Aluminum, Copper, Or Zinc Particles Patents (Class 427/192)
  • Patent number: 11932943
    Abstract: Various embodiments include a method for producing a structure with a cold gas spraying method comprising: providing a carrier with a carrier surface, to which the structure is to be attached by the cold gas spraying method by following a travel path; and providing an element with an element surface different from the carrier surface. The element is arranged in the travel path and/or the travel path is specified such that intersections of the travel path and/or interruptions of the structure are arranged on the element surface.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: March 19, 2024
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Oliver Stier, Ursus Krüger, Jakob Schneck, Uwe Pyritz, Axel Arndt, Jens Dahl Jensen, Karsten Brach, Hartmut Rauch
  • Patent number: 11118061
    Abstract: An article includes at least one layer including a transparent portion and at least one metal portion; and a color-rendering layer; wherein the at least one metal portion is positioned in the article to provide reflection of incident light; and wherein the transparent portion is dimensioned to allow at least some incident light to pass through. A method of making an article is also disclosed.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 14, 2021
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Kangning Liang, Jaroslaw Zieba, Johannes P. Seydel
  • Patent number: 11110548
    Abstract: A laser deposition apparatus includes a sealed enclosure configured to hold a substrate, a powder source configured to hold a powder material, a peen source configured to hold a shot peen media, and a deposition system fluidly connected to the powder source and the peen source. The deposition system includes a laser configured to generate a laser beam. The deposition system is configured to deposit at least one layer on the substrate by injecting a stream of the powder material into the laser beam. The deposition system is configured to shot peen the at least one layer by propelling the shot peen media onto an exterior surface of the at least one layer.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: September 7, 2021
    Assignee: The Boeing Company
    Inventors: Daniel E. Sievers, Peter J. Bocchini
  • Patent number: 10907257
    Abstract: In a projection material for mechanical plating, a steel particle is used as a core, and the surrounding surface thereof is coated with a zinc alloy in which the content of Al is more than 5% by mass but equal to or less than 16% by mass, the content of Mg is equal to or more than 5.5% by mass but equal to or less than 15% by mass and the remaining portion is Zn and an impurity, and the content of Fe is equal to or more than 3% by mass but equal to or less than 80% by mass. In this way, the corrosion resistance of a zinc-based coating itself formed in mechanical plating is remarkably enhanced without dependence on protective coating formation treatment such as chromate treatment.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: February 2, 2021
    Assignees: DOWA IP CREATION CO., LTD., HONDA MOTOR CO., LTD.
    Inventors: Takashi Fujiwara, Naohisa Okamoto, Kenji Kimura, Tsutomu Miyadera
  • Patent number: 10415141
    Abstract: A process for producing a layer or a body built up of layers. A process gas which has a pressure of >10 bar is accelerated in a convergent-divergent nozzle and a coating material which is formed by particles and is composed of Mo, W, an Mo-based alloy or a W-based alloy is injected into the process gas. The particles are at least partly present as aggregates and/or agglomerates. It is possible to produce dense layers and components in this way. We also describe layers and components having a microstructure with cold-deformed grains having a high aspect ratio.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 17, 2019
    Assignee: Plansee SE
    Inventors: Michael O'Sullivan, Martin Kathrein, Gerhard Leichtfried, Thomas Hosp, Bernhard Lang, Dietmar Sprenger
  • Patent number: 9837278
    Abstract: A semiconductor structure includes a die including a top surface and a sidewall, and a molding surrounding the die and including a top surface, a sidewall interfacing with the sidewall of the die, and a curved surface including a curvature greater than zero and coupling the sidewall of the molding with the top surface of the molding.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: December 5, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Hsiang Hu, Wei-Yu Chen, Hung-Jui Kuo, Wei-Hung Lin, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 9599210
    Abstract: A component of a rotary wing aircraft is provided including a surface configured to contact another component of the rotary wing aircraft such that the surface is susceptible to corrosion and/or pitting. The surface has an area from which a portion of material was removed. A structural deposit is formed by cold spraying one or more layers of powdered material within the area. The structural deposit is configured to carry a load applied to the component.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 21, 2017
    Assignee: SIKORSKY AIRCRAFT CORPORATION
    Inventors: Eric K. Hansen, James Sullivan, Anthony G. Chory, JinKyu Choi, Michael R. Robbins
  • Patent number: 9340862
    Abstract: Disclosed is a thermal spray powder of granulated and sintered cermet particles, which contains tungsten carbide or chromium carbide, and a silicon-containing iron-based alloy. The content of the alloy in the thermal spray powder is preferably 5 to 40% by mass. In this case, the alloy contains silicon in a content of 0.1 to 10% by mass.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 17, 2016
    Assignee: Fujimi Incorporated
    Inventors: Kazuto Sato, Haruhiko Furukawa
  • Patent number: 9242268
    Abstract: Disclosed herein are methods of treating an article surface. The method comprises removing a metal oxide surface from the metal substrate to expose a metal surface; and delivering particles comprising a dopant from at least one fluid jet to the metal surface to impregnate the surface of the article with the dopant. The method also comprises delivering substantially simultaneously a first set of particles comprising a dopant and a second set of particles comprising an abrasive from at least one fluid jet to a surface of an article to impregnate the surface of the article with the dopant.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: January 26, 2016
    Assignee: EnBio Limited
    Inventors: John Gerard O'Donoghue, Donncha Haverty
  • Patent number: 9115421
    Abstract: Provided is a method of nitriding a surface of aluminum or aluminum alloy by cold spraying. That is, a surface of aluminum or aluminum alloy is coated by cold spraying, and then a heat treatment is performed thereon at low temperature for a short time period. Accordingly, the method is suitable for nitriding a surface of Al and Al alloy, which is very difficult to be nitrided, at low production costs. The method includes removing a foreign material from a surface of a mother substrate comprising Al or Al alloy; cold spraying 15 to 50 wt % of a catalyst powder and 50 to 85 wt % of a coating agent powder on the surface of the mother substrate to form a coating layer; and heat treating the coating layer at a temperature of 450 to 630° C. in a nitrogen atmosphere for 2 to 24 hours.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: August 25, 2015
    Assignee: AJOU UNIVERSITY INDUSTRY COOPERATION FOUNDATION
    Inventors: Kyung Hyun Ko, Hyuk Jun Lee
  • Patent number: 9109292
    Abstract: An anti-microbial coated device includes a device sized and configured for use in a microbe-contaminating environment. The device includes a substrate having a surface configured to be exposed in the microbe contaminating environment. A cold-sprayed anti-microbial coating is deposited on at least a portion of the surface of the substrate. The anti-microbial coating includes fused metal particles and having a thickness in a range from 100 nm to 1 mm.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 18, 2015
    Assignee: POLYPROTEC TECHNOLOGIES
    Inventors: Derrick G. Arnold, Jack F. Johnson, Robert J. Robinson, Bradley F. Johnson
  • Patent number: 9005717
    Abstract: Methods for making an environmental barrier coating using a sintering aid involving: applying a bond coat layer to the ceramic component; combining at least an organic solvent and a primary transition material selected from a rare earth disilicate or a doped rare earth disilicate to produce a transition layer slurry; applying at least the transition layer slurry, and optionally an outer layer slurry and/or a compliant layer slurry to the component; and sintering the component to produce the environmental barrier coating. The sintering step causes a reaction between a slurry sintering aid and constituents of at least one of the transition, outer and compliant layers to form a secondary material and reduce porosity in the coating.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell
  • Patent number: 9006296
    Abstract: According to the present invention, a metal nanoparticle dispersion suitable to multiple layered coating by jetting in the form of fine droplets is prepared by dispersing metal nanoparticles having an average particle size of 1 to 100 nm in a dispersion solvent having a boiling point of 80° C. or higher in such a manner that the volume percentage of the dispersion solvent is selected in the range of 55 to 80% by volume and the fluid viscosity (20° C.) of the dispersion is chosen in the range of 2 mPa·s to 30 mPa·s, and then when the dispersion is discharged in the form of fine droplets by inkjet method or the like, the dispersion is concentrated by evaporation of the dispersion solvent in the droplets in the course of flight, coming to be a viscous dispersion which can be applicable to multi-layered coating.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: April 14, 2015
    Assignees: Harima Chemicals, Inc., SIJ Technology, Inc., National Institute of Advanced Industrial Science and Technology
    Inventors: Daisuke Itoh, Akihito Izumitani, Noriaki Hata, Yorishige Matsuba, Kazuhiro Murata, Hiroshi Yokoyama
  • Patent number: 9005482
    Abstract: A paste composition for a rear electrode of a solar cell according to an embodiment comprises conductive powder including a first powder having a first mean particle diameter, a second powder having a second mean particle diameter larger than the first mean particle diameter, and a third powder having a third mean particle diameter larger than the second mean particle diameter, and an organic vehicle.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 14, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sang Gon Kim, In Jae Lee, Soon Gil Kim, Jin Gyeong Park, Sun Mi Lee, Kyoung Hoon Chai
  • Patent number: 8993048
    Abstract: A method generates an abrasive wear-resistant layer on a substrate. The layer is formed of particles of a ductile material, in particular Zn, wherein the parameters of the cold spraying process are set such that a comparatively loose laminate having pores is formed by the spray particles. The laminate advantageously and surprisingly exhibits high resistance to abrasive wear (for example by a particle) because the layer can avoid the attack by the particle by plastic deformation and closure of the pores, whereby abrasive removal of the layer is advantageously low. The cold gas-sprayed layer is used as a protective layer against abrasive wear.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 31, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Axel Arndt, Christian Doye, Oliver Stier, Raymond Ullrich
  • Publication number: 20150064444
    Abstract: Disclosed is a powder paint composition of and a method for preparing the same. More particularly, the present invention relates to a powder paint composition including a powder paint prepared by physically attaching metallic particles to a powder resin, which exhibits no separation or aggregation of metallic particles when coated and significantly improves metallic texture owing to orientation of the metallic particles, and a method for preparing the same.
    Type: Application
    Filed: December 18, 2013
    Publication date: March 5, 2015
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Hwan Oh Kim
  • Publication number: 20140360017
    Abstract: The anticorrosion treatment method of the invention is carried out on the outer surface of an aluminum extruded heat exchange tube which is formed of an Al alloy containing Mn 0.2 to 0.3 mass %, Cu 0.05 mass % or less, and Fe 0.2 mass % or less, and which has a wall thickness of 200 ?m or less. The anticorrosion treatment method includes applying a specific dispersion of a flux powder and a Zn powder onto the outer surface of the heat exchange tube, and vaporizing a liquid component of the dispersion, to thereby deposit the Zn powder and the flux powder on the outer surface of the heat exchange tube, such that the Zn powder deposition amount, the flux powder deposition amount, and the ratio of the flux powder deposition amount to the Zn powder deposition amount are adjusted to specific values.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 11, 2014
    Applicant: KEIHIN THERMAL TECHNOLOGY CORPORATION
    Inventors: Youhei IKAWA, Takashi TERADA, Hiroshi OTSUKI
  • Publication number: 20140339093
    Abstract: The described embodiments relate generally to methods to enhance cosmetic surfaces of friction stir processed parts. More specifically a method for applying cold spray over a weld line generated by the friction stir processing is disclosed. Methods are also disclosed for blending the cold spray applied over the weld line in with a cosmetic surface portion of friction stir processed parts. In some embodiments cold spray can be used to on its own to create a cosmetic join between various parts.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Applicant: Apple Inc.
    Inventors: Simon Regis Louis Lancaster-Larocque, Collin D. Chan, Kenneth A. Ross
  • Patent number: 8883250
    Abstract: In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and comprising a sputtering-target material is provided, the sputtering-target material (i) comprising a metal, (ii) defining a recessed furrow therein, and (iii) having a first grain size and a first crystalline microstructure. A powder is spray-deposited within the furrow to form a layer therein, the layer (i) comprising the metal, (ii) having a second grain size finer than the first grain size, and (iii) having a second crystalline microstructure more random than the first crystalline microstructure. Spray-depositing the powder within the furrow forms a distinct boundary line between the layer and the sputtering-target material.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 11, 2014
    Assignees: H.C. Starck Inc., H.C. Starck GmbH
    Inventors: Steven A. Miller, Prabhat Kumar, Rong-chein Richard Wu, Shuwei Sun, Stefan Zimmermann, Olaf Schmidt-Park
  • Patent number: 8846141
    Abstract: Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: September 30, 2014
    Assignee: aeris CAPITAL Sustainable IP Ltd.
    Inventors: Matthew R. Robinson, Jeroen K. J. Van Duren, Craig Leidholm, Brian M. Sager
  • Patent number: 8802191
    Abstract: Disclosed is a process for the reprocessing or production of a sputter target or an X-ray anode wherein a gas flow forms a gas/powder mixture with a powder of a material chosen from the group consisting of niobium, tantalum, tungsten, molybdenum, titanium, zirconium, mixtures of two or more thereof and alloys thereof with at least two thereof or with other metals, the powder has a particle size of 0.5 to 150 ?m, wherein a supersonic speed is imparted to the gas flow and the jet of supersonic speed is directed on to the surface of the object to be reprocessed or produced.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 12, 2014
    Assignee: H. C. Starck GmbH
    Inventors: Stefan Zimmermann, Uwe Papp, Heinrich Kreye, Tobias Schmidt
  • Patent number: 8728572
    Abstract: A device and method relating to a layer system is provided. A substrate with a multi-layer system disposed on the substrate is provided. The multi-layer system has at least one upper layer and at least one layer. A contact element is applied through cold-gas spraying in such a manner that the contact element penetrates the upper layer and contacts the lower layer. The upper layer of the multi-layer system has a scratch-resistant top-layer.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: May 20, 2014
    Assignees: Interpane Entwicklungs-und Beratungsgesellschaft mbH, GFE Fremat GmbH
    Inventors: Harry Berek, Alexander Paul, Steffen Schmidt, Lothar Herlitze, Hansjoerg Weis, Karl Haeuser
  • Patent number: 8709335
    Abstract: A method of making a sputtering target includes providing a backing structure, and forming a copper indium gallium sputtering target material on the backing structure by cold spraying. The step of cold spraying includes spraying a powder comprising copper, indium and gallium in a process gas stream, and at least one of an average particle size of the powder is at least 35 ?m, a velocity of the process gas stream is at least 150 m/s, or a process gas pressure is 20 bar or less.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: April 29, 2014
    Assignee: Hanergy Holding Group Ltd.
    Inventors: Johannes Vlcek, Daniel R. Juliano
  • Patent number: 8703234
    Abstract: Methods of coating a magnesium substrate are provided along with coated magnesium substrates. A low melting point material is cold sprayed onto a region of the magnesium substrate. A corrosion resistant material or a zinc material is cold sprayed over at least a portion of the low melting point material to form a coated magnesium substrate. The coated magnesium substrate is then heated.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Guangling Song
  • Patent number: 8697184
    Abstract: The present invention relates to a method for producing a coating on a gas turbine component, in which particles at least of parts of a material to be applied as coating are accelerated by means of kinetic gas dynamic cold spraying in a spray jet onto the surface (2) of the component (1) to be coated, wherein a reactive gas is fed into the spray jet (6), so that the reactive gas reacts at least partially with the particles of the coating material when the particles impinge on the surface (2) to be coated and/or wherein the deposited layer (9) is heated locally and/or over a large area and impacted with a reactive gas, as well as a gas turbine component produced in this way.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 15, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Manuel Hertter, Andreas Jakimov, Stefan Schneiderbanger
  • Patent number: 8632860
    Abstract: Disclosed is a method for preparing a multifunctional technical textile that exhibits multiple functional properties comprising flame or fire-retardancy, EMI shielding, anti-odorous property, UV protection, oil-repellency, anti-soiling property, antimicrobial property, anti-creasing property, water-proof, and antistatic property. The method comprises washing a textile product in a water solution comprising water mixed with a predetermined quantity of non-ionic detergent, storing the textile product at a predetermined temperature and a predetermined relative humidity, and subjecting the textile product to plasma treatment by placing the same in a plasma stream within a reaction chamber.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: January 21, 2014
    Inventors: Sheila Shahidi, Mahmood Ghoranneviss
  • Patent number: 8609187
    Abstract: The disclosure provides a method for the production of composite particles utilizing a mechano chemical bonding process following by high energy ball milling on a powder mixture comprised of coating particles, first host particles, and second host particles. The composite particles formed have a grain size of less than one micron with grains generally characterized by a uniformly dispersed coating material and a mix of first material and second material intermetallics. The method disclosed is particularly useful for the fabrication of oxide dispersion strengthened coatings, for example using a powder mixture comprised of Y2O3, Cr, Ni, and Al. This particular powder mixture may be subjected to the MCB process for a period generally less than one hour following by high energy ball milling for a period as short as 2 hours. After application by cold spraying, the composite particles may be heat treated to generate an oxide-dispersion strengthened coating.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 17, 2013
    Assignee: U.S. Department of Energy
    Inventors: Bruce S. Kang, Minking K. Chyu, Mary Anne Alvin, Brian M. Gleeson
  • Patent number: 8568826
    Abstract: A method for brazing a component in a power generation system, the brazed power generation system component, and braze are provided to improve repairing power generation systems. The method includes providing the component having a feature in a surface of the component and coating a particulate material with a filler material to obtain a coated particulate material. The method includes preparing the feature to obtain a treatment area and filling the treatment area in the surface of the component with the coated particulate material. The method includes heating the treatment area and surrounding component to a brazing temperature and applying oxidation protection to the treatment area. After the brazing temperature is obtained, the method includes brazing the treatment area and the screen and cooling the component to obtain a brazed joint.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 29, 2013
    Assignee: General Electric Company
    Inventors: Junyoung Park, Jason Robert Parolini, Ibrahim Ucok, Brian Lee Tollison, Stephen Walcott, Jon Conrad Schaeffer
  • Patent number: 8491959
    Abstract: In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and comprising a sputtering-target material is provided, the sputtering-target material (i) comprising a refractory metal, (ii) defining a recessed furrow therein, and (iii) having a first grain size and a first crystalline microstructure. A powder is spray-deposited within the furrow to form a layer therein, the layer (i) comprising the metal, (ii) having a second grain size finer than the first grain size, and (iii) having a second crystalline microstructure more random than the first crystalline microstructure. Spray-depositing the powder within the furrow forms a distinct boundary line between the layer and the sputtering-target material.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: July 23, 2013
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Olaf Schmidt-Park, Prabhat Kumar, Richard Wu, Shuwei Sun, Stefan Zimmerman
  • Patent number: 8486249
    Abstract: A method for repairing an aluminum part having a worn portion is provided. In one embodiment, the method includes the steps of: (i) producing a first substantially non-porous coating over the worn portion utilizing a cold spray process wherein a powder mixture is propelled against the worn portion of the aluminum part, and (ii) anodizing the aluminum part to grow an aluminum oxide layer overlaying the first substantially non-porous coating. The powder mixture includes aluminum and an alloy media.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: July 16, 2013
    Assignee: Honeywell International Inc.
    Inventors: Bruce Almond, Geoge Golna, Calum Macintyre
  • Patent number: 8470410
    Abstract: A method for producing nanostructured coatings on a substrate, comprising: preparing a nanocrystalline powder of a powder size comprised between 1 and 60 ?m; and combining cleaning the surface of the substrate and cold spraying the nanocrystalline powder on the surface of the substrate, and a system for producing nanocrystalline coatings on a substrate, comprising a spray head, a cleaning head and a handling system monitoring the spray head and the cleaning head relative to the substrate to be coated, the spray head being a first cold spray head, the first cold spray head depositing on the substrate at least one nanocrystalline powder, the cleaning head optimizing the surface being coated with the at least one layer of nanocrystalline powder.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 25, 2013
    Assignees: Institut National de la Recherche Scientifique (INRS), National Research Council Canada
    Inventors: Daniel Guay, Éric Irissou, Jean Gabriel Legoux, Lionel Roué
  • Publication number: 20130142950
    Abstract: The invention relates to a method for generating an abrasive wear-resistant layer (13) on a substrate (11). According to the invention, said layer (13) consists of particles (14) of a ductile material, in particular Zn, wherein the parameters of the cold spraying process are set such that a comparatively loose laminate having pores (15) is formed by the spray particles (14). Said laminate advantageously and surprisingly exhibits high resistance to abrasive wear (for example by a particle (16)) because the layer (13) can avoid the attack by the particle (16) by plastic deformation and closure of the pores (15), whereby abrasive removal of the layer is advantageously low. The invention further relates to a use of a cold gas-sprayed layer as a protective layer against abrasive wear.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 6, 2013
    Inventors: Axel Arndt, Christian Doye, Oliver Stier, Raymond Ullrich
  • Patent number: 8398788
    Abstract: A thin zinc diffusion coating, the diffusion coating including: (a) an iron-based substrate, and (b) a zinc-iron intermetallic layer coating the iron-based substrate, the intermetallic layer having a first average thickness of less than 15 ?m, as measured by a magnetic thickness gage, the intermetallic layer having a second average thickness as measured by an X-Ray fluorescence thickness measurement, and wherein a difference between the first average thickness and the second average is less than 4 ?m.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: March 19, 2013
    Assignee: Greenkote Ltd
    Inventors: Avraham Sheinkman, Itzhac Rozenthul, Ilana Diskin
  • Publication number: 20130004664
    Abstract: A method of making a reconfigurable article is disclosed. The method includes providing a powder comprising a plurality of base material particles. The method also includes providing a powder comprising a plurality of removable material particles; and forming a base article from the base material comprising a plurality of removable material particles. A method of using a reconfigurable article is also disclosed. The method includes forming a base article, the base article comprising a base material and a removable material, wherein the base article comprises a downhole tool or component. The method also includes inserting the base article into a wellbore. The method further includes performing a first operation utilizing the base article; exposing the removable material of the base article to a wellbore condition that is configured to remove the removable material and form a modified article; and performing a second operation using the article.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Inventors: Gaurav Agrawal, Zhiyue Xu, Ping Duan, James Goodson, Andre Porter, James B. Crews
  • Patent number: 8298612
    Abstract: An apparatus and method are described for deposition of materials such as particulate materials onto a surface. The methods employ the use of shockwaves or compression waves to project the particulate material onto the surface as desired. This allows for the preparation of solid objects or coated surfaces that exhibit, for example, superior density and uniformity.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: October 30, 2012
    Assignee: University of Ottawa
    Inventor: Bertrand Jodoin
  • Patent number: 8268237
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Patent number: 8261444
    Abstract: A method of manufacturing a rotor includes: (a) providing a core shaft; (b) cold spraying alloy powder particles onto the core shaft; (c) controlling the cold spraying to form sections at least of different shape along the core shaft to thereby form a near-net shape rotor; and (d) heat treating the near-net shape rotor to relieve stresses and to form diffusion bonding across interfaces between individual powder particles and the core shaft, and finish-shaping said near-net shape rotor.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: September 11, 2012
    Assignee: General Electric Company
    Inventors: Eklavya Calla, Surinder Pabla, Raymond Goetze
  • Patent number: 8252733
    Abstract: To provide a sliding material whose superficial sliding characteristics can be modified in compliance with the requirements of sliding component parts without ever changing the surface roughness of sliding material very much by means of shot blasting treatment, and to provide a sliding member using the sliding material. A sliding material according to the present invention is characterized in that it comprises: a metallic substrate; and an adhered metal being formed by mechanical adhesion by means of shot blasting metallic particles, which are softer than said metallic substrate and whose friction coefficients are smaller than that of said metallic substrate, onto a sliding surface of said metallic substrate so as to cover 8% or more of the sliding surface of said metallic substrate.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: August 28, 2012
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Motoharu Tanizawa, Kyoichi Kinoshita, Motoji Miyamoto
  • Publication number: 20120189839
    Abstract: A method of manufacturing a metal composite material includes applying a mechanical impact force to a carbon material and a metal powder at such an intensity as capable of pulverizing the carbon material, thereby adhering the carbon material to a surface of the metal powder.
    Type: Application
    Filed: December 9, 2011
    Publication date: July 26, 2012
    Applicants: Nagano Prefecture, Shinko Electric Industries Co., Ltd.
    Inventors: Syuzo AOKI, Takuya Oda, Takuya Kurosawa, Shoji Koizumi, Hidekazu Takizawa, Yutaka Komatsu, Shinichi Anzawa
  • Patent number: 8216635
    Abstract: Disclosed are a method of forming metal wiring and metal wiring formed using the same. The method includes printing wiring using an ink composition including metallic nanoparticles and dispersants maintaining dispersion of the metallic nanoparticles, performing a first firing process of firing the wiring under vacuum or in an inert atmosphere to suppress grain growth, and performing a second firing process of firing the wiring with the vacuum or inert atmosphere released, to accelerate grain growth. The method of forming metal wiring induces abnormal grain growth by rapidly removing dispersants, capable of inducing the growth of metallic nanoparticles, at a temperature at which the growth force of the metallic nanoparticles is high, in the process of firing the metallic nanoparticles. Accordingly, the metal wiring has a coarse-grained structure containing metallic particles with a large average particle size, and the electrical and mechanical characteristics thereof can be enhanced.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: July 10, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Ah Song, Young Chang Joo, Ji Hoon Lee, Seol Min Yi, Jae Woo Joung, Sung Il Oh, Tae Hoon Kim, In Young Kim
  • Publication number: 20120168684
    Abstract: Provided is a process for low temperature sintering of a pattern on a substrate.
    Type: Application
    Filed: March 24, 2010
    Publication date: July 5, 2012
    Applicant: Yissum Research Development Company of the Hebrew University of Jerusaem, Ltd.
    Inventors: Shlomo Magdassi, Michael Grouchko, Alexander Kamyshny
  • Patent number: 8197894
    Abstract: In various embodiments, sputter-target formation includes application of a layer having an intermediate coefficient of thermal expansion between the backing plate and the target material.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: June 12, 2012
    Assignees: H.C. Starck GmbH, H.C. Starck Inc.
    Inventors: Steven A. Miller, Olaf Schmidt-Park, Prabhat Kumar, Richard Wu, Shuwei Sun, Stefan Zimmermann
  • Patent number: 8192799
    Abstract: The invention relates to an improved design for a spray gun and application system for cold gas dynamic spraying of a metal, alloy, polymer, or mechanical mixtures thereof. The gun includes a rear housing comprising a powder inlet and a gas inlet, a front housing removably affixed to the rear housing and comprising an mixing cavity therein for mixing of the powder and gas and an exit therefrom, a nozzle holder having a bore disposed therethrough and removably affixed to the front housing, and a polymeric nozzle positioned within the nozzle holder, an interior taper of the nozzle holder bore complementing an exterior taper of the nozzle. The nozzle having an initially converging, subsequently diverging centrally disposed bore therein adapted to receive the mixed powder and gas from the mixing chamber and the nozzle holder including a cooling jacket which is thermally coupled to the nozzle adjacent the nozzle inlet and mechanically coupled downstream of the nozzle inlet.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: June 5, 2012
    Assignee: ASB Industries, Inc.
    Inventors: Albert Kay, Jeganathan Karthikeyan
  • Patent number: 8192792
    Abstract: Methods are described for applying abradable material onto a seal backing material to form an abradable seal between rotating and stationary components of turbines using cold spray deposition technology to control the density, porosity and thickness of the sealing layer.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: June 5, 2012
    Assignee: United Technologies Corporation
    Inventors: Jeffrey D. Haynes, Andrew DeBiccari, Gary Shubert
  • Publication number: 20120070570
    Abstract: A method of forming conductive features on a substrate, the method includes, filling a flexible stamp with a metal nanoparticle composition, depositing the metal nanoparticle composition onto the substrate, and heating the deposited metal nanoparticle composition during or after the depositing to form the conductive features.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 22, 2012
    Applicant: XEROX CORPORATION
    Inventors: Woo Soo KIM, Ping LIU, Yiliang WU, Nan-Xing HU
  • Patent number: 8114474
    Abstract: A metallic glass particle layer is applied to aluminum alloy armor and friction stir mixed into the surface in order to embed the material into the armor and to take advantage of its exceptional hardness. An advantage of the invention is that the hard material is an integral part of the armor, included within the body of the armor plate and not merely a surface coating. The advantage of the friction stir process is that it generates relatively low levels of heat and magnetic measurements show that the amorphous phase condition of the metallic glass is not deteriorated. The armor may be tempered to improve properties.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: February 14, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Philip J. Dudt, David R. Forrest, Jennifer N. Wolk, Stephen Szpara
  • Publication number: 20120034092
    Abstract: The invention relates to a method for producing a plating (5) of a vane tip. Said method consists of the following steps: a) a vane having a vane tip which is arranged opposite the base of the vane (2) and which comprises a surface which points radially outwards is provided, and b) a porous layer (7) is applied to at least the surface (4) of the vane tip and/or c) a bulge (8) which increases the surface of the vane tip is applied to at least one part of the flanks of the vane tip, said flanks surrounding the surface of the vane tip, and d) the plating (5) is applied to the porous layer and/or the bulge. The invention also relates to corresponding vanes or gas turbines with corresponding vanes.
    Type: Application
    Filed: April 21, 2010
    Publication date: February 9, 2012
    Applicant: MTU AERO ENGINES GMBH
    Inventors: Andreas Jakimov, Stefan Schneiderbanger, Manuel Hertter
  • Patent number: 8062698
    Abstract: A process for printing conductive metal markings directly on a substrate under an ambient condition, including the steps of synthesizing or providing conductive the ink on a substrate to form conductive metallic nanoparticles into an ink; and printing the ink on a substrate to form conductive metallic markings on the substrate. The printed conductive metallic markings may form wires that behave as resonant RFID antenna applications.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: November 22, 2011
    Assignee: Xerox Corporation
    Inventors: Naveen Chopra, Peter M. Kazmaier, Dominique J. Lalisse, Paul F. Smith
  • Publication number: 20110277812
    Abstract: A multilayered structure may include a doped buffer layer on a transparent conductive oxide layer.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Inventors: Benyamin Buller, Akhlesh Gupta
  • Patent number: RE45877
    Abstract: Disclosed herein are methods of treating an article surface. The method comprises removing a metal oxide surface from the metal substrate to expose a metal surface; and delivering particles comprising a dopant from at least one fluid jet to the metal surface to impregnate the surface of the article with the dopant. The method also comprises delivering substantially simultaneously a first set of particles comprising a dopant and a second set of particles comprising an abrasive from at least one fluid jet to a surface of an article to impregnate the surface of the article with the dopant.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: February 2, 2016
    Assignee: EnBio Limited
    Inventors: John Gerard O'Donoghue, Donncha Haverty