignee: Xencor, Inc.
    Inventors: Gregory Lazar, Bassil Dahiyat, Wei Dang, Sher Bahadur Karki, Omid Vafa
  • Publication number: 20140328833
    Abstract: The present invention provides isolated monoclonal antibodies, particularly human monoclonal antibodies, that specifically bind to PD-1 with high affinity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for detecting PD-1, as well as methods for treating various diseases, including cancer and infectious diseases, using anti-PD-1 antibodies. The present invention further provides methods for using a combination immunotherapy, such as the combination of anti-CTLA-4 and anti-PD-1 antibodies, to treat hyperproliferative disease, such as cancer. The invention also provides methods for altering adverse events related to treatment with such antibodies individually.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Applicants: Medarex, L.L.C., Ono Pharmaceutical Co., LTD.
    Inventors: Alan J. Korman, Mohan Srinivasan, Changyu Wang, Mark J. Selby, Bingliang Chen, Josephine M. Cardarelli, Haichun Huang
  • Patent number: 8877199
    Abstract: The invention relates to antibodies that are reactive to the cell surface of CD19+ B cells, including B-cell chronic lymphocytic leukemia (B-CLL) cells, and compositions and methods for using such antibodies, including in the diagnosis and treatment of disorders associated with CD19+ B cells, such as B-CLL.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: November 4, 2014
    Assignee: The United States of America, as represented by the Secretary of the Department of Health and Human Services
    Inventors: Christoph Rader, Sivasubramanian Baskar, Michael R. Bishop, Ivan Samija, Jessica M. Suschak
  • Patent number: 8871908
    Abstract: The present invention provides antibodies that specifically bind to trophoblast cell-surface antigen-2 (Trop-2). The invention further provides antibody conjugates comprising such antibodies, antibody encoding nucleic acids, and methods of obtaining such antibodies. The invention further relates to therapeutic methods for use of these antibodies and Trop-2 antibody conjugates for the treatment of a condition associated with Trop-2 expression (e.g., cancer), such as colon, esophageal, gastric, head and neck, lung, ovarian, or pancreatic cancer.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: October 28, 2014
    Assignee: Rinat Neuroscience Corp.
    Inventors: Shu-Hui Liu, Wei-Hsien Ho, Pavel Strop, Magdalena Grazyna Dorywalska, Arvind Rajpal, David Louis Shelton, Thomas-Toan Tran
  • Patent number: 8865178
    Abstract: The present invention is related to the field of wound healing or tissue regeneration due to disease (i.e., for example, cardiovascular diseases, osetoarthritic diseases, or diabetes). In particular, the present invention provides compositions and methods comprising molecules with linked ?-gal epitopes for induction of recruitment of macrophages localized within or surrounding damaged tissue. The recruited macrophages recruit stem cells and promote the repair and regeneration of the treated injured tissue. In some embodiments, the present invention provides treatments for tissue repair in normal subjects and in subjects having impaired healing capabilities, such as diabetic and aged subjects. In some embodiments, the present invention provides treatments for injured tissues such as brain, peripheral nerve, heart muscle, skeletal muscle, cartilage, bone, gastrointestinal tract and dysfunctional endocrine tissues.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: October 21, 2014
    Assignee: University of Massachusetts
    Inventor: Uri Galili
  • Patent number: 8865176
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: October 21, 2014
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20140308283
    Abstract: This invention relates to a pharmaceutical composition for treatment and/or prevention of pancreatic cancer, comprising as an active ingredient an antibody or a fragment thereof which has immunological reactivity with a CAPRIN-1 protein or a fragment thereof comprising 7 to 12 or more consecutive amino acid residues.
    Type: Application
    Filed: August 3, 2012
    Publication date: October 16, 2014
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Yoshitaka Minamida, Fumiyoshi Okano, Takanori Saito
  • Patent number: 8858937
    Abstract: The present invention relates to optimized Fc variants, methods for their generation, and antibodies and Fc fusions comprising optimized Fc variants.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 14, 2014
    Assignee: Xencor, Inc.
    Inventors: Gregory Alan Lazar, Arthur J. Chirino, Wei Dang, John Desjarlais, Stephen K. Doberstein, Robert J. Hayes, Sher Bahadur Karki, Omid Vafa
  • Patent number: 8858942
    Abstract: The present invention relates to antibodies including human antibodies and antigen-binding portions thereof that specifically bind to ErbB2, preferably human ErbB2. In another embodiment, the antibodies or antigen-binding portions thereof inhibit ErbB2. The invention also relates to antibodies that are chimeric, bispecific, derivatized, single chain antibodies or portions of fusion proteins. The invention also relates to isolated heavy and light chain immunoglobulins or portions thereof derived from human anti-ErbB2 antibodies and nucleic acid molecules encoding such immunoglobulins. The present invention also relates to methods of using the antibodies and compositions for diagnosis and treatment. The invention also provides gene therapy methods using nucleic acid molecules encoding the heavy and/or light immunoglobulin molecules that comprise the human anti-ErbB2 antibodies. The invention also relates to transgenic animals or plants comprising nucleic acid molecules of the present invention.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: October 14, 2014
    Assignee: MedImmune Limited
    Inventors: Susan Ann Cartlidge, Jianying Dong, Mark Hickinson, Ian Foltz, Jaspal Singh Kang
  • Publication number: 20140302020
    Abstract: Novel antibodies and antigen binding fragments that specifically bind to clusterin are described. In some embodiments, the antibodies block the biological activity of clusterin and are useful in composition in certain cancers, more particularly in cancers, such as endometrial carcinoma, breast carcinoma, hepatocellular carcinoma, prostate carcinoma, a renal cell carcinoma, ovarian carcinoma, pancreatic carcinoma, and colorectal carcinoma. The invention also relates to cells expressing the humanized or hybrid antibodies. Additionally, methods of detecting and treating cancer using the antibodies and fragments are also disclosed.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Gilles Bernard TREMBLAY, Mario FILION, Traian SULEA
  • Patent number: 8853369
    Abstract: The invention provides anti-Axl antibodies and methods of using the same.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Genentech, Inc.
    Inventors: Lin Pei, Yan Wu, Xiaofen Ye
  • Patent number: 8852551
    Abstract: Primitive or progenitor hematologic cancer cells have been implicated in the early stages and development of leukemia and malignant lymphoproliferative disorders, including acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML) and chronic lymphoid leukemia (CLL). Interleukin-3 receptor alpha chain (IL-3R? or CD123) is strongly expressed on progenitor hematologic cancer cells, but is virtually undetectable on normal bone marrow cells. The present invention provides methods of impairing progenitor hematologic cancer (e.g., leukemia and lymphomic) cells by selectively targeting cells expressing CD123. These methods are useful in the detection and treatment of leukemias and malignant lymphoproliferative disorders. Also provided are compounds useful for selectively binding to CD123 and impairing progenitor hematologic cancer cells. These compounds may include cytotoxic moieties such as, for example, radioisotopes or chemotherapeutics.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: October 7, 2014
    Assignee: University of Kentucky Research Foundation
    Inventor: Craig Jordan
  • Publication number: 20140286961
    Abstract: Improved methods for treatment of cancer which involve the targeting of slow-growing, relatively mutationally-spared cancer stem line are provided. These methods are an improvement over previous cancer therapeutic methods because they provide for very early cancer treatment and reduce the likelihood of clinical relapse after treatment.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Inventor: Ivan Bergstein
  • Patent number: 8840888
    Abstract: Provided herein is a method for assessing the risk of potential adverse effects for a human patient mediated by the administration of a CD19.times.CD3 bispecific antibody to said patient comprising determining the ratio of B cells to T cells of said patient, wherein a ratio of about 1:5 or lower is indicative for a risk of potential adverse effects for said patient.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: September 23, 2014
    Assignee: Micromet AG
    Inventors: Dirk Nagorsen, Peter Kufer, Gerhard Zugmaier, Patrick Baeuerle
  • Patent number: 8834875
    Abstract: The present invention relates to Notch1 binding agents and methods of using the agents for treating diseases, such as hematologic cancers. The present invention provides antibodies that specifically bind to a non-ligand binding membrane proximal region of the extracellular domain of human Notch1. The present invention further provides methods of using agents that inhibit Notch1 activity for treating cancer. Also described are methods of treating hematologic cancers comprising administering a therapeutically effective amount of a binding agent or antibody of the present invention to a subject having a hematologic cancer such as T-cell lymphoblastic leukemia.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: September 16, 2014
    Assignee: OncoMed Pharmaceuticals, Inc.
    Inventor: Edward Thein Htun Van Der Horst
  • Patent number: 8828398
    Abstract: According to the present invention, a cancer antigen protein to be specifically expressed on the surfaces of cancer cells is identified and thus the use of an antibody targeting the cancer antigen protein as an agent for treating and/or preventing a cancer is provided. Specifically, the present invention provides a pharmaceutical composition for treating and/or preventing a cancer, which comprises an antibody or a fragment thereof as an active ingredient having immunological reactivity with a partial polypeptide of CAPRIN-1, wherein CAPRIN-1 is represented by any of the even-numbered sequences of SEQ ID NOS: 2 to 30, and wherein the partial polypeptide comprises the amino acid sequence represented by SEQ ID NO: 37 or an amino acid sequence having 80% or more sequence identity with the amino acid sequence.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: September 9, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Shinichi Kobayashi, Fumiyoshi Okano, Takanori Saito
  • Patent number: 8828388
    Abstract: Antibodies which specifically bind heregulin-coupled HER3, at a site distinct from the heregulin binding site, are described. These antibodies are particularly useful in treating cancer.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: September 9, 2014
    Assignee: Trellis Bioscience, LLC
    Inventors: Bruce Keyt, Lawrence M. Kauvar, Ellen J. Collarini, Orit Foord, Gizette Sperinde, Marjan Fatholahi, Hung Nguyen
  • Publication number: 20140248211
    Abstract: The invention provides a method for treating cancer using a coadministration strategy that combines local codelivery of a therapeutic agent and an intracellular penetration enhancing agent, and optionally in further combination with local administration of an immunotherapeutic agent, such as a cancer vaccine or NKT agonist. The invention also provides a method for treating cancer using an intracellular penetration enhancing agent. The methods of the invention aim to substantially kill and/or destroy the target tumor cells, as well as those cancerous cells that have metastasized to other parts of the body.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 4, 2014
    Applicant: INTENSITY THERAPEUTICS, INC.
    Inventor: Lewis H. Bender
  • Patent number: 8821873
    Abstract: The present invention concerns methods for the treatment of diffuse large cell lymphoma by administration of an anti-CD20 antibody and chemotherapy. Particular embodiments include the administration of anti-CD20 antibody in combination with chemotherapy comprising CHOP (cyclophosphamide, hydroxydaunorubicin/doxorubicin, vincristine, and prednisone/prednisolone) and/or in combination with a transplantation regimen.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: September 2, 2014
    Assignee: Biogen Idec Inc.
    Inventors: Christine A. White, Antonio J. Grillo-Lopez
  • Patent number: 8821875
    Abstract: The present invention is based on the unexpected finding that, in addition to catalase, SOD is also involved in protecting tumor cells, wherein the inhibition effects of the two protective enzymes support one another in a complementary manner. The invention thus relates to pharmaceutical compositions containing at least two antibodies or the biologically active fragments thereof, wherein the one antibody is directed against the catalase and the other antibody is directed against the superoxide dismutase, as well as their use for treating a tumor disease.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: September 2, 2014
    Assignee: Universitaetsklinikum Freiburg
    Inventor: Georg Bauer
  • Patent number: 8822422
    Abstract: An antitumor agent containing, in combination, at least one kind of antitumor agent selected from the group consisting of an antitumor agent that forms a cross-link with DNA and shows an antitumor effect, an antimetabolite antitumor agent and a taxane antitumor agent, and a histone deacetylase inhibitor. According to the present invention, an antitumor agent causing reduced side effects and having a superior antitumor activity can be provided.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: September 2, 2014
    Assignee: Astellas Pharma Inc.
    Inventors: Yoshinori Naoe, Takeshi Inoue, Yasuhiko Kano
  • Patent number: 8815242
    Abstract: The invention is drawn to a composition comprising an isolated mixture of cytotoxic anti-CD20 antibody molecules produced in a transgenic avian. The antibody molecules have a heavy chain and a light chain whose amino acid sequences set forth in SEQ ID NOs: 4 and 5 and exhibit an increased level of cytotoxicity as compared to anti-CD20 antibody molecules produced in CHO cells.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 26, 2014
    Assignee: Synageva BioPharma Corp.
    Inventor: Alex J. Harvey
  • Patent number: 8808667
    Abstract: The present invention relates to the use of a milled homogenate and/or a suspension and/or a cell lysate, stemming from a tumor resistant to at least one anti-tumoral compound in order to immunize and generate in vitro an antibody, or one of its functional fragments, directed against a tumoral antigen specifically expressed at the surface of said resistant tumor and being possibly involved in the resistance of said resistant tumor. More particularly, the present invention is directed to such antibodies obtained by applying the method, such as the antibodies 1A6, 1A9, 2E11, 3C11 and 3G7, as well as to their use for treating cancer.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: August 19, 2014
    Assignee: Pierre Fabre Medicament
    Inventors: Liliane Goetsch, Alexandra Jouhanneaud
  • Patent number: 8802103
    Abstract: Monoclonal antibodies that specifically bind to an extracellular domain of human Jagged 1 and inhibit growth of a tumor comprising cancer stem cells are described. Also described is a method of treating cancer that comprises administering a therapeutically effective amount of a monoclonal anti-Jagged 1 antibody.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: August 12, 2014
    Assignee: OncoMed Pharmaceuticals, Inc.
    Inventors: Austin Gurney, Timothy Hoey, Sanjeev Satyal, Maureen Fitch Bruhns
  • Patent number: 8802091
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 12, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Z. Chen
  • Patent number: 8795660
    Abstract: Novel anti-NRP1 antibodies and variants thereof having unique structural and functional characteristics are disclosed. Also provided are uses of the antibodies in research, diagnostic and therapeutic applications.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: August 5, 2014
    Assignee: Genentech, Inc.
    Inventors: Ryan J. Watts, Yan Wu
  • Patent number: 8790649
    Abstract: Novel anti-cancer agents, including, but not limited to, antibodies and immunoconjugates, that bind to EGFR are provided. Methods of using the agents, antibodies, or immunoconjugates, such as methods of inhibiting tumor growth are further provided.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 29, 2014
    Assignee: ImmunoGen, Inc.
    Inventors: Julianto Setiady, Peter U. Park, Lingyun Rui, Thomas Chittenden, Gillian Payne
  • Publication number: 20140199309
    Abstract: The invention provides methods for treating HIF-1?-overexpressing human tumors, inhibiting HIF-1?-overexpressing tumor invasion and preventing tumor metastasis, and/or promoting tumor prophylaxis, using various types of inhibitors against the Hsp90? from the tumors.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 17, 2014
    Applicant: University of Southern California
    Inventors: Wei Li, David T. Woodley, Mei Chen
  • Patent number: 8778339
    Abstract: The present invention relates to methods of treatment, prevention, management or amelioration of one or more symptoms of diseases or disorders associated with CD20 expression that encompass administration of a combination of: (A) one or more antibodies that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than said antibodies bind Fc?RIIA, and (B) one or more antibodies that specifically bind to CD20. Such methods include methods of treating, preventing, managing or ameliorating one or more symptoms of a B cell related disease or disorder or an inflammatory disorder. The invention also provides pharmaceutical compositions comprising an anti-Fc?RIIB antibody and an anti-CD20 antibody.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 15, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Nadine Tuaillon, Christopher Rankin
  • Patent number: 8779108
    Abstract: Human monoclonal antibodies directed against B7-H1 and uses of these antibodies in diagnostics and for the treatment of diseases associated with the activity and/or expression of B7-H1 are disclosed. Additionally, hybridomas or other cell lines expressing such antibodies are disclosed.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: July 15, 2014
    Assignee: MedImmune, Limited
    Inventors: Christophe Queva, Michelle Morrow, Scott Hammond, Marat Alimzhanov, John Babcook, Ian Nevin Foltz, Jaspal Singh Kang, Laura Sekirov, Melanie Boyle, Matthieu Chodorge, Ross A. Stewart, Kathleen Ann Mulgrew
  • Patent number: 8778340
    Abstract: This invention concerns in general treatment of diseases and pathological conditions with anti-VEGF antibodies. More specifically, the invention concerns the treatment of human patients susceptible to or diagnosed with cancer using an anti-VEGF antibody, preferably in combination with one or more additional anti-tumor therapeutic agents for the treatment of ovarian cancer.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: July 15, 2014
    Assignee: Genentech, Inc.
    Inventors: Jakob Dupont, Cornelia Irl
  • Patent number: 8771695
    Abstract: The present invention relates to binding proteins that bind to HER-3 and polynucleotides encoding the same. Expression vectors and host cells comprising the same for the production of the binding protein of the invention are also provided. In addition, the invention provides compositions and methods for diagnosing and treating diseases associated with HER-3 mediated signal transduction and/or its ligand heregulin.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: July 8, 2014
    Assignees: U3 Pharma GmbH, Amgen, Inc.
    Inventors: Mike Rothe, Martin Treder, Susanne Hartmann, Daniel J. Freeman, Robert Radinsky, Eric Borges
  • Patent number: 8765919
    Abstract: The invention provides compositions and methods for detecting and/or modulating TOX3 gene expression and/or biological activity. Such compositions and methods find utility in the detection and/or treatment of certain subsets of cancers, e.g. breast cancer. In particular, the inventive compositions and methods are drawn to production and use of anti-TOX3 antibodies and TOX3 nucleic acids for both detection and modulation of TOX3. The invention also provides for pharmaceutical compositions and methods for the modulation of TOX3 in a subject in need thereof. Further aspects of the invention relate to transgenic mice that either over-express or inducibly express TOX3.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: July 1, 2014
    Assignee: Cedars-Sinai Medical Center
    Inventor: Jonathan Kaye
  • Patent number: 8758753
    Abstract: The present invention is related to the obtaining of modified antibodies by means of DNA recombinant technology from the murine monoclonal antibody P3 (MAb P3), produced by the hybridoma cell line deposited under Budapest Treaty with accession number ECACC 94113026, and from its anti-idiotype murine monoclonal antibody 1E10(MAbai 1E10), produced by the hybridoma cell line with deposit number ECACC 97112901, with the objective of achieving monoclonal antibodies which preserve the biological function of specifically binding the antigen of the original antibodies, but being at the same time less immunogenic.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: June 24, 2014
    Assignee: Centro de Inmunologia Molecular (CIM)
    Inventors: Cristina Maria Mateo De Acosta Del Rio, Josefa Lombardero Valladares, Lourdes Tatiana Roque Navarro, Alejandro Lopez Requena
  • Patent number: 8758750
    Abstract: Methods are provided for treatment of hematologic cancers, particularly lymphomas and leukemias, including without limitation myelogenous and lymphocytic leukemias. A combination of antibodies specific for CD47; and specific for a cancer associated cell surface marker are administered to the patient, and provide for a synergistic decrease in cancer cell burden. The combination of antibodies may comprise a plurality of monospecific antibodies, or a bispecific or multispecific antibody. Markers of interest include without limitation, CD20, CD22, CD52, CD33; CD96; CD44; CD123; CD97; CD99; PTHR2; and HAVCR2.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: June 24, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Irving L. Weissman, Ravindra Majeti, Arash Ash Alizadeh, Mark P. Chao
  • Patent number: 8758756
    Abstract: An anti-human epidermal growth factor receptor (EGFR) antibody including an amino acid sequence as set forth in SEQ ID No. 3 is provided. The antibody binding to a labeling agent and used for labeling cells is also provided. A novel method for screening an anti-EGFR antibody is further provided.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: June 24, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Hsiang-Ching Wang, Ming-Hua Yang, Ling-Mei Wang, Min-Yuan Chou, Jyuan-Jyuan Syu
  • Patent number: 8753636
    Abstract: The present invention relates to a CD43 epitope expressed on human acute leukemia and lymphoblastic lymphoma cells and its use. More particularly, the present invention relates to a CD43 epitope expressed on human acute leukemia, lymphoblastic lymphoma cells, but not on mature hematopoietic cells, hematopoietic stem cells and non-hematopoietic cells, and to its diagnostic and therapeutic application on acute leukemia and lymphoblastic lymphoma.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 17, 2014
    Assignee: Dinona Inc.
    Inventors: Seong-Hoe Park, Kyeong-Cheon Jung, Eun-Young Choi, Seong-Pyo Park
  • Patent number: 8753628
    Abstract: The present invention relates to Fc variants having decreased affinity for Fc?RIIb, methods for their generation, Fc polypeptides comprising optimized Fc variants, and methods for using optimized Fc variants.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 17, 2014
    Assignee: Xencor, Inc.
    Inventors: Gregory Alan Lazar, Wei Dang, John Desjarlais, Sher Bahadur Karki, Omid Vafa, Robert Hayes, Jost Vielmetter
  • Publication number: 20140161813
    Abstract: New methods for diagnosing, treating, and monitoring cancer have been developed based on the expression level of markers, such as transcobalamin II (TCII), transcobalamin II receptor (TCIIR), Ki-67, megalin, cubilin, amnionless and/or asialoglycoprotein receptors. For example, a cancer diagnosis can be made by determining the level of TCII, TCIIR, Ki-67, megalin, cubilin, amnionless and/or asialoglycoprotein receptor expression in a test sample from the subject and in a reference sample, and diagnosing the subject as having cancer if the level of expression of transcobalamin II (TCII), transcobalamin II receptor (TCIIR), Ki-67, megalin, cubilin, amnionless, an asialoglycoprotein receptor, or a combination thereof, is statistically significantly different than the respective reference sample.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: Bauer Research Foundation
    Inventors: Joseph A. BAUER, Annette M. SYSEL
  • Patent number: 8748175
    Abstract: Provided are antibodies specifically binding to the epidermal growth factor receptor (EGFR) which are effective for the treatment of EGFR-mediated cancers.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: June 10, 2014
    Assignee: Green Cross Corporation
    Inventors: Se-Ho Kim, Ki Hwan Chang, Kwang-Won Hong, Yong-Won Shin, Min-soo Kim, Hae-Won Lee, Yong Nam Shin, Kyung Hwan Ryoo, Dong Hyuck Seo, Jong-Hwa Won, Min-Kyu Hur
  • Patent number: 8747857
    Abstract: Methods for preparing monomeric cytotoxic drug/carrier conjugates with a drug loading significantly higher than in previously reported procedures and with decreased aggregation and low conjugate fraction (LCF) are described. Cytotoxic drug derivative/antibody conjugates, compositions comprising the conjugates and uses of the conjugates are also described. Monomeric calicheamicin derivative/anti-CD22 antibody conjugates, compositions comprising the conjugates and uses of the conjugates are also described.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: June 10, 2014
    Assignee: Wyeth Holdings LLC
    Inventors: Arthur Kunz, Justin Keith Moran, Joseph Thomas Rubino, Neera Jain, Eugene Joseph Vidunas, John McLean Simpson, Nishith Merchant, John Francis Dijoseph, Mark Edward Ruppen, Nitin Krishnaji Damle, Paul David Robbins, Andrew George Popplewell
  • Patent number: 8748587
    Abstract: The present invention provides molecules that bind to TMEM16A (“TMEM16A binding molecules”), particularly human or humanized antibodies and antibody drug conjugates that bind to human TMEM16A and modulate its functions. Epitopes of TMEM16A and molecules that bind these epitopes are also provided herein.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: June 10, 2014
    Assignee: Novartis AG
    Inventors: Larry Alexander Gaither, Christopher John Rothwell
  • Patent number: 8741296
    Abstract: The present invention features a polypeptide, such as an antibody produced by the hybridoma SAM-6 and its use in the treatment and diagnosis of neoplasms.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: June 3, 2014
    Assignee: Patrys Limited
    Inventors: Heinz Peter Vollmers, Hans-Konrad Müller-Hermelink
  • Patent number: 8741586
    Abstract: The present invention relates to a method of diagnosis and therapy of cancers expressing the HER2 receptor. The invention provides antibodies or fragments thereof that recognise an epitope of the HER2 receptor truncated form CTF-611, said epitope being defined by a sequence included in SEQ ID NO: 2, and that are capable of discriminating between CTF-611 and CTF-616 (represented by SEQ ID NO:7), preferably additionally capable of discriminating between CTF-611 and CTF-613 (represented by SEQ ID NO:6). The invention also provides a method of cancer diagnosis using the disclosed antibodies, which comprises the detection of the presence of the HER2 receptor truncated form consisting of the amino acid sequence SEQ ID NO: 1 in a patient sample.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: June 3, 2014
    Assignees: Fundacio Privada Institucio Catalana de Recerca i Estudis Avancats, Fundacio Privada Institut d'Investigacio Oncologica de vall d'Hebron
    Inventors: Joaquin Arribas Lopez, Kim Pedersen, Pier-Davide Angellini, Josep Lluis Parra Palau, Jose Baselga Torres
  • Patent number: 8734799
    Abstract: Disclosed herein are methods and compositions for treating cancer. In particular, the in vivo efficacy of unconjugated anti-TfR antibodies, such as ch128.1, are disclosed herein.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: May 27, 2014
    Assignee: The Regents of the University of California
    Inventors: Manuel L. Penichet, Tracy R. Wells
  • Patent number: 8734792
    Abstract: The invention concerns treatment methods using anti-CD22 monoclonal antibodies with unique physiologic properties. In particular, the invention concerns methods for the treatment of B-cell malignancies and autoimmune diseases by administering an effective amount of a blocking anti-CD22 monoclonal antibody specifically binding to the first two Ig-like domains, or to an epitope within the first two Ig-like domains of native human CD22 (hCD22).
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: May 27, 2014
    Assignee: Duke University
    Inventor: Thomas F. Tedder
  • Patent number: 8734791
    Abstract: The present invention relates to optimized Fc variants, methods for their generation, and antibodies and Fc fusions comprising optimized Fc variants.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 27, 2014
    Assignee: Xencor, Inc.
    Inventors: Gregory Alan Lazar, Arthur J. Chirino, Wei Dang, John R. Desjarlais, Stephen K. Doberstein, Robert J. Hayes, Sher Bahadur Karki, Omid Vafa
  • Patent number: RE45105
    Abstract: The present invention relates to a method of treating cancer by co-administration of an effective amount of 1-(2-methoxy-ethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazol-3-ium bromide and an effective amount of one or more anticancer agents selected from the group consisting of carboplatin, cisplatin, paclitaxel, vinorelbine, gemcitabine, irinotecan, docetaxel, doxorubicin, dacarbazine and rituximab, or a retuximab-containing combination therapy selected from R-ICE and R-DHAP. The treatment method of the present invention is useful for the treatment for all solid tumors and lymphomas, preferably skin cancer, bladder cancer, breast cancer, uterine cancer, ovary cancer, prostate cancer, lung cancer, colon cancer, pancreas cancer, renal cancer, gastric cancer and the like. Particularly, they are expected as therapeutic agents for tumor types which show resistance against existing anticancer agents.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: September 2, 2014
    Assignee: Astellas Pharma Inc.
    Inventors: Takahito Nakahara, Kentaro Yamanaka, Aya Kita, Hiroshi Koutoku