Carbon Base Patents (Class 427/113)
  • Publication number: 20150010825
    Abstract: A method for making graphene-based material is disclosed. A graphene oxide dispersion includes graphene oxide dispersed in solvent. A hydrogen sulfide gas is introduced to the graphene oxide dispersion at a reacting temperature to achieve a graphene dispersion. The hydrogen sulfide reduces graphene oxide into graphene, and elemental sulfur produced from the hydrogen sulfide is deposited on surfaces of the graphene. The solvent is removed to achieve a graphene composite material. Further, a graphene composite material and a lithium sulfur battery using the graphene composite material are also disclosed.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 8, 2015
    Inventors: QUAN-HONG YANG, CHEN ZHANG, WEI LV, XIAO-YU ZHENG, WEI WEI, YING TAO, BAO-HUA LI, FEI-YU KANG
  • Publication number: 20150010696
    Abstract: The present invention provides a method of finely depositing lithium metal powder or thin lithium foil onto a substrate while avoiding the use of a solvent. The method includes depositing lithium metal powder or thin lithium foil onto a carrier, contacting the carrier with a substrate having a higher affinity for the lithium metal powder as compared to the affinity of the carrier for the lithium metal powder, subjecting the substrate while in contact with the carrier to conditions sufficient to transfer the lithium metal powder or lithium foil deposited on the carrier to the substrate, and separating the carrier and substrate so as to maintain the lithium metal powder or lithium metal foil, deposited on the substrate.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 8, 2015
    Inventors: Marina Yakovleva, Yuan Gao, Yangxing Li, Kenneth Brian Fitch
  • Publication number: 20150004529
    Abstract: The present invention relates to the use, as a precursor for the chemical vapour deposition of PtSi at the surface of a support, of at least one organometallic complex of Pt comprising at least:—a ligand having a cyclic structure that comprises at least two non-adjacent C?C double bonds, or two ligands having a cyclic structure that each comprise a C?C double bond; and—a ligand chosen from *O—Si(R)3 and *N—(Si(R)3)2, with: the R units being chosen, independently of one another, from (C1-C4)alkoxy groups; the R? units being chosen, independently of one another, from (C1-C4)alkyl and (C3-C4)cycloalkyl groups; and * representing the coordination of the ligand to the platinum.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 1, 2015
    Inventors: Sebastien Donet, Christophe Coperet, Nicolas Guillet, Pierre Laurent, Chloe Thieuleux
  • Publication number: 20150004516
    Abstract: A lamellar structure graphite foil is used as a material for a separator for a fuel cell, and a hydrophobic layer is formed by impregnation on flow-field channels of the graphite foil. Such a separator is manufactured by forming the flow field channel by etching the graphite foil formed with the mask pattern thereon and forming a hydrophobic layer by impregnation. According to such a separator, performance of a fuel cell stack is enhanced and the manufacturing process of a separator is simplified.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Ho-Suk Kim, Byung-Sun Hong, Mee-Nam Shinn
  • Publication number: 20140356722
    Abstract: The present invention relates to a conductive material for a secondary battery, including a pitch coated graphene sheet, an anode for a secondary battery including the same, and a lithium secondary battery including the electrode.
    Type: Application
    Filed: July 1, 2014
    Publication date: December 4, 2014
    Inventors: Sun Young Shin, Sang Wook Woo, Eun Kyung Kim, Je Young Kim, Hyun Wook Kim, Su Min Lee
  • Publication number: 20140356707
    Abstract: The present invention relates to a negative electrode active material for a rechargeable lithium battery, a method for preparing the same, and a rechargeable lithium battery including the same. This invention provides a negative electrode active material for a rechargeable lithium battery, comprising a core part including a spherical graphite, and a coating layer containing a low crystalline carbon material and coated on a surface of the core part, wherein a pore volume of less than or equal to 2000 nm is 0.08 ml/g or less, and a tap density is 1.1 g/cm3 or more.
    Type: Application
    Filed: May 13, 2014
    Publication date: December 4, 2014
    Applicant: POSCO CHEMTECH CO., LTD.
    Inventors: Se Mann Kwon, Ji Kwon Jung, Yong Tae Park
  • Publication number: 20140349186
    Abstract: A method of modifying the surface of carbon materials such as vapor grown carbon nanofibers is provided in which silicon is deposited on vapor grown carbon nanofibers using a chemical vapor deposition process. The resulting silicon-carbon alloy may be used as an anode in a rechargeable lithium ion battery.
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Inventors: David J. Burton, Max L. Lake, Maryam Nazri
  • Publication number: 20140342234
    Abstract: The present invention relates to a sulfur-carbon composite made from microporous-carbon-coated carbon nanotube (CNT@MPC) composites, in particular a sulfur-carbon composite, which comprises a carbon-carbon composite substrate (CNT@MPC) and sulfur loaded into said carbon-carbon composite substrate (CNT@MPC); as well as a method for preparing said sulfur-carbon composite, an electrode material and a lithium-sulfur battery comprising said sulfur-carbon composite.
    Type: Application
    Filed: November 29, 2011
    Publication date: November 20, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Yuguo Guo, Sen Xin, Nahong Zhao, Longjie Zhou
  • Publication number: 20140342233
    Abstract: The present invention relates to a sulfur-carbon composite, comprising a pyrolysis microporous carbon sphere (PMCS) substrate and sulfur loaded into said pyrolysis microporous carbon sphere (PMCS) substrate; as well as a method for preparing said sulfur-carbon composite, an electrode material and a lithium-sulfur battery comprising said sulfur-carbon composite.
    Type: Application
    Filed: November 29, 2011
    Publication date: November 20, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Yuguo Guo, Sen Xin, Nahong Zhao, Longjie Zhou
  • Publication number: 20140332732
    Abstract: Conductive particle 10 has conductive carbon black particle (CB) 11 and cover layer 12. The amount of an insulating resin in conductive particle 10 is from 10 to 50% by mass. The number-average primary particle diameter of CB11 is from 20 to 60 nm; DBP absorption amount is from 100 to 200 mL/100 g. Cover layer 12 is formed by a phase-inversion emulsification method that contains an insulating resin having an amino group and CB11 in an oil phase. Conductive particle 10 is used suitably for a conductive agent of an intermediate transfer belt of an image forming apparatus.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 13, 2014
    Applicant: Konica Minolta, Inc.
    Inventors: Wanli ZHANG, Kouichi ETOU, Kazuyoshi OTA, Junji KANDA
  • Publication number: 20140330100
    Abstract: Carbon nanostructures may be protected and functionalized using a layer-by-layer method whereby functional groups on the carbon nanostructure surface may be further derivatized to incorporate additional functional moieties. Exemplary moieties include redox mediator molecules, crown ethers, catalysts, boric acids, carbohydrates, oligonucleotides, DNA or RNA aptamers, peptide aptamers, proteins such as enzymes and antibodies, quantum dots and nanoparticles, cells, cell organelles, or other cellular components. The density of functional groups or functional moieties on carbon nanostructure surfaces may also be controlled as well as the degree of surface hydrophilicity of the nanostructure.
    Type: Application
    Filed: September 10, 2012
    Publication date: November 6, 2014
    Applicant: NANOSELECT, INC.
    Inventors: Chunhong Li, David J. Ruggieri
  • Publication number: 20140314949
    Abstract: A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant so as to increase the conductance of the conductor element to a desired value, wherein the dopant is one of bromine, iodine, chloroauric acid, hydrochloric acid, hydroiodic acid, nitric acid, and potassium tetrabromoaurate. A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant solution comprising one of chloroauric acid, hydrochloric acid, nitric acid, and potassium tetrabromoaurate, so as to increase the conductance of the conductor element to a desired value.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Inventor: John A. Starkovich
  • Publication number: 20140308437
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20140302595
    Abstract: A nanosensor and methods to manufacture are disclosed. For example, a detection system for detecting the presence of a target substance can include a nanosensor that includes a sensing layer, and a plurality of sockets embedded within the body of the sensing layer, each socket having a physical profile matching a shape of the target substance such that, when target substances occupy the sockets, at least one measurable physical characteristic of the sensing layer changes.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: Lockheed Martin Corporation
    Inventors: Rebecca Schwartz, John Arthur Wood
  • Publication number: 20140302394
    Abstract: A lithium ion battery graphite negative electrode material and preparation method thereof. The lithium ion battery graphite negative electrode material is a composite material including graphite substrates, surface coating layers coated on the graphite substrates and carbon nanotubes and/or carbon nanofibers grown in situ on the surface of the surface coating layers. The preparation method thereof includes, in solid phase or liquid phase circumstance, the coated carbon material precursor forms the surface coating layer of amorphous carbon by carbonization, and then carbon nanotubes and/or carbon nanofibers having high conductive performance are formed on the surface of the surface coating layers by vapor deposition. This coating mode of the combination of solid phase with gas phase or of liquid phase and gas phase makes the amorphous carbon formed on the surface of the graphite substrates more uniform and dense.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 9, 2014
    Applicant: SHENZHEN BTR NEW ENERGY MATERIALS INC
    Inventors: Min Yue, Yan Liang, Huiqing Yan, Minghua Deng, Youyuan Huang
  • Publication number: 20140295066
    Abstract: A one-pot process for the electroless-plating of silver onto graphite powder is disclosed. No powder pretreatment steps for the graphite, which typically require filtration, washing or rinsing, are required. The inventive process comprises mixing together three reactant compositions in water: an aqueous graphite activation composition comprising graphite powder and a functional silane, a silver-plating composition comprising a silver salt and a silver complexing agent, and a reducing agent composition.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Jie Cao, Wenhua Huang, Allison Yue Xiao
  • Publication number: 20140287315
    Abstract: The invention relates to a process for producing an Si/C composite, which includes providing an active material containing silicon, providing lignin, bringing the active material into contact with a C precursor containing lignin and carbonizing the active material by converting lignin into inorganic carbon at a temperature of at least 400° C. in an inert gas atmosphere. The invention further provides an Si/C composite, the use thereof as anode material in lithium ion batteries, an anode material for lithium ion batteries which contains such an Si/C composite, a process for producing an anode for a lithium ion battery, in which such an anode material is used, and also a lithium ion battery which includes an anode having an anode material according to the invention.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: Wacker Chemie AG
    Inventors: Dennis TROEGEL, Manfred AMANN, Stefan HAUFE, Jelena PANTELIC
  • Publication number: 20140287337
    Abstract: Disclosed is a carbon fiber web including polymer nanofibers. Specifically, the carbon fiber web includes: a dispersed structure of carbon fibers; and polymer nanofibers distributed among and bonding the constituent carbon fibers of the dispersed structure. The carbon fiber web exhibits excellent characteristics in terms of flexural strength, gas permeability and electrical properties while possessing a tensile strength sufficient to undergo continuous processes for mass production. Also disclosed are a gas diffusion medium using the carbon fiber web, a gas diffusion layer including the gas diffusion medium, a membrane electrode assembly including the gas diffusion layer, and a fuel cell including the membrane electrode assembly. The use of the carbon fiber web ensures high performance of the membrane electrode assembly and the fuel cell.
    Type: Application
    Filed: June 19, 2013
    Publication date: September 25, 2014
    Inventors: Yoonjong Yoo, Hyunuk Kim, Kwangsub Song, Hongsoo Kim, Young Ju Lee, Sungjin Lee
  • Publication number: 20140287317
    Abstract: Silicon/carbon composite material, consisting of at least one capsule comprising a silicon shell within which there are carbon nano-objects partially or totally covered with silicon, and silicon nano-objects. The capsule may further comprise an amorphous carbon shell inside the silicon shell and adjacent to the latter. A method for preparing said composite material is disclosed.
    Type: Application
    Filed: October 25, 2012
    Publication date: September 25, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Pascal Tiquet, Mélanie Alias
  • Patent number: 8834829
    Abstract: The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000° C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H2 and an inert gas.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 16, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Cristian Ion Contescu, Nidia C. Gallego, Jane Y. Howe, Harry M. Meyer, III, Edward Andrew Payzant, David L. Wood, III, Sang Young Yoon, Matthew R. Denlinger
  • Publication number: 20140255819
    Abstract: A non-woven gas diffusion substrate including: (i) a non-woven carbon fibre web; (ii) a carbon particulate material; and 10 (iii) a hydrophobic binder characterised in that the non-woven gas diffusion substrate further includes a conductive material having a x:y aspect ratio from 0.01 to 100, a x:z aspect ratio of at least 500 and a y:z aspect ratio of at least 500.
    Type: Application
    Filed: October 17, 2012
    Publication date: September 11, 2014
    Inventors: Rosemary Fisher, Ian Roy Harkness, Jonathan David Brereton Sharman, Michael Jeschke
  • Patent number: 8828481
    Abstract: A method of modifying the surface of carbon materials such as vapor grown carbon nanofibers is provided in which silicon is deposited on vapor grown carbon nanofibers using a chemical vapor deposition process. The resulting silicon-carbon alloy may be used as an anode in a rechargeable lithium ion battery.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: September 9, 2014
    Assignee: Applied Sciences, Inc.
    Inventors: David J. Burton, Max L. Lake, Maryam Nazri
  • Patent number: 8822078
    Abstract: The present invention relates to freestanding carbon nanotube paper comprising purified carbon nanotubes, where the purified carbon nanotubes form the freestanding carbon nanotube paper and carbon microparticles embedded in and/or present on a surface of the carbon nanotube paper. The invention also relates to a lithium ion battery, capacitor, supercapacitor, battery/capacitor, and fuel cell containing the freestanding carbon nanotube paper as an electrode. Also disclosed is a method of making a freestanding carbon nanotube paper. This method involves providing purified carbon nanotubes, contacting the purified carbon nanotubes with an organic solvent under conditions effective to form a dispersion comprising the purified carbon nanotubes. The dispersion is formed into a carbon nanotube paper and carbon microparticles are incorporated with the purified carbon nanotubes.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 2, 2014
    Assignee: Rochester Institute of Technology
    Inventors: Brian J. Landi, Ryne P. Raffaelle, Cory D. Cress
  • Publication number: 20140231118
    Abstract: An electrical conductor comprising an electrically conducting fibre comprising carbon nanotubes and/or graphene nanoribbon and a layer of insulating material coated around the electrically conducting fibre. The insulating material substantially does not penetrate the electrically conducting fibre, or penetrates the electrically conducting fibre only to a depth that leaves a continuous conductive path along a remaining part of the electrically conducting fibre.
    Type: Application
    Filed: September 27, 2012
    Publication date: August 21, 2014
    Applicant: Cambridge Enterprise Limited
    Inventors: Krzysztof K. K. Koziol, Agnieszka Ewa Lekawa-Raus, Lukasz Kurzepa, Xiaoyu Peng
  • Publication number: 20140234723
    Abstract: The invention relates to a cathode unit for an alkaline metal/sulphur battery, containing a cathode arrester, which comprises a carbon substrate, and an electrochemically active component, which is selected from sulphur or an alkaline metal sulphide and is in electrically conductive contact with the carbon substrate.
    Type: Application
    Filed: June 19, 2012
    Publication date: August 21, 2014
    Inventors: Markus Hagen, Holger Althues, Stefan Kaskel, Thomas Berger, Susanne Dörfler
  • Patent number: 8808792
    Abstract: A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant so as to increase the conductance of the conductor element to a desired value, wherein the dopant is one of bromine, iodine, chloroauric acid, hydrochloric acid, hydroiodic acid, nitric acid, and potassium tetrabromoaurate. A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant solution comprising one of chloroauric acid, hydrochloric acid, nitric acid, and potassium tetrabromoaurate, so as to increase the conductance of the conductor element to a desired value.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: August 19, 2014
    Assignee: Northrop Grumman Systems Corporation
    Inventors: John A. Starkovich, Edward M. Silverman, Hsiao-Hu Peng
  • Publication number: 20140212771
    Abstract: The present invention relates to an electrode material for an electrical cell comprising activated carbon fibers as component (A) which have been impregnated with elemental sulfur as component (B). The present invention further relates to rechargeable electrical cells comprising at least one electrode which has been produced from or using the inventive electrode material and to a process for producing said inventive electrode material.
    Type: Application
    Filed: August 14, 2012
    Publication date: July 31, 2014
    Applicant: BASF SE
    Inventors: Arnd Garsuch, Alexander Panchenko, Doron Aurbach, Ran Elazari, Gregory Salitra
  • Publication number: 20140209833
    Abstract: The present invention aims at: providing an accelerated reaction in a liquid-phase reaction; forming, by way of the reaction, a metal oxide nanoparticle and carbon that carries the metal oxide nanoparticle in a highly dispersed state; and providing an electrode containing the carbon and an electrochemical device using the electrode. In order to solve the above-mentioned problem, shear stress and centrifugal force are applied to the reactant in the rotating reactor so that an accelerated chemical reaction is attained in the course of the reaction. Further, the carbon carrying a metal oxide nanoparticle in a highly dispersed state comprises: a metal oxide nanoparticle produced by the accelerated chemical reaction, wherein shear stress and centrifugal force are applied to a reactant in a rotating reactor in the course of the reaction; and carbon dispersed in the rotating reactor by applying shear stress and centrifugal force.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 31, 2014
    Applicant: Nippon Chemi-Con Corporation
    Inventors: Katsuhiko NAOI, Nobuhiro OGIHARA, Shuichi ISHIMOTO
  • Publication number: 20140205905
    Abstract: An electrode material for use in an electrochemical cell, like a lithium-ion battery, is provided. The electrode material may be a negative electrode comprising graphite, silicon, silicon-alloys, or tin-alloys, for example. By avoiding deposition of transition metals, the battery substantially avoids charge capacity fade during operation. The surface coating is particularly useful with negative electrodes to minimize or prevent deposition of transition metals thereon in the electrochemical cell. The coating has a thickness of less than or equal to about 40 nm. Methods for making such materials and using such coatings to minimize transition metal deposition in electrochemical cells are likewise provided.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 24, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Junghyun Kim, Zhongyi Liu
  • Publication number: 20140205902
    Abstract: Aspects of the invention are directed to a method for forming a hybrid structure. Initially, a wire is received and an encapsulating film is deposited on the wire. Subsequently, the wire is selectively removed to leave a hollow tube formed of the encapsulating film. A plurality of active particles are then placed into the hollow tube by immersing the hollow tube in a suspension comprising the plurality of active particles and a liquid. Lastly, the hollow tube and the plurality of active particles therein are removed from the suspension and allowed to dry so as to form a cluster of active particles at least partially encapsulated by the encapsulating film.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: BLUESTONE GLOBAL TECH LIMITED
    Inventors: Xin Zhao, Xuesong Li, Yu-Ming Lin
  • Publication number: 20140186695
    Abstract: In one aspect, a method of producing a sulfur-infused carbonaceous material as a cathode material for use in a Li—S battery is described, including providing a carbonaceous material; mixing elemental sulfur with the carbonaceous material; and heating the mixed sulfur and the carbonaceous material at a temperature from about 445° C. to about 1000° C. for a period of time and under a pressure greater than 1 atm to generate a sulfur vapor to infuse the carbonaceous material to result in a sulfur-infused carbonaceous material. In another aspect, a reactor for producing a sulfur-infused carbonaceous material as a cathode material for use in a Li—S battery is described, including a reactor body capable of withstanding a pressure from about 1 atm to about 150 atm; and an inner sulfur-resistant layer at the inner surface of the reactor, wherein the inner layer is inert to sulfur vapor at a temperature from about 450° C. to about 1000° C.
    Type: Application
    Filed: November 19, 2013
    Publication date: July 3, 2014
    Applicant: NANOPARTICLE ORGANIC HYBRID MATERIALS (NOHMS)
    Inventors: Surya S. MOGANTY, Jayaprakash NAVANEEDHAKRISHNAN, Jonathan LEE, Richard DELMERICO, Nathan BALL
  • Publication number: 20140182468
    Abstract: A carbon fiber roller core coated or covered with an outer nylon or outer chrome surface for use in a printing press, and a method of making and the method of using same are disclosed. The advantages of a light weight roller for shipment, handling and roller replacement are provided. Also the desired nylon or chrome surface for use in the printing press, such as the press inking or water system is also provided.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Inventors: Joe Kelly Williams, Michael Piontek
  • Publication number: 20140186522
    Abstract: Disclosed is method of fabricating sulfur-infiltrated mesoporous conductive nanocomposites for a cathode of a lithium-sulfur secondary battery, whereby a cathode material having a relatively high content of sulfur is fabricated and a high energy density in a lithium-sulfur secondary battery is realized, including: a) performing thermal treatment on sulfur particles in a reactor at a high temperature to melt the sulfur particles; b) adding a mesoporous conductive material in macroscale to a sulfur solution in the reactor; c) pressurizing the mesoporous conductive material in macroscale in the reactor so that the mesoporous conductive material in macroscale is completely immersed in the sulfur solution, and then maintaining the pressurized and molten state; d) cooling the sulfur particles and the mesoporous conductive material in macroscale so that sulfur within pores of the mesoporous conductive material in macroscale is crystallized; and e) grinding sulfur-infiltrated mesoporous conductive composites to fabri
    Type: Application
    Filed: November 21, 2013
    Publication date: July 3, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Hee Jin Woo, Hee Yeon Ryu
  • Publication number: 20140178759
    Abstract: A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 26, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventor: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
  • Publication number: 20140160630
    Abstract: Disclosed is a free-standing hybrid nanomembrane capable of energy storage. The free-standing hybrid nanomembrane includes carbon nanotube sheets and a conducting polymer coated on the carbon nanotube sheets. The carbon nanotube sheets are densified sheets formed by evaporating an alcohol from carbon nanotube aerogel sheets. The conducting polymer is coated on the carbon nanotube sheets by vapor phase polymerization. Further disclosed is a method for fabricating the free-standing hybrid nanomembrane.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventor: IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
  • Publication number: 20140151111
    Abstract: Carbon nanostructures can convey enhanced electrical conductivity to various substrates, while maintaining a high surface area and low density per unit area. Such substrates can provide good shielding against electromagnetic radiation over a wide range of frequencies. Electrically conductive structures can include a support layer containing a plurality of fibers having apertures defined between the fibers, and a plurality of carbon nanostructures at least partially conformally coating the fibers and bridging across the apertures defined between adjacent fibers to form a continuous carbon nanostructure layer. Each carbon nanostructure can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another.
    Type: Application
    Filed: November 25, 2013
    Publication date: June 5, 2014
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. Shah, Han Liu, Jess Michael Goldfinger, John J. Morber
  • Publication number: 20140151219
    Abstract: The silver electrode coated with carbon nanotubes is an indicator electrode for microtitrimetry by differential electrolytic potentiometry. The electrode is made by first positioning at least one silver wire electrode within a reaction zone of a floating catalyst chemical vapor deposition reactor. A ferrocene catalyst is evaporated within the floating catalyst chemical vapor deposition reactor, and an inlet gas is fed therein to carry the evaporated ferrocene catalyst into the reaction zone. The inlet gas includes hydrogen and a carbon source, such as acetylene. The reaction zone is then heated for deposition of carbon onto the at least one silver electrode to form at least one silver electrode coated with carbon nanotubes. The electrode is cooled and then removed from the reactor.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: ABDALLA M. ABULKIBASH, MOATAZ ALI ATEIEH, ABDULAZIZ NABIL AMRO
  • Patent number: 8741395
    Abstract: An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: June 3, 2014
    Assignees: UT-Battelle, LLC, Remaxco Technologies, LLC
    Inventors: Felix L. Paulauskas, Daniel M. Sherman
  • Publication number: 20140147675
    Abstract: An approach is provided for a structure and a method for a graphene-based apparatus. The method comprises acts of forming a graphene layer on a metal layer; forming a protective layer on the graphene layer that makes the graphene layer disposed between the metal layer and the protective layer; transferring the protective layer with the graphene layer and the metal layer onto a substrate; removing the metal layer off from the graphene layer; and forming a conducting layer on the graphene layer. Accordingly, the proposed structure of the graphene-based apparatus is able to prevent graphene damage during the transferring, and because of he use of the protective layer in the structure, the roller can be used to apply the stress which enables roll-to-roll type process and significantly improves the manufacturing throughput.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: HCGT LTD.
    Inventors: Shu-Jen Han, Qing Cao
  • Publication number: 20140134492
    Abstract: Disclosed is a non-aqueous electrolyte secondary cell excellent in capacity retention rate and I-V characteristics after repeated cycles. The secondary cell contains a negative electrode active material containing scaly graphite particles and coated graphite particles. The coated graphite particles contain graphite particles and a coating layer coating the surfaces of the graphite particles. The coating layer contains amorphous carbon particles and an amorphous carbon layer. It is preferable that the negative electrode active material contain 1 to 6% by mass of the scaly graphite particles and that the graphite particles, the amorphous carbon particles, and the amorphous carbon layer be in a mass ratio of 100:?:? where 1???10, 1???10, and ??1.34?.
    Type: Application
    Filed: June 25, 2012
    Publication date: May 15, 2014
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Shinichi Yamami, Shingo Tode, Toyoki Fujihara, Toshiyuki Nohma
  • Publication number: 20140131201
    Abstract: The invention relates to a process of making ammonia gas indicator, using single wall carbon nanotubes (SWCNTs)/alumina (Al2O3) composite thick film, comprising the steps of (a) preparing a nanoporous SWCNTs/Al2O3 composite thick film of thickness in the range of 60 to 65?m prepared by sol-gel process; (b) curing the film at a temperature in the range of 450° C. to 500° C. for a time period in the range 0.5 to 2 hour to obtain a cured sample; (c) providing thick film planar electrodes of Ag—Pd paste on same side of the cured sample by screen printing; and (d) heat treating the resultant cured sample with electrodes at a temperature in the range of 800° C. to 850° C. for a time period in the range of 0.5 to 2 hours to obtain a gas indicator.
    Type: Application
    Filed: October 10, 2013
    Publication date: May 15, 2014
    Applicants: Jamia Millia Islamia, Department of Electronics & Information Technology
    Inventors: Prabhash Mishra, Saikh Saiful Islam, Kamalendu Sengupta
  • Publication number: 20140127488
    Abstract: A graphene oxide-coated graphitic foil, composed of a graphitic substrate or core layer having two opposed primary surfaces and at least a graphene oxide coating layer deposited on at least one of the two primary surfaces, wherein the graphitic substrate layer has a thickness preferably from 0.34 nm to 1 mm, and the graphene oxide coating layer has a thickness preferably from 0.5 nm to 1 mm and an oxygen content of 0.01%-40% by weight based on the total graphene oxide weight. The graphitic substrate layer may be preferably selected from flexible graphite foil, graphene film, graphene paper, graphite particle paper, carbon-carbon composite film, carbon nano-fiber paper, or carbon nano-tube paper. This graphene oxide-coated laminate exhibits a combination of exceptional thermal conductivity, electrical conductivity, mechanical strength, surface smoothness, surface hardness, and scratch resistance unmatched by any thin-film material of comparable thickness range.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Inventors: Aruna Zhamu, Mingchao Wang, Wei Xiong, Bor Z. Jang
  • Publication number: 20140127584
    Abstract: Graphene-carbon nanotube multi-stack three-dimensional architectures (graphene-CNT stacks) are formed by a “popcorn-like” growth method, in which carbon nanotubes are grown throughout the architecture in a continuous step. Alternating layers of graphene and a transition metal are grown by a vapor deposition process. The metal is fragmented and etched to form an array of catalytic sites. Carbon nanotubes grow from the catalytic sites in a vapor-solid-liquid process. The graphene-CNT stacks have applications in electrical energy storage devices, such as supercapacitors and batteries. The directly grown carbon nanotube array between graphene layers provides ease of ion diffusion and electron transfer, in addition to being an active material, spacer and electron pathway.
    Type: Application
    Filed: September 6, 2013
    Publication date: May 8, 2014
    Applicant: THE TRUSTEES OF THE STEVENS INSTITUTE OF TECHNOLOG
    Inventors: Youn-su Kim, Kitu Kumar, Eui-Kyeok Yang, Frank Fisher
  • Publication number: 20140106215
    Abstract: A lithium ion battery includes a positive electrode comprising carbon fibers, a binder composition with conductive carbon, and a lithium rich composition. The lithium rich composition comprises at least one selected from the group consisting of Li1+x(My MzII MwIII)O2 where x+y+z=1, and xLi2MnO3(1?x)LiMO2, where x=0.2-0.7, and where M, MII and MIII are interchangeably manganese, nickel and cobalt, and LiM2?xMxIIO4 , where M and MII are manganese and nickel, respectively, with x=0.5. A negative electrode comprises carbon fibers having bound thereto silicon nanoparticles, and a mesophase pitch derived carbon binder between the silicon nanoparticles and the carbon fibers. An electrolyte is interposed between the positive electrode and the negative electrode. Methods of making positive and negative electrodes are also disclosed.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: UT-BATTELLE, LLC
    Inventor: UT-BATTELLE, LLC
  • Publication number: 20140093728
    Abstract: A carbon nanostructure that is free of a growth substrate can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another. The carbon nanostructure can be released from a growth substrate in the form of a flake material. Optionally, the carbon nanotubes of the carbon nanostructure can be coated, such as with a polymer, or a filler material can be present within the porosity of the carbon nanostructure. Methods for forming a carbon nanostructure that is free of a growth substrate can include providing a carbon nanostructure adhered to a growth substrate, and removing the carbon nanostructure from the growth substrate to form a carbon nanostructure that is free of the growth substrate. Various techniques can be used to affect removal of the carbon nanostructure from the growth substrate. Isolation of the carbon nanostructure can further employ various wet and/or dry separation techniques.
    Type: Application
    Filed: September 24, 2013
    Publication date: April 3, 2014
    Applicant: Applied Nanostructured Solutions, LLC
    Inventors: Tushar K. SHAH, Harry Charles Malecki, Rajneeta Rachel Basantkumar, Han Liu, Corey Adam Fleischer, Joseph J. Sedlak, Jigar M. Patel, William Patrick Burgess, Jess Michael Goldfinger
  • Patent number: 8683798
    Abstract: Embodiments of a product such as a stimuli-responsive product can comprise a shape memory component and a nanofiber component that forms a fibrous microstructure or network. The resulting product can be responsive to stimuli, such as electrical stimuli, in a manner that cause the product to deform, deflect, and rebound. In one embodiment, the product can comprise an epoxy and a continuous non-woven nanofiber, the combination of which provides a product with enhanced actuation speed.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 1, 2014
    Assignee: Syracuse University
    Inventors: Patrick Mather, Xiaofan Luo
  • Patent number: 8685160
    Abstract: Provided is a fullerene thin wires-attached substrate in which fullerene thin wires are vertically aligned relative to the surface of the substrate and which is applicable to catalysts, column materials, chemical synthesis templates, field emission devices, field effect transistors, photonic crystals, etc.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: April 1, 2014
    Assignee: National Institute for Materials Science
    Inventors: Cha Seung, II, Kunichi Miyazawa, Jedeok Kim
  • Publication number: 20140087258
    Abstract: A cathode material for a lithium secondary battery, including fibrous carbon and a plurality of cathode active material particles bonded to a surface of the fibrous carbon. The cathode active material particles are composed of olivine-type LiMPO4 where M represents one or more kinds of elements selected from Fe, Mn, Ni, and Co. Also disclosed is a method of producing the cathode material and a lithium secondary battery.
    Type: Application
    Filed: April 25, 2012
    Publication date: March 27, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Isao Kabe, Gaku Oriji, Akihisa Tonegawa
  • Publication number: 20140080378
    Abstract: In one embodiment, a bulk carbon nanotube and metallic composite is provided. The bulk carbon nanotube and metallic composite includes a bulk carbon nanotube material layer including a plurality of carbon nanotubes, and a metal film applied across the bulk carbon nanotube material layer. The metal film penetrates into the interstices between individual carbon nanotubes to reduce an electrical resistance between the plurality of carbon nanotubes.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 20, 2014
    Inventor: James Antoni Wasynczuk
  • Publication number: 20140072723
    Abstract: A method for making carbon nanotube composite film is provided. An original carbon nanotube film includes carbon nanotubes joined end to end by van der Waals attractive force. The carbon nanotubes substantially extend along a first direction. A patterned carbon nanotube film is formed by patterning the original carbon nanotube film to define at least one row of through holes arranged in the original carbon nanotube film along the first direction. Each row of through holes includes at least two spaced though holes. The patterned carbon nanotube film is treated with a polymer solution. The patterned carbon nanotube film is shrunk into the carbon nanotube composite film.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 13, 2014
    Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
    Inventors: CHEN FENG, LI QIAN, YU-QUAN WANG