Inorganic Carbon Containing Coating, Not As Steel (e.g., Carbide, Etc.) Patents (Class 427/450)
  • Patent number: 10941485
    Abstract: The present invention relates to methods of forming a film between two surfaces, in which the film includes diamond-like carbon. Also provided herein are uses of such films, such in sliding contacts and in metal coatings.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: March 9, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Nicolas Argibay, Michael T. Dugger, Michael E. Chandross, Tomas Farley Babuska, Brendan L. Nation, John Curry
  • Patent number: 9229162
    Abstract: Various implementations and embodiments relate to three-dimensional open cellular diamond micro-truss structures and methods.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: January 5, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S. Roper, William B. Carter, Alan J. Jacobsen, Tobias Schaedler
  • Patent number: 9062370
    Abstract: Bodies coated with a SiC layer or with a multilayer coating system that include at least a SiC hard material layer, wherein the SiC layer consists of halogen-containing nanocrystalline 3C—SiC or a mixed layer which consists of halogen-containing nanocrystalline 3C—SiC and amorphous SiC or halogen-containing nanocrystalline 3C—SiC and amorphous carbon.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: June 23, 2015
    Assignee: Spawnt Private S.a.r.l.
    Inventors: Ingolf Endler, Mandy Höhn, Thoralf Gebel, Christian Bauch, Rumen Deltschew, Sven Holl, Gerd Lippold, Javad Mohsseni, Norbert Auner
  • Publication number: 20150147572
    Abstract: A powder material of the present invention contains ceramic-metal composite particles, wherein at least a part of the composite particles exhibit no breaking point in a stress-strain diagram obtained by applying a compressive load that increases up to a maximum value of 10 mN or more at a loading rate of 15.0 mN/s or less.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 28, 2015
    Inventors: Kazuto Sato, Hiroaki Hattori, Junya Yamada
  • Publication number: 20150079371
    Abstract: A ceramic matrix composite component coated with environmental barrier coatings includes a substrate formed of a silicide-containing ceramic matrix composite, a silicon carbide layer deposited on a surface of the substrate, a silicon layer deposited on a surface of the silicon carbide layer, a mixed layer made of a mixture of mullite and ytterbium silicate and deposited on a surface of the silicon layer, and an oxide layer deposited on a surface of the mixed layer.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: IHI Corporation
    Inventors: Yukihiro NAKADA, Hiroshige Murata, Kenichiro Watanabe, Yasutomo Tanaka, Takeshi Nakamura
  • Publication number: 20150069020
    Abstract: A contact element for high voltage direct current switches includes a matrix made of a first material selected from the group comprising copper, silver, palladium, platinum, tungsten, molybdenum, rhenium, nickel, gold, and alloys thereof. The contact element also includes a foreign phase, which is dispersed in the matrix and is made of a second material selected from the group comprising carbon, tin(II) oxide, tin(IV) oxide, zinc(II) oxide, tungsten, nickel and mixtures thereof. The contact element has a porosity of ?1.0% by volume, based on a total volume of the contact element.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventors: Juergen STEINWANDEL, Dietrich JONKE, Helmut PIRINGER
  • Publication number: 20150064406
    Abstract: [Problem] To provide a fluoride spray coating covered member in which a fluoride spray coating firmly adheres by coating carbide cermet to a surface of a substrate and interposing it, and to propose a method therefor. [Solution] A fluoride spray coating is formed in such a manner that an undercoat layer of carbide cermet, which covers a substrate in a film-shaped manner while a tip portion of carbide cermet particles is embedded in the substrate, or a primer part of carbide cermet, is formed by blowing a carbide cermet material at a high velocity by using a spray gun to a surface of the substrate, and after that, a fluoride particle is sprayed thereon.
    Type: Application
    Filed: November 28, 2012
    Publication date: March 5, 2015
    Inventors: Yoshio Harada, Kenichiro Togoe
  • Publication number: 20150064451
    Abstract: A coating method, coated article and coating are provided. The coated article includes a low temperature component, and a graphene coating formed from a graphene derivative applied over the low temperature component. The coating method includes providing a graphene derivative, providing a low temperature component, applying the graphene derivative over the low temperature component, and forming a graphene coating. The graphene coating reduces corrosion and fouling of the low temperature component. The coating includes a graphene derivative, and modified functional groups on the graphene derivative. The modified functional groups increase adherence of the coating on application to a low temperature component.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Murali Krishna KALAGA, Arjun BHATTACHARYYA, Rebika Mayanglambam DEVI, Jon Conrad SCHAEFFER, Padmaja PARAKALA, Surinder Singh PABLA
  • Publication number: 20150044084
    Abstract: Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.
    Type: Application
    Filed: October 30, 2012
    Publication date: February 12, 2015
    Applicant: California Institute of Technology
    Inventor: California Institute of Technology
  • Publication number: 20150017339
    Abstract: Substrate structure comprising a substrate (6) and a plasma grown layer (6a). The surface of the resulting substrate structure (7) is characterized by interrelated scaling components. The scaling components comprise a roughness exponent ?, a growth exponent ? and a dynamic exponent z, wherein the growth exponent ? has a value of less than 0.2 and the dynamic exponent z has a value of more than 6. Also disclosed is a method to provide such a substrate structure.
    Type: Application
    Filed: June 9, 2014
    Publication date: January 15, 2015
    Inventors: Hindrik Willem DE VRIES, Mauritius Cornelius Maria VAN DE SANDEN
  • Publication number: 20150010776
    Abstract: Various methods including applying a coating material with an additive to an article are disclosed. The coating material may be in a powder form before a thermal spraying used to apply the coating material. The coating material may comprise a chromium nitride, a chromium carbide, a chromium silicide, or a tungsten carbide. Additional materials may be added, e.g., a molybdenum alloy such as molybdenum-chromium. In one aspect, thermal spraying includes melting the coating material, propelling the molten coating material toward the article to be coated, and coating the article with the molten coating material. In another aspect, the coated article is one or more piston rings.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Thomas Stong, Thomas Smith, Jason Bieneman
  • Patent number: 8864869
    Abstract: The hearth roll for a continuous annealing furnace is able to suppress the occurrence of buildup on the hearth roll surface and able to be stably used for a long period under the high temperature environment. The hearth roll has a cermet coating comprised 50 to 90 vol % of ceramic and the balance of a heat resistant alloy on its surface, the ceramic containing Cr3C2: over 50 to 90 vol %, Al2O3: 1 to 40 vol %, Y2O3: 0 to 3 vol %, and ZrB2: 0 to 40 vol % and having a balance of unavoidable impurities and pores, the heat resistant alloy containing Cr: 5 to 20 mass %, Al: 5 to 20 mass %, and one or both of Y and Si: 0.1 to 6 mass % and has a balance of one or both of Co and Ni and unavoidable impurities.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: October 21, 2014
    Assignees: Nippon Steel & Sumitomo Metal Corporation, Tocalo Co., Ltd.
    Inventors: Yasushi Kurisu, Tatsuo Suidzu
  • Publication number: 20140295094
    Abstract: Combustion deposition systems and methods of using combustion deposition systems are disclosed. In an embodiment, a combustion deposition system may include a burner that is in fluid communication with at least one supply of at least one precursor such that the at least one precursor can be introduced to a flame output from the burner, at least one electrode positioned at least proximate to the flame, and a voltage source operably coupled to the at least one electrode. The at least one electrode and the at least one voltage source may be configured to generate an electric field for influencing at least one of flame shape, flame temperature, or kinetics of chemical reactions occurring within the flame, thereby providing enhanced selective control of combustion deposition characteristics. For example, the combustion deposition systems disclosed herein may, for example, be configured to control deposition of a combustion-deposited film on a substrate.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 2, 2014
    Applicant: CLEARSIGN COMBUSTION CORPORATION
    Inventor: Vincenzo Casasanta, III
  • Publication number: 20140241937
    Abstract: The invention relates to the use of a particle-containing powdered coating material in a coating method selected from the group consisting of cold gas spraying, flame spraying, high-speed flame spraying, thermal plasma spraying and non-thermal plasma spraying, wherein the particles have a relative deformability factor Vm of at most 0.1 and the relative deformability factor is defined according to Formula (I): V m = d D 50 , ( I ) wherein d is the average smallest thickness of the particles, measured vertical to and in the middle half of the longitudinal axis of the particles, and D50 is the average diameter of the volume-averaged particle-size distribution. The invention furthermore relates to a method for coating.
    Type: Application
    Filed: July 25, 2012
    Publication date: August 28, 2014
    Applicant: ECKART GMBH
    Inventors: Sebastian Höfener, Markus Rupprecht, Christian Wolfrum, Andreas Reis
  • Publication number: 20140178593
    Abstract: A method and apparatus for nanocrystallizing a metal surface by laser-induced shock wave-accelerated nanoparticles. The apparatus comprises a control system, a light guiding system, a workbench control system and an auxiliary system, wherein the auxiliary system comprises an air compressor, a paint feeder device, a nanoparticle nozzle, a powder feeder device, an exhaust, a sealed working chamber and a metal nanoparticle recycler device. The method comprises the following steps: pre-processing and fixing a workpiece; activating the air compressor to feed a powder; controlling and adjusting the paint feeder device to eject a black paint; transmitting a high-power pulse laser beam; recycling excess metal nanoparticles; and rinsing non-vaporized/ionized black paint off a surface of the workpiece.
    Type: Application
    Filed: July 28, 2011
    Publication date: June 26, 2014
    Applicants: Air Force Engineering University of the Chinese People's Liberation Army, Jiangsu University
    Inventors: Xudong Ren, Yinghong Li, Liang Ruan, Cheng Wang, Wei Chu, Weifeng He, Xin Zhou, Yongzhuo Huangfu, Yongkang Zhang, Fengze Dai, Tian Zhang
  • Patent number: 8758462
    Abstract: An abrasive wear-resistant material includes a matrix and sintered and cast tungsten carbide pellets. A device for use in drilling subterranean formations includes a first structure secured to a second structure with bonding material. An abrasive wear-resistant material covers the bonding material. The first structure may include a drill bit body and the second structure may include a cutting element. A method for applying an abrasive wear-resistant material to a drill bit includes providing a bit, mixing sintered and cast tungsten carbide pellets in a matrix material to provide a pre-application material, heating the pre-application material to melt the matrix material, applying the pre-application material to the bit, and solidifying the material. A method for securing a cutting element to a bit body includes providing an abrasive wear-resistant material to a surface of a drill bit that covers a brazing alloy disposed between the cutting element and the bit body.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 24, 2014
    Assignee: Baker Hughes Incorporated
    Inventor: James L. Overstreet
  • Publication number: 20140158295
    Abstract: A method of manufacturing or surface treating a wire wrapped screen for use in a wellbore improves the erosion resistance of the wire-wrapped screen. The wire-wrapped screen can be disposed on an axle positioned in a chamber containing a source of erosion resistant surface coating. The coating is then deposited on the exterior of the wire-wrapped screen using a deposition process, such as physical vapor deposition or thermal spraying. Alternatively, a spray system proximate the wire-wrapped screen can have a deposition nozzle to coat the exterior surface of the screen with an elastomer coating by spraying an elastomer. In additional embodiments, the wire for the wire-wrapped screen can first be treated for erosion resistance and then wound about a mandrel to form the wire-wrapped screen.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicant: WEATHERFORD/LAMB, INC.
    Inventor: Robert P. Badrak
  • Publication number: 20140127415
    Abstract: A method for manufacturing diamond or diamond-like carbon (DLC) by converting at least one other form of carbon such as graphite, amorphous carbon, fullerenes, glass carbon, graphene, carbon foam or a mixture of these forms. This method comprises an acceleration of particles and causing them to collide with a substrate. The particles and/or the substrate contain(s) or consist(s) of another form of carbon. The conversion is induced by impact of the particles with the substrate, wherein cold gas spraying is used to advantage.
    Type: Application
    Filed: April 3, 2013
    Publication date: May 8, 2014
    Inventors: Hamid Assadi, Frank Gärtner, Thomas Klassen, Peter Heinrich, Heinrich Kreye, Werner Krömmer
  • Patent number: 8647751
    Abstract: During engine operation, valve retainers and valve springs are constantly rubbing and impacting each other resulting in heat and wear. The purpose of this invention is to provide a surface coating onto the valve retainer to reduce the friction with the valve spring and thus improve durability. Specifically, this invention teaches a method to thermally apply coatings to the surface of the valve retainer. Although typically fabricated from steel, the usage of lighter weight titanium valve retainers is increasing for high performance, or racing engines. The reduced mass allows valves to move more readily and requires less spring pressure to operate, producing more power and a faster revving engine, however titanium is typically not as wear resistant as the steel it replaces. In one embodiment, a porous molybdenum or other oleophilic metal is applied to the surface of the valve retainer. In another embodiment, hard coatings of cermets, carbides, and super alloys are applied as coatings to valve retainers.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: February 11, 2014
    Assignee: Wide Open Coatings, Inc.
    Inventors: Mark Thomas Endicott, Randall John Wischhusen
  • Patent number: 8642132
    Abstract: A method of depositing a carbon particle-containing film that contains carbon particles includes: manufacturing film deposition slurry by mixing liquid into film deposition powder that contains carbon powder formed of the carbon particles; and depositing the carbon particle-containing film by spraying the film deposition slurry to a surface of a base material so that the liquid is vaporized.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: February 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritaka Miyamoto, Yoshihiko Tsuzuki, Tomoko Kozaki
  • Patent number: 8629076
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicon carbide, improving the thermal stability of the carbon aerogel.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joshua D. Kuntz, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Publication number: 20130251910
    Abstract: This invention relates to thermally sprayed coatings having an amorphous-nanocrystalline-microcrystalline composition structure, said thermally sprayed coating comprising from about 1 to about 95 volume percent of an amorphous phase, from about 1 to about 80 volume percent of a nanocrystalline phase, and from about 1 to about 90 volume percent of a microcrystalline phase, and wherein said amorphous phase, nanocrystalline phase and microcrystalline phase comprise about 100 volume percent of said thermally sprayed coating. This invention also relates to methods for producing the coatings, thermal spray processes for producing the coatings, and articles coated with the coatings. The thermally sprayed coatings of this invention provide enhanced wear and corrosion resistance for articles used in severe environments (e.g., landing gears, airframes, ball valves, gate valves (gates and seats), pot rolls, and work rolls for paper processing).
    Type: Application
    Filed: May 16, 2013
    Publication date: September 26, 2013
    Inventors: Tetyana P. Shmyreva, James Knapp, Ardy Simon Kleyman
  • Patent number: 8490950
    Abstract: A gate valve has a body, the body having a cavity and a flow passage intersecting the cavity. A seat ring is mounted to the body at the intersection of the flow passage and the cavity, the seat ring having an engaging face. A gate in the cavity has an engaging face that slidingly engages the face of the seat ring while being moved between open and closed positions. A friction-resistant coating is on at least one of the faces.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: July 23, 2013
    Assignee: Vetco Gray Inc.
    Inventor: Rick C. Hunter
  • Patent number: 8484843
    Abstract: A method for producing a dispersion-hardened object which contains carbide nanoparticles comprises producing an object by means of a thermal spraying method, wherein downstream of the combustion chamber, the gas flow is supplied by means of a carrier gas with at least one precursor which reacts in the gas flow to form a carbide, or carbide nanoparticles are supplied via an external nanoparticle generator which is subject to a thermal load. It allows the production of a dispersion-hardened object such as, for example, a component for an internal combustion engine, for example a piston ring. The method is carried out by means of a thermal spraying device which, downstream of the combustion chamber, besides at least one line for supplying a thermal spray powder, further comprises at least one line for supplying a precursor by means of a carrier gas.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: July 16, 2013
    Assignee: Federal-Mogul Burscheid GmbH
    Inventors: Michael Zinnabold, Marc-Manuel Matz, Marcus Kennedy
  • Publication number: 20130118720
    Abstract: A heat exchanging element for a heat exchanger is provided with a coating that prevents, or at least reduces, the amount of contaminating materials to be abrade from the heat exchanger and into the heat exchange media. A method for producing a heat exchanging element for a heat exchanger, a heat exchanger per se, and a method for retrofitting an existing heat exchanger, provide for the occurrence of impurities caused by abrasion in one or more heat exchanging media and/or corrosion to be prevented or at least reduced by providing the coating.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 16, 2013
    Applicant: SGL CARBON SE
    Inventor: SGL CARBON SE
  • Patent number: 8388723
    Abstract: An abrasive wear-resistant material includes a matrix and sintered and cast tungsten carbide granules. A device for use in drilling subterranean formations includes a first structure secured to a second structure with a bonding material. An abrasive wear-resistant material covers the bonding material. The first structure may include a drill bit body and the second structure may include a cutting element. A method for applying an abrasive wear-resistant material to a drill bit includes providing a bit, mixing sintered and cast tungsten carbide granules in a matrix material to provide a pre-application material, heating the pre-application material to melt the matrix material, applying the pre-application material to the bit, and solidifying the material. A method for securing a cutting element to a bit body includes providing an abrasive wear-resistant material to a surface of a drill bit that covers a brazing alloy disposed between the cutting element and the bit body.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: March 5, 2013
    Assignee: Baker Hughes Incorporated
    Inventor: James L. Overstreet
  • Publication number: 20130040065
    Abstract: Disclosed is a thermal spray powder of granulated and sintered cermet particles, which contains tungsten carbide or chromium carbide, and a silicon-containing iron-based alloy. The content of the alloy in the thermal spray powder is preferably 5 to 40% by mass. In this case, the alloy contains silicon in a content of 0.1 to 10% by mass.
    Type: Application
    Filed: September 2, 2010
    Publication date: February 14, 2013
    Applicant: FUJIMI INCORPORATED
    Inventors: Kazuto Sato, Haruhiko Furukawa
  • Patent number: 8334476
    Abstract: A method of hard facing a metal substrate with a two-layer abrasion and impact resistant coating by fusing a softer inner first coat of a matrix alloy of nickel-, cobalt- or iron-base alloy with carbide particles onto the substrate and fusing a harder second outer coat of a matrix alloy of nickel-, cobalt- or iron-base alloy with angular carbide particles onto the softer inner first coat. The softer inner first coat preferably has a hardness of about 30-40 Rc and the harder outer second coat preferably has a hardness of about 50-60 Rc. The carbide particles preferably are tungsten carbide particles in the size range of about 60 to 250? and comprise about 55 to 65 wt % of each of the inner and outer coats.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: December 18, 2012
    Assignee: McCoy Corporation
    Inventors: Jerry McCracken, Dale M. Homeniuk
  • Publication number: 20120292500
    Abstract: A mass spectrometer includes an ion source, which includes a coating or surface formed of a metallic carbide, a metallic boride, a ceramic or DLC, or an ion-implanted transition metal.
    Type: Application
    Filed: November 11, 2011
    Publication date: November 22, 2012
    Applicant: MICROMASS UK LIMITED
    Inventors: Gordon A. Jones, David S. Douce, Amir Farooq
  • Patent number: 8304030
    Abstract: A bi-laterally surfaced substrate in which the first surface consists of one or more than one of cerium oxide, aluminum oxide, tin oxide manganese oxide, copper oxide, cobalt oxide, nickel oxide, praseodymium oxide, terbium oxide, ruthenium, rhodium, palladium, silver, iridium, platinum and gold and the second surface consists of one or more than one of ruthenium, rhodium, palladium, silver, iridium, platinum and gold and micro channel micro component reactors including such substrates in a predetermined formed shape and methods for making the same utilizing a thermal spray on one side and a physical deposition process on the other side.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: November 6, 2012
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Ting He, Eisuke Kimura, Tadashi Nomura
  • Patent number: 8293335
    Abstract: Yttria-coated ceramic components of semiconductor material processing apparatuses include a substrate and at least one yttria-containing coating on the substrate. The components are made by applying a first yttria-containing coating on a ceramic substrate, which can be a green body of the ceramic material. The coated green body is sintered. The first yttria-containing coating can be treated to remove attached yttria particles resulting from the sintering. In another embodiment, a second yttria-containing coating can be thermally sprayed on the first yttria-containing coating to cover the particles.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: October 23, 2012
    Assignee: Lam Research Corporation
    Inventor: Chris Chang
  • Publication number: 20120193148
    Abstract: A method for applying a non-magnetic, abrasive, wear-resistant hardfacing material to a surface of a drill string member includes providing a non-magnetic drill string member formed of a non-magnetic material, the drill string member having an outer surface. It also includes providing a non-magnetic hardfacing precursor material comprising a plurality of non-magnetic, sintered carbide pellets and a non-magnetic matrix material; heating a portion of the non-magnetic hardfacing precursor material to a temperature above the melting point of the matrix material to melt the matrix material. It further includes applying the molten non-magnetic matrix material and the plurality of non-magnetic, sintered carbide pellets to the exterior surface of the drill string member; and solidifying the molten non-magnetic matrix material to form a layer of a non-magnetic hardfacing material having a plurality of non-magnetic, sintered carbide pellets dispersed in the hardfacing material.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Applicant: Baker Hughes Incorporated
    Inventors: James L. Overstreet, Jimmy W. Eason, Travis Puzz
  • Publication number: 20120168686
    Abstract: The invention relates to a continuous process for preparing carbon-coated lithium-iron-phosphate particles, wherein the carbon-coated lithium-iron-phosphate particles have a mean (d50) particle size of 10 to 150 nm, and wherein the carbon-coating is an acetylene-black coating, comprising performing in a reactor a flame-spray pyrolysis step (i) in a particle formation zone of the reactor, and a carbon-coating step (ii) in a carbon-coating zone of the reactor, wherein in (i) a combustible organic solution containing a mixture of lithium or a lithium compound; iron or an iron compound; and phosphorus or a phosphorous compound in an organic solvent, is fed through at least one nozzle where said organic solution is dispersed, ignited and combusted, to give a flame spray thereby forming an aerosol of lithium iron phosphate particles; (ii) acetylene gas is injected into said aerosol thereby forming an acetylene-black coating on the lithium iron phosphate particles; (iii) the coated particles are cooled by an iner
    Type: Application
    Filed: August 24, 2010
    Publication date: July 5, 2012
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Hans Joachim Metz, Oliver Waser, Robert Buechel, Sotiris E Pratsinis
  • Patent number: 8206792
    Abstract: A method for forming a ceramic containing composite structure is proposed comprising the steps of (a) feeding a ceramic component that sublimes and a metallic or semi-conductor material that does not sublime into a thermal spray apparatus, (b) spraying the ceramic component and the metallic or semi-conductor material onto a substrate, whereby the ceramic component and the metallic or semi-conductor material deposit on the surface of the substrate, and (c) keeping the metallic or semi-conductor material on the substrate surface plastic during spraying at least in the region where the metallic or semi-conductor material actually strikes the surface.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 26, 2012
    Assignee: Sulzer Metco (US) Inc.
    Inventors: David S. Gollob, Thomas H. Piquette, James Derby, Omar Basil Al-Sabouni, Richard Karl Schmid, Jacobus Cornelis Doesburg
  • Patent number: 8187989
    Abstract: A seal assembly for a gas turbine engine includes a first seal member having a first surface, a second seal member having a second surface, with the second surface configured to generally abut at least a part of the first surface. At least a portion of at least one of the first surface and the second surface includes a coating that includes about 30 to about 80 weight percent of a hard carbide material, and about 20 to about 70 weight percent of lubricating material incorporated with the hard carbide material. The coating defines overlapping lenticular particles.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: May 29, 2012
    Assignee: United Technologies Corporation
    Inventor: Melvin Freling
  • Patent number: 8178155
    Abstract: A method of manufacturing a high surface area per unit weight carbon electrode includes providing a substrate, depositing a carbon-rich material on the substrate to form a film, and after the depositing, activating the carbon-rich material to increase the surface area of the film of carbon-rich material. Due to the activation process being after deposition, this method enables use of low cost carbon-rich material to form a carbon electrode in the capacitor. The electrode may be used in capacitors, ultracapacitors and lithium ion batteries. The substrate may be part of the electrode, or it may be sacrificial—being consumed during the activation process. The carbon-rich material may include any of carbonized material, carbon aerogel and metal oxides, such as manganese and ruthenium oxide. The activation may include exposing the carbon-rich material to carbon dioxide at elevated temperature, in the range of 300 to 900 degrees centigrade.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 15, 2012
    Assignee: Applied Materials, Inc.
    Inventor: Nag B. Patibandla
  • Patent number: 8146889
    Abstract: A gate valve has a body, the body having a cavity and a flow passage intersecting the cavity. A seat ring is mounted to the body at the intersection of the flow passage and the cavity, the seat ring having an engaging face. A gate in the cavity has an engaging face that slidingly engages the face of the seat ring while being moved between open and closed positions. A friction-resistant coating is on at least one of the faces.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: April 3, 2012
    Assignee: Vetco Gray Inc.
    Inventor: Rick C. Hunter
  • Publication number: 20120077017
    Abstract: The invention proposes a process for producing a metal matrix composite material composed of a metal matrix having at least one metal component and at least one reinforcing component arranged in the metal matrix, in which at least one of the components is sprayed onto a substrate by means of a thermal spraying process, use being made of at least one reinforcing component comprising carbon in the form of nano tubes, nano fibers, graphenes, fullerenes, flakes or diamond. Also proposed is a corresponding material, in particular in the form of a coating, and the use of such a material.
    Type: Application
    Filed: May 27, 2010
    Publication date: March 29, 2012
    Inventors: Isabell Buresch, Werner Kroemmer
  • Publication number: 20120065300
    Abstract: A carbon nanotube-infused fiber and a method for its production are disclosed. Nanotubes are synthesized directly on a parent fiber by first applying a catalyst to the fiber. The properties of the carbon nanotube-infused fiber will be a combination of those of the parent fiber as well as those of the infused carbon nanotubes.
    Type: Application
    Filed: November 16, 2011
    Publication date: March 15, 2012
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC.
    Inventors: Tushar K. SHAH, Slade H. Gardner, Mark R. Alberding
  • Patent number: 8114464
    Abstract: The present disclosure provides various novel methods for forming hybrid thin films that contain multi-lamellar assemblies of phospholipid bilayers and can incorporate proteins, polypeptides, biological complexes, transmembrane proteins and other membrane-associated compounds. The present disclosure further provides uses for such bilayer lipid membranes including, biosensing for medical diagnosis and environmental monitoring, chemical and biological warfare agent sequestration, actuator development, and bio-fuel cell development.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: February 14, 2012
    Assignee: STC.UNM
    Inventors: Gabriel Lopez, Plamen Atanasov, Gautam Gupta
  • Publication number: 20110305873
    Abstract: A coating composition includes a cermet material having metal carbide phase particles with an average size of less than 5 microns. The coating has an average surface roughness of less than approximately 5 microns. A system for applying a coating to a substrate includes a spray gun configured for use with a high velocity oxygen or high velocity air fuel system. The system further includes a cermet material supplied to the spray gun, wherein the cermet material includes at least approximately 34 percent by weight of a metal carbide phase having an average particle size of less than or equal to approximately 5 microns. The metal carbide phase is dispersed in a liquid selected from the group consisting of water, alcohol, an organic combustible liquid, or an organic incombustible liquid.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Tamara Jean Muth, James Anthony Ruud, Leonardo Ajdelsztajn, Prajina Bhattacharya
  • Patent number: 8067067
    Abstract: Disclosed herein is a method for applying plasma-resistant coatings for use in semiconductor processing apparatus. The coatings are applied over a substrate which typically comprises an aluminum alloy of the 2000 series or the 5000 through 7000 series. The coating typically comprises an oxide or a fluoride of Y, Sc, La, Ce, Eu, Dy, or the like, or yttrium-aluminum-garnet (YAG). The coating may further comprise about 20 volume % or less of Al2O3. The coatings are typically applied to a surface of an aluminum alloy substrate or an anodized aluminum alloy substrate using a technique selected from the group consisting of thermal/flame spraying, plasma spraying, sputtering, and chemical vapor deposition (CVD). To provide the desired corrosion resistance, it is necessary to place the coating in compression. This is accomplished by controlling deposition conditions during application of the coating.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: November 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, Jim Dempster, Li Xu
  • Publication number: 20110287189
    Abstract: The invention relates to methods of gas detonation deposition (gas detonation explosion) applying coatings, especially layers of materials for electrochemical devices for use as electrodes in electrochemical energy generation and storage devices such as batteries, supercapacitors, photovoltaic cells, and the like. In the method of the gas detonation deposition the powders of the materials, which are deposited, are subjected to detonation with the explosion products flow. As a result, the powder particles gain a high kinetic energy and are deposited on a substrate, forming a high quality coating.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 24, 2011
    Applicant: Enerize Corporation
    Inventors: Elena M. Shembel, Nickolai (Mykola) I. Klyui (Kliui), Irina Maksyuta, Volodymyr Ivanovich Redko, Tymofiy Pastushkin, Volodymyr P. Temchenko
  • Patent number: 8062712
    Abstract: The invention relates to an amalgam decomposer for mercury cathode chlor-alkali cells. The amalgam decomposer of the invention contains a filling of carbon steel rings whose external surface is provided with a catalytic coating for amalgam decomposition consisting of one or more electrically conductive metals carbides. The internal surface of the rings is free of catalytic coating and wettable by the amalgam, while the external carbide catalytic coating is not wettable by the amalgam thereby favoring hydrogen evolution.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 22, 2011
    Assignee: Industrie De Nora S.p.A.
    Inventors: Giovanni Meneghini, Raffaello Bertin
  • Publication number: 20110248451
    Abstract: A seal assembly for a gas turbine engine includes a first seal member having a first surface, a second seal member having a second surface, with the second surface configured to generally abut at least a part of the first surface. At least a portion of at least one of the first surface and the second surface includes a coating that includes about 30 to about 80 weight percent of a hard carbide material, and about 20 to about 70 weight percent of lubricating material incorporated with the hard carbide material. The coating defines overlapping lenticular particles.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 13, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: Melvin Freling
  • Patent number: 7985703
    Abstract: A coating suitable for use as a wear-resistant coating for a gas turbine engine component comprises a lubricating material and a hard carbide material.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: July 26, 2011
    Assignee: United Technologies Corporation
    Inventor: Melvin Freling
  • Publication number: 20110109048
    Abstract: A method for producing a dispersion-hardened object which contains carbide nanoparticles comprises producing an object by means of a thermal spraying method, wherein downstream of the combustion chamber, the gas flow is supplied by means of a carrier gas with at least one precursor which reacts in the gas flow to form a carbide, or carbide nanoparticles are supplied via an external nanoparticle generator which is subject to a thermal load. It allows the production of a dispersion-hardened object such as, for example, a component for an internal combustion engine, for example a piston ring. The method is carried out by means of a thermal spraying device which, downstream of the combustion chamber, besides at least one line for supplying a thermal spray powder, further comprises at least one line for supplying a precursor by means of a carrier gas.
    Type: Application
    Filed: January 20, 2009
    Publication date: May 12, 2011
    Inventors: Michael Zinnabold, Marc-Manuel Matz, Marcus Kennedy
  • Publication number: 20110104383
    Abstract: The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: JOHN ROGER PETERSON, NARASIMHA-RAO V. BANGARU, ROBERT LEE ANTRAM, CHRISTOPHER JOHN FOWLER, NEERAJ S. THIRUMALAI, CHANGMIN CHUN, EMERY B. LENDVAI-LINTNER
  • Patent number: 7914856
    Abstract: The present invention provides methods for manufacturing an article having a wetting-resistant surface. The method includes providing a mixture comprising a plurality of micron-sized first particles and a plurality of nano-sized second particles, and a binder; depositing the mixture onto a substrate to form a wetting-resistant surface via a thermal spray process. The mixture is deposited without substantial melting of the first and second particles. The wetting-resistant surface has wettability sufficient to generate, with a reference fluid, a static contact angle of greater than about 90 degrees.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: Tao Deng, Dennis Michael Gray, Todd Charles Curtis, Yuk-Chiu Lau, Dalong Zhong, Ming Feng Hsu, Nitin Bhate, Kripa Kiran Varanasi, Pazhayannur Ramanathan Subramanian, Margaret Louise Blohm
  • Publication number: 20110026187
    Abstract: The present invention provides an improved electrostatic chuck for a substrate processing system. The electrostatic chuck comprising a main body having a top surface configured to support the substrate, a power supply to apply a voltage to the main body and a sealing ring disposed between the main body and the substrate wherein the sealing ring has a conductive layer.
    Type: Application
    Filed: January 19, 2010
    Publication date: February 3, 2011
    Inventor: Glyn J. Reynolds