Eukaryotic Cell Patents (Class 424/93.21)
  • Patent number: 11512139
    Abstract: The present invention provides a chimeric antigen receptor (CAR), comprising an extracellular part, at least one intracellular signaling domain, and at least one transmembrane domain, wherein the extracellular part of said CAR comprises a) at least one antigen binding domain, and b) at least one cytokine receptor activating or blocking domain. The invention also provides isolated nucleic acid molecule(s) encoding for the said CAR, a cell comprising said nucleic acid molecule(s), a cell expressing said CAR and therapeutic uses of said CAR.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: November 29, 2022
    Assignee: Miltenyi Biotec B.V. & Co. KG
    Inventors: Hinrich Abken, Andreas Hombach
  • Patent number: 11497791
    Abstract: Described herein are compositions and methods of using placental stem cell recruiting factors, more specifically, isolated placental stem cell recruiting factors. In one embodiment, isolated placental stem cell recruiting factors are delivered to a site such as a diseased or injured organ and/or body part in an amount sufficient to recruit stem cells to the site.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: November 15, 2022
    Assignee: MiMedx Group, Inc.
    Inventors: Thomas J. Koob, Rebeccah J. C. Brown
  • Patent number: 11497773
    Abstract: A population of genetically engineered T cells, comprising a disrupted Reg1 gene and/or a disrupted TGFBRII gene. Such genetically engineered T cells may comprise further genetic modifications, for example, a disrupted CD70 gene. The population of genetically engineered T cells exhibit one or more of (a) improved cell growth activity; (b) enhanced persistence; and (c) reduced T cell exhaustion, (d) enhanced cytotoxicity activity, (e) resistant to inhibitory effects induced by TGF-b, and (f) resistant to inhibitory effects by fibroblasts and/or inhibitory factors secreted thereby, as compared to non-engineered T cell counterparts.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: November 15, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Mary-Lee Dequeant, Demetrios Kalaitzidis, Mohammed Ghonime
  • Patent number: 11471453
    Abstract: A method for modulating an immune response by activating or inhibiting dopaminergic neurons in the Ventral Tegmental Area (VTA) is provided. Modulation is achieved by modulating the activity, the abundance or both of: a natural killer cell, a CD8 T-cell, a CD4 T-cell, a B-cell, a dendritic cell, a macrophage, a granulocyte, or their combination.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: October 18, 2022
    Assignees: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED, HEALTH CORPORATION - RAMBAM
    Inventors: Asya Rolls, Tamar Ben Shannan, Hilla Azulay-Debbie, Fahed Hakim, Maya Schiller, Shai Shen-Orr, Elina Starosvetsky
  • Patent number: 11471491
    Abstract: Materials and methods for producing genome-edited cells engineered to express a chimeric antigen receptor (CAR) construct on the cell surface, and materials and methods for genome editing to modulate the expression, function, or activity of one or more immuno-oncology related genes in a cell, and materials and methods for treating a patient using the genome-edited engineered cells.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: October 18, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Jonathan Alexander Terrett, Demetrios Kalaitzidis, Lawrence Klein
  • Patent number: 11471487
    Abstract: The present invention includes a method for expanding a population of electroporated T cells. The method includes electroporating a population of cells comprising T cells with mRNA encoding a chimeric membrane protein comprising an antigen binding domain to a molecule and an intracellular domain of a co-stimulatory molecule, wherein the cultured T cells expand at least 10 fold. The invention further includes an expanded population of T cells, compositions comprising the cells and methods of treatment.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 18, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Yangbing Zhao, Xiaojun Liu, Carl H. June
  • Patent number: 11471420
    Abstract: Disclosed is a nanoparticle comprising an inner core comprising a virus; and an outer surface comprising a cellular membrane derived from a cell, and process of making thereof. The virus is an oncolytic virus and cellular membrane is derived from for example red blood cells.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: October 18, 2022
    Assignee: Coastar Therapeutics Inc.
    Inventor: Eddie Yocon Chung
  • Patent number: 11473105
    Abstract: The invention provides a bidirectional hCMV-CAG4 promoter and recombinant vectors and recombinant virus comprising the bidirectional hCMV-CAG4 promoter operably linked to a first transgene in one direction and to a second transgene in the opposite direction. The invention also provides methods of making and using such recombinant vectors and recombinant virus.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: October 18, 2022
    Assignee: Janssen Vaccines & Prevention B.V.
    Inventors: Kerstin Wunderlich, Jort Vellinga
  • Patent number: 11464806
    Abstract: A method of treating a tumor in a subject including administering a genetically modified mesenchymal stem cell (MSC), wherein the MSC includes one or more exogenous nucleic acid molecule(s), wherein the one or more exogenous nucleic acid molecule(s) includes one or more regions encoding two or more immune response-stimulating cytokines operably linked to one or more promoters or promoter/enhancer combinations, wherein the two or more immune response-stimulating cytokines include at least IL-7, and at least one of IL-12 or IL-21.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: October 11, 2022
    Assignee: JUNCTUCELL BIOMED MANUFACTURING GMBH
    Inventors: Christine Günther, Stefanos Theoharis, Felix Hermann, Ralf Huss
  • Patent number: 11458168
    Abstract: Embodiments of the disclosure include methods and compositions for producing NKT cells effective for immunotherapy and also methods and compositions for providing an effective amount of NKT cells to an individual in need of immunotherapy. In specific embodiments, the NKT cells are CD62L+ and have been exposed to one or more costimulatory agents to maintain CD62L expression. The NKT cells may be modified to incorporate a chimeric antigen receptor, in some cases.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: October 4, 2022
    Assignee: Baylor College of Medicine
    Inventors: Leonid S. Metelitsa, Amy N. Courtney, Gengwen Tian
  • Patent number: 11459567
    Abstract: The present invention generally relates to the field of molecular biology and RNA interference (RNAi). More specifically, the present invention relates to specific siRNA molecules, compositions and uses thereof, as well as methods of treating cancer and methods of inhibiting cancer cell proliferation, particularly methods of treating breast cancer. Yet more particularly, the methods of the present invention are methods for inhibiting growth of triple negative breast cancer (TNBC). In a preferred embodiment, the invention provides specific siRNA molecules, comprising a sequence selected from SEQ ID NO: 1 and SEQ ID NO: 2, and from any other sequence having a sequence identity greater than 90% between the siRNA and the portion of the target gene. Such siRNA molecules are suitable for the treatment of breast cancer, particularly, TNBC.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: October 4, 2022
    Inventor: Patricia Virginia Elizalde
  • Patent number: 11446249
    Abstract: Combining viral vector with surfactant preserves vector infectivity, and surfactant provided an unexpected benefit by protecting viral vector from damage due to transient elevated temperature.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: September 20, 2022
    Assignee: Trizell Ltd.
    Inventors: Minna Hassinen, Robert Shaw, Nigel Parker
  • Patent number: 11446331
    Abstract: The present invention is directed to wound healing scaffolds cografted with a population of stem cells, wherein the population of stem cells are ABCB5+ stem cells. The scaffolds are, for instance, collagen glycosaminoglycan scaffolds.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: September 20, 2022
    Assignees: The Brigham and Women's Hospital, Inc., Children's Medical Center Corporation, The United States Government as Represented by the Department of Veterans Affairs
    Inventors: Markus H. Frank, Natasha Y. Frank, Dennis P. Orgill, George F. Murphy
  • Patent number: 11434505
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: September 6, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11413357
    Abstract: The present invention relates to Adeno-associated virus type 9 methods and materials useful for intrathecal delivery of polynucleotides. Use of the methods and materials is indicated, for example, for treatment of lower motor neuron diseases such as SMA and ALS as well as Pompe disease and lysosomal storage disorders. It is disclosed that administration of a non-ionic, low-osmolar contrast agent, together with a rAAV9 vector for the expression of Survival Motor Neuron protein, improves the survival of SMN mutant mice as compared to the administration of the expression vector alone.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: August 16, 2022
    Assignees: NATIONWIDE CHILDREN'S HOSPITAL, OHIO STATE INNOVATION FOUNDATION
    Inventors: Brian K. Kaspar, Arthur Burghes, Paul Porensky
  • Patent number: 11396551
    Abstract: The disclosure provides CARs (CARs) that specifically bind to CD70. The disclosure further relates to engineered immune cells comprising such CARs, CAR-encoding nucleic acids, and methods of making such CARs, engineered immune cells, and nucleic acids. The disclosure further relates to therapeutic methods for use of these CARs and engineered immune cells comprising these CARs for the treatment of a condition associated with malignant cells expressing CD70 (e.g., cancer).
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 26, 2022
    Assignee: Pfizer Inc.
    Inventors: Surabhi Srivatsa Srinivasan, Niranjana Aditi Nagarajan, Siler Panowski, Yoon Park, Tao Sai, Barbra Johnson Sasu, Thomas John Van Blarcom, Mathilde Brunnhilde Dusseaux, Roman Ariel Galetto
  • Patent number: 11382745
    Abstract: The present invention relates to an assembly for replacing a heart valve or to a coronary angioplasty assembly, comprising an introduction sheath (13) for an introducer (1) or for a delivery catheter (1?), which is smaller compared to an introducer, intended to be introduced into an artery of a human body. The invention basically comprises: either integrating the metal support of an electrode of the cardiac stimulator into a part to be fitted around the introduction sheath that is introduced into the artery of a patient or into a guide wire that becomes a bipolar electrode support; or connecting the cathode of an external cardiac stimulator to the guide wire of an artificial valve and the anode to a transcutaneous electrode in contact with the skin of the patient.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: July 12, 2022
    Assignee: ELECTRODUCER
    Inventor: Benjamin Faurie
  • Patent number: 11369616
    Abstract: The invention relates to a combination of CXCR4 antagonist 6-{4-[1-(Propan-2-yl)piperidin-4-yl]-1, 4-diazepan-1-yl}-N-(pyridin-4-yl)pyridine-2-carboxamide and an immune checkpoint inhibitor, and the use of the same in the treatment of tumours and/or cancers.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 28, 2022
    Assignee: PROXIMAGEN, LLC
    Inventor: Peter Richardson
  • Patent number: 11364235
    Abstract: This invention provides a method for treating a subject afflicted with cancer, comprising administering to the subject (i) a BCL-2 inhibitor in conjunction with (ii) an alpha-emitting isotope-labeled agent that targets cancer cells in the subject, wherein the amounts of the BCL-2 inhibitor and labeled agent, when administered in conjunction with one another, are therapeutically effective. This invention also provides a method for inducing the death of a cancer cell, comprising contacting the cell with (i) a BCL-2 inhibitor in conjunction with (ii) an alpha-emitting isotope-labeled agent that targets the cancer cell, wherein the amounts of BCL-2 inhibitor and labeled agent, when concurrently contacted with the cell, are effective to induce the cell's death.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: June 21, 2022
    Assignee: Actinium Pharmaceuticals, Inc.
    Inventor: Dragan Cicic
  • Patent number: 11365262
    Abstract: The present invention provides a cell which comprises a first chimeric antigen receptor (CAR) and a second CAR, wherein the first and second CARs bind different epitopes on the same ligand. The cell may be used in a method for treating a disease, such as cancer.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 21, 2022
    Assignee: AUTOLUS LIMITED
    Inventors: Martin Pulé, Shaun Cordoba, Matteo Righi, James Sillibourne
  • Patent number: 11365237
    Abstract: The present invention relates to fusion proteins comprising (a) an extracellular domain containing a polypeptide derived from PD-1 or CD40L at its N-terminus; (b) a transmembrane domain; and (c) an intracellular domain containing a polypeptide derived from 4-1BB or CD28 at its C-terminus. Also, fusion proteins with CD28 at the N-terminus and CD40L at the C-terminus are envisaged. The present invention also relates to nucleic acid molecules encoding such fusion proteins, vectors containing such nucleic acid molecules, and host cells containing such vectors. The present invention further relates to methods for producing such host cells. Finally, the present invention relates to pharmaceutical compositions comprising such fusion proteins, nucleic acid molecules, vectors, and/or host cells, particularly for treating diseases or disorders associated with PD-1/PD-L2 or CD40 binding and/or PD-L1/PD-L2 or CD40 expression such as cancer and chronic viral infection.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: June 21, 2022
    Assignee: HELMHOLTZ ZENTRUM MUENCHEN—DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT (GMBH)
    Inventors: Elfriede Noessner, Ramona Schlenker, Stephan Weisz
  • Patent number: 11359242
    Abstract: Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, the Inventors compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. The Inventors resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for familial ALS genetic variants and were affected in sporadic ALS. Altogether, the Inventors' findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: June 14, 2022
    Assignee: CEDARS-SINAI MEDICAL CENTER
    Inventors: Ritchie Ho, Clive Svendsen
  • Patent number: 11351201
    Abstract: The present invention describes a composition comprising a mixture of human foetal keratinocyte cells and human foetal fibroblast cells, the ratio between said keratinocyte and fibroblast cells ranging from 0.75 to 2.5, preferably being 1:1 or 7:3. This composition is advantageously included in a bandage, said bandage preferably being sterile and packaged in a container impermeable to microorganisms. The present invention finally concerns the use of this composition as a drug, in particular for treating a skin defect (wound, burn or ulcer).
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: June 7, 2022
    Assignees: Universite De Nantes, Chu Nantes
    Inventors: Brigitte Dreno, Thomas Zuliani, Soraya Saiagh
  • Patent number: 11351236
    Abstract: The invention provides improved compositions for adoptive T cell therapies for B cell related conditions.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: June 7, 2022
    Assignee: 2seventy bio, Inc.
    Inventors: Richard Morgan, Kevin Friedman
  • Patent number: 11337997
    Abstract: It is to provide an immunocompetent cell that expresses regulatory factors of immunocompetent cell immune function and possesses all of proliferative potential, viability, and the ability to accumulate a T cell, and an expression vector of regulatory factors of immune function for generating the immunocompetent cell. An immunocompetent cell expressing a cell surface molecule specifically recognizing a cancer antigen, interleukin 7 (IL-7), and CCL19 is generated. Preferably, the cell surface molecule specifically recognizing a cancer antigen is T cell receptor specifically recognizing the cancer antigen, and the immunocompetent cell is a T cell.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: May 24, 2022
    Assignee: Yamaguchi University
    Inventors: Koji Tamada, Yukimi Sakoda, Keishi Adachi
  • Patent number: 11332726
    Abstract: The present invention relates to a nucleotide-modified messenger RNA for the permanent correction of a genetic alteration on a DNA. The invention further relates to a nucleotide-modified messenger RNA in combination with a repair template. It also relates to a pharmaceutical composition. It finally relates to methods for the correction of a genetic alteration on a DNA.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 17, 2022
    Assignees: EBERHARD KARLS UNIVERSITÄT TÜBINGEN MEDIZINISCHE FAKULTÄT, HELMHOLTZ-ZENTRUM FÜR INFEKTIONSFORSCHUNG GMBH FÜR DAS HELMHOLTZ-INSTITUT FÜR PHARMAZEUTISCHE FORSCHUNG SAARLAND (HIPS)
    Inventors: Michael Kormann, Lauren Mays Weddle, Claus-Michael Lehr, Brigitta Loretz, Emad Malaeksefat
  • Patent number: 11332750
    Abstract: The present invention provides an expression system for a eukaryotic host, which comprises 1) an expression cassette comprising a core promoter, the core promoter controlling the expression of a DNA sequence encoding a synthetic transcription factor (sTF), and 2) one or more expression cassettes each comprising a DNA sequence encoding a desired product operably linked to a synthetic promoter, the synthetic promoter comprising a core promoter, and sTF-specific binding sites upstream of the core promoter. The present invention also provides a method for identifying universal core promoters for eukaryotic hosts, expression systems using universal core promoters, hosts comprising the systems, and methods for producing protein products in eukaryotic hosts.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 17, 2022
    Assignee: Teknologian Tutkimuskeskus VTT OY
    Inventors: Dominik Mojzita, Anssi Rantasalo, Jussi Jäntti, Christopher Landowski, Joosu Kuivanen
  • Patent number: 11331344
    Abstract: The present invention relates to the transient modification of cells. In particular embodiments, the cells are immune systems, such as PBMC, PBL, T (CD3+ and/or CD8+) and Natural Killer (NK) cells. The modified cells provide a population of cells that express a genetically engineered chimeric receptor which can be administered to a patient therapeutically. The present invention further relates to methods that deliver mRNA coding for the chimeric receptor to unstimulated resting PBMC, PBL, T (CD3+ and/or CD8+) and NK cells and which delivers the mRNA efficiently to the transfected cells and promotes significant target cell killing.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: May 17, 2022
    Assignee: MAXCYTE INC.
    Inventors: Linhong Li, Madhusudan V. Peshwa
  • Patent number: 11326156
    Abstract: Provided herein are modified caspase-9 polypeptides, and chimeric caspase-9 proteins containing the modified caspase-9 polypeptides. The disclosure further provides polynucleotides encoding these proteins, engineered host cells containing these polynucleotides and proteins, including host cells that co-express a chimeric antigen receptor, and methods of making and using the same.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: May 10, 2022
    Assignee: ALLOGENE THERAPEUTICS, INC.
    Inventors: Meritxell Galindo Casas, Thomas John Van Blarcom
  • Patent number: 11299546
    Abstract: An embodiment of the invention provides a chimeric antigen receptor (C AR) comprising an antigen binding domain specific for FLT3, a transmembrane domain, and an intracellular T cell signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of a proliferative disorder, e.g., cancer, in a mammal and methods of treating or preventing a proliferative disorder, e.g., cancer, in a mammal are also disclosed.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 12, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Christopher D. Chien, Terry J. Fry
  • Patent number: 11298378
    Abstract: Materials and methods for producing genome-edited cells engineered to express a chimeric antigen receptor (CAR) construct on the cell surface, and materials and methods for genome editing to modulate the expression, function, or activity of one or more immuno-oncology related genes in a cell, and materials and methods for treating a patient using the genome-edited engineered cells.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: April 12, 2022
    Assignee: CRISPR Therapeutics AG
    Inventors: Jonathan Alexander Terrett, Demetrios Kalaitzidis, Lawrence Klein
  • Patent number: 11278572
    Abstract: Provided herein are methods of enhancing engraftment of hematopoietic stem cells (HSC) in recipient subjects by reducing expression (or activity) of CXC chemokine receptor 4 (CXCR4). Such methods can be used in gene therapy protocols and in HSC transplantation, for example allowing this to occur without radiation or chemotherapy conditioning as is typically done in non-myeloablative HSC transplant. In some examples, gene editing methods are used to delete one copy of the CXCR4 gene before HSC or bone marrow transplantation, enhancing the efficiency and durability of donor cell repopulation.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: March 22, 2022
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Jiliang Gao, Philip M. Murphy, David H. McDermott, Marie Siwicki, Harry L. Malech, Joy Liu, Paejonette Jacobs
  • Patent number: 11279769
    Abstract: The invention provides improved compositions for adoptive cell therapies for cancers that express the glycoepitope STn on TAG-72.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: March 22, 2022
    Assignee: Helixmith Co., Ltd
    Inventors: Richard Morgan, Kevin Friedman, Seung Shin Yu, Jae-Gyun Jeong, Jin-A Chae
  • Patent number: 11273178
    Abstract: The present invention relates to methods and systems for increasing the affinity of a T cell receptor (TCR) to its ligand by subjecting the TCR gene to somatic hypermutation. The present invention further relates to use of affinity maturated TCRs to create T cells reactive against a selected antigen.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: March 15, 2022
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Rachel Lea Eisenbach, Yosi Gozlan, Esther Tzehoval
  • Patent number: 11273227
    Abstract: Engineered MREG proteins are described. Further described are viral vectors expressing native or engineered MREG proteins. Further described are compositions containing these vectors or proteins formulated for delivery to the eye. Also provided are methods for delivering these native and engineered MREG proteins to ocular cells for treatment of Stargardt's disease, macular degeneration and other ocular disorders.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: March 15, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventor: Kathleen Boesze-Battaglia
  • Patent number: 11273248
    Abstract: A method to divide liposuction fat into aliquots for use and cryopreservation purposes, the method comprising: providing a taking container that contains adipose material removed by liposuction, the adipose material including fat and aqueous fluid; providing a plurality of cryopreservation containers; taking a quantity of the adipose material from the taking container, keeping the quantity of the adipose material isolated from an external environment; separating by gravity the fat from the aqueous fluid in the adipose material of the taken quantity; and transferring the separated fat into one or more cryopreservation containers, to define isolated aliquots of fat.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: March 15, 2022
    Assignee: Biomed Device S.R.L.
    Inventor: Marco Bertoni
  • Patent number: 11267847
    Abstract: The present invention relates to nucleic acids encoding the novel parvoviral protein “assembly activating protein” (AAP), the encoded polypeptides, methods of producing the polypeptides, antibodies specific for AAP, the use of the nucleic acids for the preparation of the polypeptides, the use of the nucleic acids or the polypeptides for the preparation of the parvoviral particle and methods of producing parvoviral particles essentially consisting of VP3 by providing in addition to the coding sequence of the parvoviral structural protein VP3 a sequence fragment Z/a nucleic acid encoding AAP in the cell and expressing VP3 and fragment Z under control of a rep-independent promoter. Furthermore, the present invention relates to parvoviral particles essentially consisting of VP3 and/or obtainable by the above method as well as expression cassettes comprising (i) a heterologous promoter and (ii) VP3 coding sequence and/or fragment Z.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: March 8, 2022
    Assignees: Medigene AG, Deutsches Krebsforschungszentrum
    Inventors: Florian Sonntag, Juergen Kleinschmidt, Markus Hoerer, Kerstin Pino Tossi
  • Patent number: 11266748
    Abstract: Provided herein are nucleic acids, recombinant adeno-associated virus (rAAV) particles, and compositions, as well as methods of use thereof for transducing medullary thyroid carcinoma cells and in treatment of disease, such as medullary thyroid carcinoma. In some aspects, the nucleic acid comprises a truncated calcitonin promoter, which is optionally encapsidated within a rAAV particle. In other aspects, the rAAV particle is a rAAV particle having a mutation in a surface-exposed amino acid, such as tyrosine, threonine, or serine, that enhances transduction of the particle into medullary thyroid carcinoma cells.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 8, 2022
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Jacqueline A. Hobbs, Scott A. Rivkees, Arun Srivastava, Laura A. Small
  • Patent number: 11261223
    Abstract: The current disclosure relates to methods for treating ovarian cancer based on specific antigen expression of the cancer. Furthermore, the expressed antigen may be used in immunotherapeutic methods for treatment of the ovarian cancer. Aspects of the disclosure relate to immunotherapies targeting CT45 polypeptides, methods for treating ovarian cancer based on CT45 expression, and kits for detecting CT45 polypeptides and nucleotides.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: March 1, 2022
    Assignees: The University of Chicago, Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V.
    Inventors: Ernst Lengyel, Matthias Mann, Marion Curtis, Fabian Coscia
  • Patent number: 11248058
    Abstract: Provided herein are chimeric antigen receptors (CARs) comprising an antigen binding domain (e.g., CD19, CD30, GD2, etc.), transmembrane domain (e.g., CD28), and a cytoplasmic domain (e.g., CD27, 4-1BB, etc.). In some aspects, the disclosure relates to use of the CARs in T cells, compositions, kits and methods.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: February 15, 2022
    Assignee: University of Florida Research Foundation, Inc.
    Inventor: Lung-Ji Chang
  • Patent number: 11241390
    Abstract: Disclosed is a nanoparticle comprising an inner core comprising a virus; and an outer surface comprising a cellular membrane derived from a cell, and process of making thereof. The virus is an oncolytic virus and cellular membrane is derived from for example red blood cells.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 8, 2022
    Assignee: Coastar Therapeutics Inc.
    Inventor: Eddie Yocon Chung
  • Patent number: 11242389
    Abstract: Chimeric antigen receptors containing CD19/CD22 or CD22/CD19 antigen binding domains are disclosed. Nucleic acids, recombinant expression vectors, host cells, antigen binding fragments, and pharmaceutical compositions, relating to the chimeric antigen receptors are also disclosed. Methods of treating or preventing cancer in a subject, and methods of making chimeric antigen receptor T cells are also disclosed.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 8, 2022
    Assignee: LENTIGEN TECHNOLOGY, INC.
    Inventors: Dina Schneider, Rimas J. Orentas, Boro Dropulic, Peirong Hu
  • Patent number: 11236175
    Abstract: Methods and compositions for modifying T-cells in which PD1 and/or CTLA-4 is repressed and/or inactivated using fusion proteins such as artificial transcription factors and nucleases.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: February 1, 2022
    Assignee: Sangamo Therapeutics, Inc.
    Inventors: Philip D. Gregory, Michael C. Holmes
  • Patent number: 11219195
    Abstract: The invention provides genetically modified non-human animals that express a humanized MHC II protein (humanized MHC II ? and ? polypeptides), as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: January 11, 2022
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Lynn Macdonald, Andrew J. Murphy, Naxin Tu, Cagan Gurer, Vera Voronina, Sean Stevens
  • Patent number: 11207351
    Abstract: Materials and methods for producing genome-edited cells engineered to express a chimeric antigen receptor (CAR) construct on the cell surface, and materials and methods for genome editing to modulate the expression, function, or activity of one or more immuno-oncology related genes in a cell, and materials and methods for treating a patient using the genome-edited engineered cells.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: December 28, 2021
    Assignee: CRISPR Therapeutics AG
    Inventors: Jonathan Alexander Terrett, Demetrios Kalaitzidis, Lawrence Klein
  • Patent number: 11208652
    Abstract: Methods and compositions of altering mitochondrial DNA of a eukaryotic cell are provided using one or more of a mitochondrial specific adeno-associated virus to deliver one or more nucleic acids encoding CRISPR system including a Cas9 protein or its nuclease inactive variant and a guide RNA into a mitochondria for expression within the mitochondria. The Cas9 system can cut, nick or regulate a target mitochondrial nucleic acid.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: December 28, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Luhan Yang, Margo R. Monroe
  • Patent number: 11210438
    Abstract: Non-mechanistic, differential-equation-free approaches for predicting a particular structure-activity responses of a system to a given molecular structure input are provided in the form of systems, methods, and devices. These approaches are generally directed to a non-compartmental method of predicting a time-dependent structure-activity response of a component of a system to an input into the system.
    Type: Grant
    Filed: May 27, 2018
    Date of Patent: December 28, 2021
    Assignee: ARRAPOI, INC.
    Inventor: Glenn A. Williams
  • Patent number: 11198126
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 14, 2021
    Assignee: Fluid-Screen, Inc.
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Patent number: 11191787
    Abstract: Provided is a cell therapeutic agent for treating an inflammatory disease induced by a hyperimmune response, more specifically, a composition for treating an inflammatory disease induced by a hyperimmune response, which comprises (i) a chondrocyte or a cell capable of differentiating into a chondrocyte; and (ii) a cell into which a gene encoding TGF-? is introduced, wherein the cell in (ii) is derived from human embryonic kidney 293 (HEK-293) cell.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: December 7, 2021
    Assignees: KOLON LIFE SCIENCE, INC.
    Inventors: Heonsik Choi, Kyoungbaek Choi, Hyeonyoul Lee, Daewook Kim, Hyesun Lee, Min Kim, Sujeong Kim
  • Patent number: 11185481
    Abstract: We describe the use of an exosome for the preparation of a pharmaceutical composition to promote or enhance would healing or hair growth, or both, in an individual. The exosome may be derived from a stem cell such as a mesenchymal stem cell (MSC).
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: November 30, 2021
    Assignee: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR)
    Inventors: Sai Kiang Lim, Mathew Sze Wei Yeo, Tian Sheng Chen, Ruenn Chai Lai