Optical Fiber, Rod, Filament, Or Waveguide Patents (Class 427/163.2)
  • Publication number: 20100260455
    Abstract: The invention relates to optical guides and more precisely to guides for conveying an image without deforming the same. These guides can particularly be used in the production of ocular-vision optical systems more currently named informative spectacles. The optical guide includes an extraction section made of reflective microstructures at the surface of the guide. The microstructures define prisms having a calculated angle in order to send back the light beam at a given angle relative to the opposite surface enabling the exit thereof from the guide. Advantageously, the cut and the arrangement of said microstructures make them invisible to the eye while generating a large and comfortable image.
    Type: Application
    Filed: December 11, 2008
    Publication date: October 14, 2010
    Inventors: Benoit Pascal, Dubroca Guilhem, Sarayeddine Khaled
  • Publication number: 20100260462
    Abstract: A method for making a waveguide comprises (a) providing a waveguide structure comprising a substrate (22), a lower cladding (20) layer on the substrate, and a core layer (24) comprising silicon nitride, amorphous silicon, or amorphous silicon-germanium alloy on the lower cladding layer; (b) patterning the core layer; and (c) annealing (28) the waveguide structure.
    Type: Application
    Filed: November 21, 2008
    Publication date: October 14, 2010
    Inventors: Jun-Ying Zhang, Terry L. Smith, Barry J. Koch, Yasha Yi
  • Publication number: 20100260930
    Abstract: A detachable framework used for winding optical fiber coils and a method of producing optical fiber coils with this framework. A framework with a suitable structure is designed considering comprehensively three factors, i.e., the window ratio of an optical fiber coil, the precision of an optical fiber gyro and the easy detachment of the framework from the optical fiber coil. A surface treatment with the framework is performed by coating a layer of thermosol on the surface of the framework so the optical fiber coil can be easily detached from the framework after curing. The required length of optical fiber is winded around the optical fiber coil framework, accompanying with vacuum pressure impregnating with curing adhesive after winding and optical fiber coil curing subsequently. The framework is taken off from the optical fiber coil under the heating circumstances, thereby completing production of the non-framework optical fiber coil.
    Type: Application
    Filed: February 6, 2009
    Publication date: October 14, 2010
    Applicant: Beijing Aerospace Times Optical-Electronic Technology Co., Ltd.
    Inventors: Wei Wang, Jing Li, Qingsheng Yang, Xuefeng Wang, Jinquan Tan
  • Publication number: 20100239209
    Abstract: A fiber-optic coupler packaging including an internal encapsulation for encapsulating a fiber-optic coupler, the refraction index of the internal encapsulation is smaller than the refraction index of the fiber-optic coupler, and an external encapsulation, for encapsulating the internal encapsulation, the refraction index of the external encapsulation is greater than the refraction index of the internal encapsulation, the internal encapsulation and the external encapsulation are substantially transparent to the range of wavelengths of the light traveling inside the fiber-optic coupler.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 23, 2010
    Applicant: V-GEN LTD.
    Inventor: Eran INBAR
  • Patent number: 7783151
    Abstract: A method for fabricating a distributed Bragg reflector waveguide is disclosed, which includes forming a first distributed Bragg reflector on a substrate; forming a sacrificial pattern on the first distributed Bragg reflector; forming a second distributed Bragg reflector on the sacrificial pattern and the first distributed Bragg reflector; and removing the sacrificial pattern. A distributed Bragg reflector waveguide is also disclosed.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: August 24, 2010
    Assignee: National Central University
    Inventors: Chii-Chang Chen, Hua-Kung Chiu
  • Publication number: 20100200757
    Abstract: Transparent optical ceramic coating materials have been fabricated from europium-doped lutetium oxide (Lu2O3:Eu) using physical vapor deposition and chemical vapor deposition techniques. The non-pixilated film coatings have columnar microcrystalline structure and excellent properties for use as radiological scintillators, namely very high density, high effective atomic number, and light output and emission wavelength suitable for use with silicon-based detectors having a very high quantum efficiency. The materials can be used in a multitude of high speed and high resolution imaging applications, including x-ray imaging in medicine.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 12, 2010
    Inventors: Vinod K. Sarin, Stephen Gibson Topping
  • Publication number: 20100196588
    Abstract: A method of manufacturing a multi-layer structure is provided. The method may include forming a waveguide on a substrate; forming a light coupling arrangement in the waveguide, wherein the light coupling arrangement is substantially non-wavelength selective; forming at least one light source above the waveguide; and forming at least one photo detector above the waveguide. The at least one light source, the at least one photo detector and the waveguide comprise organic material. The waveguide, the light coupling arrangement, the at least one light source and the at least one photo detector are monolithically integrated.
    Type: Application
    Filed: February 3, 2009
    Publication date: August 5, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventors: Ieng Kin Lao, Visit Thaveeprungsriporn
  • Publication number: 20100196595
    Abstract: An apparatus for coloring optical fibers, includes: a first reservoir for containing a natural coating material to be applied onto an optical fiber being drawn; a second reservoir for containing a colorant to be mixed with the natural coating material; a mixer in fluid communication with the first and second reservoirs to receive a first flow of natural coating material and a second flow of colorant and to mix the first and second flows to obtain a colored coating material; a coating die in fluid communication with the mixer to receive the flow of colored coating material and to apply it onto the optical fiber being drawn.
    Type: Application
    Filed: August 1, 2007
    Publication date: August 5, 2010
    Inventors: Silvio Frigerio, Lidia Terruzzi, Giovanni Villani, Corrado Castoldi
  • Publication number: 20100195194
    Abstract: A large-mode-area (LMA) optical fiber (10) that operates as a single-mode optical fiber. The optical fiber includes a core region (20) surrounded by an inner cladding (32), which in turn is surrounded by an outer cladding (40). The inner cladding includes at least one up-doped ring region (32R1). The ring region is configured to form a large attenuation differential between the higher-order modes and the fundamental mode so only that the fundamental mode remains traveling in the optical fiber. If necessary, the optical fiber can include a bend (10B) having a select “resonant” bend diameter (DB) that increases the relative attenuation of the fundamental and higher-order modes. The optical fiber supports an effective mode field diameter (MFD) of up to 40 ?m to 50 ?m. As a result, detrimental non-linear effects are suppressed, which allows the optical fiber to carry substantially more optical power than conventional LMA optical fibers.
    Type: Application
    Filed: July 16, 2008
    Publication date: August 5, 2010
    Inventors: Xin Chen, Joohyun Koh, Ming-Jun Li, Anping Liu
  • Patent number: 7769264
    Abstract: An optical waveguide includes: a core portion through which light propagates; a cladding portion enclosing the core portion along a direction of light propagation, and a colored resin for position recognition marking, the optical waveguide having substantially planar outer surfaces including principal surfaces thereof, and the colored resin being embedded in the optical waveguide at a position that does not substantially overlap the core portion when viewed from a direction perpendicular to a principal surface of the optical waveguide and does not substantially contact the core portion.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: August 3, 2010
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Toshihiko Suzuki, Keishi Shimizu, Akira Fujii, Kazutoshi Yatsuda, Masahiro Igusa, Shigemi Ohtsu
  • Publication number: 20100189928
    Abstract: A method for manufacturing an optical fiber preform includes the steps of depositing an inner cladding and a central core inside a fluorine doped silica tube and thereafter collapsing the silica tube to form a primary preform. The fluorine doped silica tube has a cross section area that is no more than about 15 percent smaller than the cross section area of the resulting primary preform. The present method facilitates reduced-cost manufacturing of a high-capacity optical fiber preform, which may be drawn to produce an optical fiber having reduced transmission losses.
    Type: Application
    Filed: April 12, 2010
    Publication date: July 29, 2010
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Cedric Gonnet, Elise Regnier, Frans Gooijer, Pascale Nouchi
  • Publication number: 20100187105
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: September 9, 2009
    Publication date: July 29, 2010
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
  • Patent number: 7747386
    Abstract: A collision detection sensor for detecting a collision of a vehicle and a collision object by converting the collision into a change in optical transmission characteristics of an optical fiber. The collision detection sensor has the optical fiber, a molding material formed on the periphery of the optical fiber, and a convex portion formed on the surface of the molding material.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: June 29, 2010
    Assignees: Hitachi Cable, Ltd., Denso Corporation
    Inventors: Yasuyuki Hishida, Hisashi Sato, Akira Suzuki, Shigenori Kobayashi, Hiroyuki Takahashi
  • Publication number: 20100158430
    Abstract: At least part of an optical device comprises an optical waveguide of a magneto-optical material. The magneto-optical material comprises a polycrystalline material having no lattice matching with an underlayer material. The optical waveguide exhibits no magnetic anisotropy due to an inverse magnetostriction effect caused by thermal strain. The magnetization direction of the optical waveguide is aligned with a traveling direction of light passing through the waveguide by shape magnetic anisotropy.
    Type: Application
    Filed: July 11, 2008
    Publication date: June 24, 2010
    Inventors: Masafumi Nakada, Takanori Shimizu
  • Publication number: 20100150510
    Abstract: The present invention provides a flexible optical waveguide in which at least one of a lower cladding layer, a core layer, and an upper cladding layer is composed of an epoxy film formed using an epoxy resin composition containing a polyglycidyl compound having a polyalkylene glycol chain(s) and at least two glycidyl groups or an epoxy film having a glass transition temperature (Tg) of 100° C. or lower, a process for its production, and an epoxy resin composition for flexible optical waveguides.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 17, 2010
    Inventors: Shimpei Sato, Kozo Tajiri, Yoko Matsui, Tomomi Makino
  • Publication number: 20100142033
    Abstract: Disclosed is an optical fiber that includes a central core that is suitable for transmitting and amplifying an optical signal and an inner optical cladding that is suitable for confining the optical signal transmitted within the central core. The central core is formed from a core matrix that contains silica-based nanoparticles doped with at least one rare earth element. The disclosed optical fiber can be used with limited optical losses even in an environment with strong ionizing radiation.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 10, 2010
    Applicant: DRAKA COMTEQ, B.V.
    Inventors: Elise Regnier, Alain Pastouret, Ekaterina Burov
  • Publication number: 20100135627
    Abstract: Disclosed is an amplifying optical fiber that includes a central core that is suitable for transmitting and amplifying an optical signal and a surrounding optical cladding that is suitable for confining the optical signal transmitted in the central core. The central core is formed from a main matrix that contains nanoparticles doped with at least one rare earth element. The weight concentration of the rare earth dopants in the nanoparticles is typically between about 1 and 20 percent, and the nanoparticle concentration in the central core's main matrix is between about 0.05 percent and 1 percent by volume. The disclosed optical fiber incorporates rare earth ions at high concentrations yet avoids the phenomenon of photodarkening at high transmission power.
    Type: Application
    Filed: December 2, 2009
    Publication date: June 3, 2010
    Applicant: DRAKA COMTEQ, B.V.
    Inventors: Alain Pastouret, Cedric Gonnet, Ekaterina Burov
  • Patent number: 7713767
    Abstract: A method of making a circuitized substrate (e.g., PCB) including at least one and possibly several internal optical pathways as part thereof such that the resulting substrate will be capable of transmitting and/or receiving both electrical and optical signals. The method involves forming at least one opening between a side of the optical core and an adjacent upstanding member such that the opening is defined by at least one angular sidewall. Light passing through the optical core material (or into the core from above) is reflected off this angular sidewall. The medium (e.g., air) within the opening thus also serves as a reflecting medium due to its own reflective index in comparison to that of the adjacent optical core material. The method utilizes many processes used in conventional PCB manufacturing, thereby keeping costs to a minimum.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: May 11, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Benson Chan, How T. Lin, Roy H. Magnuson, Voya R. Markovich, Mark D. Poliks
  • Publication number: 20100098113
    Abstract: The specification describes a method for selectively depositing carbon nanotubes on the end face of an optical fiber. The end face of the optical fiber is exposed to a dispersion of carbon nanotubes while light is propagated through the optical fiber. Carbon nanotubes deposit selectively on the light emitting core of the optical fiber.
    Type: Application
    Filed: October 27, 2006
    Publication date: April 22, 2010
    Inventor: Jeffrey Nicholson
  • Patent number: 7702206
    Abstract: An optical waveguide includes: a center layer including at least two core layers whose edges are on substantially the same plane, and a first cladding layer provided between adjacent core layers; and a second cladding layer provided at least on both of front and rear surfaces of the center layer. At least surfaces of the core layer and the first cladding layer that are in contact with the second cladding layer include at least one resin selected from the group consisting of a resin having a hydroxyl group and a resin containing a silicon-silicon bond at a main chain thereof, and the second cladding layer includes a silicone resin.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 20, 2010
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Masahiro Igusa, Akira Fujii, Toshihiko Suzuki, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Publication number: 20100080521
    Abstract: Polymer-coated transmission media having water-blocking material embedded in the outer surface of the transmission media prevents water penetration into the transmission media and reduces the overall diameter of a cable made from the transmission media by eliminating a water-blocking tape layer in the cable. The outer surface of the transmission media is a polymer whose outer surface is embedded with a water-blocking material. The water-blocking material is applied before the polymer is cured. The transmission media may be any known type of optical media, which guides a light within the optical media. In various embodiments, optical fibers, buffered optical fibers and fiber ribbons are used as the transmission media.
    Type: Application
    Filed: April 16, 2009
    Publication date: April 1, 2010
    Applicant: OFS FITEL, LLC
    Inventors: Daniel Bardroff, Stefan Jost, Georg Koebler, Jason Pedder, Karl Uhl, Peter A. Weimann
  • Publication number: 20100081554
    Abstract: A known method for producing a hollow cylinder of synthetic quartz glass comprises the steps of: (a) providing an inner tube of synthetic quartz glass having an inner bore defined by an inner wall, (b) cladding the inner tube (3?) with an SiO2 soot layer (4?), and (c) sintering the SiO2 soot layer with formation of the hollow cylinder. Starting therefrom, to indicate a method in which on the one hand the sintering process is completed before the hollow cylinder is further processed together with the core rod, and in which on the other hand a complicated machining of the inner bore of the hollow cylinder of quartz glass is not required, the invention suggests that during sintering the surface temperature of the inner wall of the inner tube should be kept below the softening temperature.
    Type: Application
    Filed: December 13, 2007
    Publication date: April 1, 2010
    Inventor: Michael Huenermann
  • Publication number: 20100040337
    Abstract: An optical waveguide includes: a core portion through which light propagates, a cladding portion enclosing the core portion along a direction of light propagation, and a colored resin for position recognition marking, the optical waveguide having substantially planar outer surfaces including principal surfaces thereof, and the colored resin being embedded in the optical waveguide at a position that does not substantially overlap the core portion when viewed from a direction perpendicular to a principal surface of the optical waveguide and does not substantially contact the core portion.
    Type: Application
    Filed: February 2, 2009
    Publication date: February 18, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Toshihiko SUZUKI, Keishi SHIMIZU, Akira FUJII, Kazutoshi YATSUDA, Masahiro IGUSA, Shigemi OHTSU
  • Publication number: 20100032853
    Abstract: A method for manufacturing an optical waveguide includes: step A of forming a first resin layer 23 by allowing a first liquid-state resin to flow to be extended in a manner so as to bury and enclose cores 22; step B of forming a second resin layer 25 by allowing a second liquid-state resin having a viscosity higher than that of the first liquid-state resin to flow to be extended on the first resin layer 23, after or while the first resin layer is heated; and step C of forming an over-cladding layer by curing the first resin layer 23 and the second resin layer 25.
    Type: Application
    Filed: June 12, 2009
    Publication date: February 11, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventor: Ryusuke Naitou
  • Publication number: 20100014808
    Abstract: The present invention provides a hybrid dielectric/SPP waveguide that can form either a single mode, single polarization waveguide, or a multi-mode waveguide. When multi-mode, this invention effectively transfers energy back and forth between the dielectric waveguide and metal surface. This improves on standard SPP modes, yielding longer range propagation along with high intensity near the metal surface at decisive locations. When single-mode, this hybrid waveguide allows for control of propagation and confinement for applications such as telecommunications optics integrated on silicon microchips. Gratings may be patterned in the metal for coupling light into and out of the modes or for use as mirrors in the mode. For areas where very long ranges are required, a metal grating may be used to couple light into the mode, but then the metal may be removed in other regions and make the range of the mode virtually infinite (limited by surface roughness).
    Type: Application
    Filed: June 5, 2009
    Publication date: January 21, 2010
    Applicant: Colorado School of Mines
    Inventor: P. David Flammer
  • Publication number: 20100014799
    Abstract: An optical structure can include a nanocrystal on a surface of an optical waveguide in a manner to couple the nanocrystal to the optical field of light propagating through the optical waveguide to generate an emission from the nanocrystal.
    Type: Application
    Filed: May 21, 2007
    Publication date: January 21, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Ioannis Kymissis, Moungi G. Bawendi, Jonathan R. Tischler, Michael Scott Bradley, David Oertel, Jennifer Yu
  • Patent number: 7646956
    Abstract: An optical waveguide sheet that has an auxiliary layer for preventing light transmitted through the waveguide sheet from leaking or being lost and a manufacturing method thereof. The waveguide sheet transmits light from a light emitting element thereinto, and has a reflecting pattern for reflecting light forward. At least one auxiliary layer for providing a total reflection condition for preventing the light from leaking or being lost when the light is transmitted into the waveguide sheet is coated on the waveguide sheet.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: January 12, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Wook Hwao, Chang-Youn Hwang, Young-Ki Kim, Shin-Chul Kang, Ki-Duk Jang
  • Patent number: 7646943
    Abstract: An embodiment relates to an image sensor comprising (a) a optical pipe comprising a core and a cladding, and (b) a pair of photosensitive elements comprising a central photosensitive element and a peripheral photosensitive element, wherein the central photosensitive element is operably coupled to the core and the peripheral photosensitive element is operably coupled to the cladding, and methods of fabricating and using the same. The image sensor could further comprise a lens structure or an optical coupler or an optical coupler over the optical pipe, wherein the lens structure or the optical coupler or the optical coupler is operably coupled to the optical pipe.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: January 12, 2010
    Assignee: Zena Technologies, Inc.
    Inventor: Munib Wober
  • Publication number: 20090324816
    Abstract: Methods for recycling a low permeability gas such as krypton in the consolidation process of optical fiber manufacturing. The low permeability gas is sent to a purification unit or plant before being reutilized in the consolidation process. The low permeability gas can be used to produce holes or voids in a cladding region of an optical fiber preform. Upon drawing the optical preform into an optical fiber, the voids become elongated in the direction of draw.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventor: Paul Andrew Chludzinski
  • Publication number: 20090317042
    Abstract: A rare earth-doped core optical fiber of the present invention includes a core comprising a silica glass containing at least aluminum and ytterbium, and a clad provided around the core and comprising a silica glass having a lower refraction index than that of the core, wherein the core has an aluminum concentration of 2% by mass or more, and ytterbium is doped into the core at such a concentration that the light absorption band which appears around a wavelength of 976 nm in the light absorption band by ytterbium contained in the core shows a peak light absorption rate of 800 dB/m or less.
    Type: Application
    Filed: April 25, 2008
    Publication date: December 24, 2009
    Applicant: FUJIKURA LTD.
    Inventors: Masashi IKEDA, Naritoshi YAMADA, Kuniharu HIMENO, Michihiro NAKAI, Tomoharu KITABAYASHI
  • Patent number: 7629032
    Abstract: A plasma buildup method for building up an optical fiber perform. The method includes the steps of: providing a plasma torch having an outlet nozzle adjacent to a primary perform, wherein an interaction zone is defined between the outlet nozzle and the primary preform; feeding the plasma torch with a plasma-generating gas in the presence of a silica-based material so as to deposit a buildup material on the primary preform; and introducing a reducing element into the interaction zone, the reducing element reacting to induce reduction of the nitrogen oxides produced by interaction between nitrogen and oxygen in the presence of the plasma generated by the torch.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: December 8, 2009
    Assignee: Draka Comteq B.V.
    Inventors: André Appriou, Charles Truchot, Sabine Guina
  • Publication number: 20090297092
    Abstract: The thermo-optic phase shifter (200) according to an exemplary aspect of the invention includes: a substrate (201); a sacrificial layer (202) formed above the substrate (201); a first cladding layer (203) formed above the sacrificial layer (202) and having a film density higher than that of the sacrificial layer (202); an optical waveguide core (204) formed above the first cladding layer (203); a second cladding layer (205) provided over the first cladding layer (203) to cover the optical waveguide core (204); a heat-generating heater (206) provided to a region of the second cladding layer (205) directly above the optical waveguide core (204); and a groove (207) formed in a side face region of the optical waveguide core (204) and extending from the surface of the second cladding layer (205) to the surface of the substrate (201).
    Type: Application
    Filed: October 10, 2007
    Publication date: December 3, 2009
    Inventor: Morio Takahashi
  • Publication number: 20090297722
    Abstract: A method for producing a coated optical fiber may include drawing an optical fiber from a draw furnace along a first vertical pathway. The optical fiber may then be routed through at least one fluid bearing thereby redirecting the optical fiber along a second vertical pathway. Thereafter, a thermoplastic coating may be applied to the optical fiber with a thermoplastic coating system. The optical fiber may then be wound onto a fiber storage spool with a fiber take-up system. The fiber take-up system may be space apart from the thermoplastic coating system such that the thermoplastic coating may be cooled before the optical fiber is wound onto the fiber storage spool.
    Type: Application
    Filed: May 20, 2009
    Publication date: December 3, 2009
    Inventors: James Henry Faler, Bruce Warren Reding, Bradley Kent Shepard, David Andrew Tucker
  • Publication number: 20090274428
    Abstract: According to one example of the invention an optical fiber comprises: (i) a silica based core, said core having a core diameter greater than 80 ?m and a numerical aperture NA?0.24; and (ii) a silica based cladding in contact with and surrounding the core and having a second index of refraction n2, such that n1>n2; wherein the cladding includes B and F. Preferably the numerical aperture NA is at least 0.3.
    Type: Application
    Filed: April 6, 2009
    Publication date: November 5, 2009
    Inventors: Xin Chen, Joohyun Koh, Ming-Jun Li, Anping Liu, Deborah Lynn Marlatt, Ji Wang
  • Publication number: 20090263073
    Abstract: The present invention relates to an optical waveguide film that has a high optical coupling efficiency at a light input portion and an excellent flexibility at least a part of the film. Specifically, the present invention provides an optical waveguide film that has a core and a clad comprising a resin and has a light input portion, wherein there is a portion having a thickness smaller than that of the light input portion. Further, the present invention provides an electrical and optical hybrid film in which an electrical wiring board is joined to the optical waveguide film or an electronic device in which these films are built in.
    Type: Application
    Filed: August 24, 2006
    Publication date: October 22, 2009
    Applicant: Mitsui Chemicals, Inc.
    Inventor: Tsuyoshi Shioda
  • Publication number: 20090238516
    Abstract: Package substrates for optical die structures are generally described. In one example, an apparatus includes a package substrate having one or more plated through hole (PTH) structures, an optical waveguide coupled with the package substrate, the optical waveguide having one or more input/output (I/O) optical signal pathways to route I/O signals to and from the package substrate, and one or more optical fibers coupled with the optical waveguide, the one or more optical fibers being disposed in the PTH structures to route I/O signals to and from a motherboard.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Inventors: Omar J. Bchir, Islam Salama, Charan Gurumurthy, Houssam Jomaa, Ravi Nalla, Yonggang Li
  • Publication number: 20090237375
    Abstract: An apparatus, an optical touch panel, a waveguide, and a process for producing a double layered waveguide structure are provided. The apparatus includes a waveguide having a plurality of transmission waveguide elements and a plurality of reception waveguide elements; a light source coupled to the waveguide; a light detector coupled to the waveguide; and a reflector, spaced apart from the waveguide, the reflector reflecting light emitted from the plurality of transmission waveguide elements towards the reception waveguide elements. The waveguide includes a substrate, a first cladding layer, a reception waveguide, a second cladding layer, a transmission waveguide, and a third cladding layer. The optical touch panel includes a waveguide section comprising a waveguide; a mirror; a surface emitting laser; and a detector.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 24, 2009
    Applicant: NITTO DENKO CORPORATION
    Inventors: Sazzadur Rahman KHAN, Noriyuki JUNI, Visit THAVEEPRUNGSRIPORN
  • Publication number: 20090238963
    Abstract: A process of forming a deflection mirror in a light waveguide with a use of a dicing blade having a cutting end with a flat top cutting face and at least one slanted side cutting face. The process includes a cutting step of cutting a surface of the light waveguide to a depth not greater than a width of the flat top cutting face, thereby forming a groove in the surface of the light waveguide. The groove has a slanted surface which is formed by the slanted cutting face to define the deflection mirror in the waveguide.
    Type: Application
    Filed: June 5, 2009
    Publication date: September 24, 2009
    Inventors: Hiroyuki Yagyu, Tooru Nakashiba, Shinji Hashimoto
  • Publication number: 20090232449
    Abstract: An erbium (Er)-doped silicon (Si) nanocrystalline embedded silicon oxide (SiOx) waveguide and associated fabrication method are presented. The method provides a bottom layer, and forms an Er-doped Si nanocrystalline embedded SiOx film waveguide overlying the bottom layer, having a minimum optical attenuation at about 1540 nanometers (nm). Then, a top layer is formed overlying the Er-doped SiOx film. The Er-doped SiOx film is formed by depositing a silicon rich silicon oxide (SRSO) film using a high density plasma chemical vapor deposition (HDPCVD) process and annealing the SRSO film. After implanting Er+ ions, the Er-doped SiOx film is annealed again. The Er-doped Si nanocrystalline SiOx film includes has a first refractive index (n) in the range of 1.46 to 2.30. The top and bottom layers have a second refractive index, less than the first refractive index.
    Type: Application
    Filed: April 30, 2008
    Publication date: September 17, 2009
    Inventors: Hao Zhang, Pooran Chandra Joshi, Apostolos T. Voutsas
  • Patent number: 7583880
    Abstract: Provided are methods of forming printed circuit boards having optical functionality. The methods involve applying a dry-film to a printed circuit board substrate and forming an optical waveguide over the dry-film. The invention finds particular applicability in the electronics and optoelectronics industries.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 1, 2009
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Edgardo Anzures, Philip D. Knudsen
  • Publication number: 20090214769
    Abstract: Adverse hydrogen aging limitations in multiply-doped optical fibers are overcome by passivating these optical fibers using a deuterium passivation process. This treatment essentially pre-reacts the glass with deuterium so that the most active glass sites are no longer available to react with hydrogen in service. Optical fibers of main interest are doped with mixtures of germanium and phosphorus. Optimum passivating process conditions are described.
    Type: Application
    Filed: September 5, 2008
    Publication date: August 27, 2009
    Inventors: David J. DiGiovanni, Robert Lingle, JR., Michael LuValle, George E. Oulundsen, Durgesh Shivram Vaidya
  • Publication number: 20090208175
    Abstract: A hollow fiber has a hollow tube, a reflecting film formed on an inner wall of the hollow tube, and the reflecting film is a first metal film formed by baking a first metal nano particle solution including a first metal nano particle. The hollow fiber may have a transparent film on the first metal film. The transparent film is formed by baking or chemically reacting from a second metal nano particle included in a second metal nano particle solution.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 20, 2009
    Inventors: Akihito HONGO, Yoshinori Kurosawa, Masahiro Ohkawa, Hiroaki Takamiya
  • Publication number: 20090202713
    Abstract: A method of making a waveguide, the method including depositing discrete units of optical core material in a pattern of the waveguide, and controlling the refractive index of the discrete units such that the refractive index of the waveguide varies along its length.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 13, 2009
    Applicant: XYRATEX TECHNOLOGY LIMITED
    Inventor: Richard Charles Alexander PITWON
  • Patent number: 7566474
    Abstract: The present disclosure relates to a telecommunications cable having a layer constructed to resist post-extrusion shrinkage. The layer includes a plurality of discrete shrinkage-reduction members embedded within a base material. The shrinkage-reduction members can be made of a liquid crystal polymer. The disclosure also relates to a method for manufacturing telecommunications cables having layers adapted to resist post-extrusion shrinkage.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 28, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20090186152
    Abstract: A manufacturing method of light guide plate (LGP) for manufacturing a LGP has a plurality of colloid dot like micro-optical structures on its surface. The method includes the following processes. First, a substrate with an embossing structure is provided. Then, a plurality of colloid dots are formed on a surface of the substrate by jetting. Afterwards, a drying process is performed to convert the colloid dots into the colloid dots like micro-optical structures. Finally, a LGP is manufactured by the manufacturing method.
    Type: Application
    Filed: August 24, 2008
    Publication date: July 23, 2009
    Inventors: Tzeng-Ke Shiau, Ping-Feng Hwang, Wen-Bin Chou
  • Patent number: 7563623
    Abstract: It is an object of the present invention to provide a biosensor on which a large amount of protein can be immobilized and nonspecific adsorption is less likely to occur with the use of a SAM compound having high water solubility and good performance in terms of supply. The present invention provides a biosensor comprising a substrate on which a hydrophilic polymer having a reactive group capable of binding to a physiologically active substance is immobilized via a compound represented by the following formula (1), said compound at a concentration of 1 mM being dissolved in water at 25° C.: X-L-Y??(1) wherein X represents a group capable of binding to metal, L represents a linking group, and Y represents a functional group to which the hydrophilic polymer is bound.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: July 21, 2009
    Assignee: FUJIFILM Corporation
    Inventors: Toshihide Ezoe, Taisei Nishimi, Yukou Saito
  • Publication number: 20090161369
    Abstract: In one aspect, an illumination structure includes a substantially non-fiber waveguide, which itself includes a discrete in-coupling region for receiving light, a discrete propagation region for propagating light, and a discrete out-coupling region for emitting light.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 25, 2009
    Inventors: Keren Regev, Noam Meir, Shalom Luski, Micha Zimmermann
  • Publication number: 20090148597
    Abstract: An apparatus comprising a planar optical waveguide having an optical core and optical cladding next to the optical core. The optical core or cladding includes a plurality of particles therein. Each particle has a nucleus and polymeric molecules permanently bonded to the nucleus to form a shell. A plurality of nuclei are dispersed in said core or cladding.
    Type: Application
    Filed: February 16, 2009
    Publication date: June 11, 2009
    Applicant: Lucent Technologies, Inc.
    Inventors: Christopher Richard Doerr, Ashok Maliakal
  • Patent number: 7541058
    Abstract: A circuitized substrate (e.g., PCB) including an internal optical pathway as part thereof such that the substrate is capable of transmitting and/or receiving both electrical and optical signals. The substrate includes an angular reflector on one of the cladding layers such that optical signals passing through the optical core will impinge on the angled reflecting surfaces of the angular reflector and be reflected up through an opening (including one with optically transparent material therein), e.g., to a second circuitized substrate also having at least one internal optical pathway as part thereof, to thus interconnect the two substrates optically. A method of making the substrate is also provided.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: June 2, 2009
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Benson Chan, How T. Lin, Roy H. Magnuson, Voya R. Markovich, Mark D. Poliks
  • Publication number: 20090136192
    Abstract: A touch panel optical waveguide device which obviates the need for an alignment operation for alignment between light emitting cores of an optical waveguide thereof and light emitting means and alignment between light receiving cores of the optical waveguide thereof and light receiving means, and to provide a production method for the optical waveguide device. A recess (5) is provided in a longitudinally middle portion of an elongated optical waveguide (W) with its wall surfaces defined by end faces of light emitting cores (3), light receiving cores (3) and over-cladding layers (4). A mount member (10) including light emitting means (12) and light receiving means (13) fixed to a single substrate (11) is mounted in the recess (5) so as to achieve alignment between the light emitting cores (3) and the light emitting means (12) and alignment between the light receiving cores (3) and the light receiving means (13).
    Type: Application
    Filed: November 26, 2008
    Publication date: May 28, 2009
    Applicant: NITTO DENKO CORPORATION
    Inventor: Yusuke SHIMIZU