Lead Or Tin Coating Patents (Class 427/312)
  • Patent number: 8679591
    Abstract: An embodiment is a method for forming a semiconductor assembly including cleaning a connector including copper formed on a substrate, applying cold tin to the connector, applying hot tin to the connector, and spin rinsing and drying the connector.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Ling Hwang, Yi-Li Hsiao, Chung-Shi Liu
  • Patent number: 8544408
    Abstract: A system for applying a metal particulate onto an object is disclosed herein. The system can include sources for a metal particulate and a hot pressurized air in communication with a spraying device having a nozzle assembly configured to: receive, mix, and expel the metal particulate and the hot pressurized air. The hot pressurized air can form a venturi effect within the nozzle assembly to draw in the metal particulate. The nozzle assembly can include a nozzle cap with a tapered nozzle having a helical channel, and an outer tip connected to the nozzle cap having a venturi effect chamber, a mixing conduit, and rifling. The helical channel can form a vortex flow of the metal particulate, and the mixing conduit can form a vortex flow of the air metal mixture. A nozzle orifice can expel the air metal mixture to onto the object to form a coating thereon.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 1, 2013
    Inventor: Kevin Wayne Ewers
  • Patent number: 8173754
    Abstract: This invention relates to a process for the preparation of plastic material for use in optical lenses comprising the steps of: a) synthesizing lead acrylate by adding lead monoxide to NaoH, which is stirred to obtain a homogenous mixture, b) adding an inhibitor to such a monomer mixture; c) adding acrylic acid drop wise to such a monomer mixture so as to avoid the formation of by products, d) heating the mixture of step (c) to a temperature of 35 to 45° C. till a white precipitate of lead acrylate is obtained, e) filtering, washing and drying the precipitate, f) subjecting lead acrylate to the step of polymerization by stepwise heating.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: May 8, 2012
    Assignee: Shriram Institute for Industrial Research
    Inventors: Rakesh Kumar Khandal, Amita Malik, Geetha Seshadri, Gouri Shankar Jha, Mukti Tyagi
  • Patent number: 7670581
    Abstract: A method for the production of a robust, chemically stable, crystalline, passivated nanoparticle and composition containing the same, that emit light with high efficiencies and size-tunable and excitation energy tunable color. The methods include the thermal degradation of a precursor molecule in the presence of a capping agent at high temperature and elevated pressure. A particular composition prepared by the methods is a passivated silicon nanoparticle composition displaying discrete optical transitions.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: March 2, 2010
    Inventors: Brian A. Korgel, Keith P. Johnston
  • Patent number: 6254923
    Abstract: Solder particles 220 are deposited onto metallized contacts of a direct chip attach (DCA) site located on a substrate 301. The contacts 302 are coated with a layer of flux 303. A pick up head 211 is positioned in a reservoir 201 of solder particles 220 and particles are attracted to the apertures in the end 213 of the head. The apertures have an arrangement corresponding to the footprint of the metallized contacts on the substrate. The head 211 is positioned adjacent the substrate 301 and the particles 220 released. The particles 220 stick to the flux 303 coated on the contacts 302. The particles are reflowed, leveled and again coated with flux. An integrated circuit chip is then placed on the leveled reliefs 501 and the reliefs reflowed again to attach the chip onto the contacts 302.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: July 3, 2001
    Assignee: International Business Machines Corporation
    Inventors: Alexander Boyd, William French, Stuart P. Lees, Kenneth Skene Murray, Brian L. Robertson
  • Patent number: 6200636
    Abstract: An improved fluxing method for the galvanization of steel, particularly batch galvanization, is disclosed. In this process, a metallic element is deposited (for example, by electroless plating) on the surface of the steel sheet or other article prior to its being dipped in the galvanization bath. Preferred metals for use in this fluxing process are tin, copper, nickel, with tin being more preferred, and mixtures of copper and tin being most preferred. This metallic film layer has a thickness between about 5 and about 50 nm. The process of the present invention provides a number of benefits when compared to conventional fluxing processes: for example, it is compatible with the inclusion of aluminum in the galvanization bath; it permits a greater time delay between the fluxing and galvanization operations; and it eliminates the formation of hydrogen chloride or other toxic fumes when the fluxed article is dipped in the molten zinc galvanization bath.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: March 13, 2001
    Assignee: The University of Cincinnati
    Inventors: Wim J. van Ooij, Prasanna Vijayan
  • Patent number: 6187378
    Abstract: An automated system for electroless metallization of optical glass fibers, includes a plurality of spaced apart plating stations having different solutions for electroless metallization of optical fibers. A motor-driven fiber transport and dipping apparatus is used in the system for shuttling optical glass fibers to the plating stations and immersing the optical glass fibers in the solutions. A programmable controller directs the transport and dipping apparatus to the plating stations in a selected order and at selected time intervals, and directs the apparatus at each of the stations to immerse the fibers into the solutions at a selected entry rate, for a selected duration, and at a selected withdrawal rate.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: February 13, 2001
    Assignee: Lucent Technologies Inc.
    Inventor: John T. Doncsecz
  • Patent number: 4695481
    Abstract: A method and device of performing plating of an item having a row of fine parts, e.g. a flatpack IC are disclosed. The method comprises immersing said item in a bath of molten solder, removing said item from said bath while maintaining said item in an attitude such that said row of fine parts is sloped with respect to the surface of said molten solder, and causing flux to exert a fluxing action on said molten solder which adheres to said fine parts, thereby decreasing the surface tension of the solder adhering to said fine parts and preventing bridges of solder from forming between said fine parts.
    Type: Grant
    Filed: March 27, 1986
    Date of Patent: September 22, 1987
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Yuuji Kawamata, Tomohiko Iino, Ryoichi Suzuki, Noriyuki Haga
  • Patent number: 4360144
    Abstract: The present invention relates to a method of wave soldering an assembly composed of a plurality of electrical conductors disposed on a surface of a sheet of insulating material. In accordance with this method, the surface of the sheet and the conductors are contacted with a stationary wave of molten solder having a polyether admixed therewith and floating on the surface thereof. The polyether is a heteric or block copolymer of a dihydroxyphenol and at least one lower alkylene oxide. It is preferred that the alkylene oxide contain 2 to 4 carbon atoms. The alkylene oxide may be all ethylene oxide or may be a mixture with other lower alkylene oxides such as propylene oxides and butylene oxides. In any event, the copolymer should contain at least about 20 percent by weight of oxyethylene groups, balance oxypropylene groups and/or oxybutylene groups. A conventional polymeric oxidation inhibitor may also be included.
    Type: Grant
    Filed: January 21, 1981
    Date of Patent: November 23, 1982
    Assignee: BASF Wyandotte Corporation
    Inventors: William A. Cuddy, Basil Thir, Stephen E. Eisenstein
  • Patent number: 3941906
    Abstract: The improved hot dip metallizing process of this invention comprises passing the article to be metallized, such as a ferrous metal article, through a bath of a molten heavy metal, such as lead, and conducting the article therefrom through a layer of molten coating metal, such as zinc, confined in a stack-like structure of a cross-sectional area being a small fraction of the surface area of the heavy metal bath. The molten coating metal is continuously supplied to the stack, preferably through orifices or nozzles so as to remove any droplets of molten heavy metal adhering to the surface of the article, thereby causing metallizing of the article and continuous overflow of excess molten coating metal at the top of the stack. Before hot blasting the coated metallic article it may be passed through mechanical removal means, such as counterrotating rollers to remove the major part of excess coating metal, while the remainder is removed by hot blasting.
    Type: Grant
    Filed: December 17, 1973
    Date of Patent: March 2, 1976
    Inventor: Theodore Bostroem