Including Free Carbon Or Carbide Or Therewith (not As Steel) Patents (Class 428/367)
  • Publication number: 20100035019
    Abstract: A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 ?m to about 150 ?m, and a density of less than 20 mg/cm3. Also described is a carbon microtube, having a diameter of at least 10 ?m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Inventors: Huisheng Peng, Yuntian Theodore Zhu, Dean E. Peterson, Quanxi Jia
  • Patent number: 7655302
    Abstract: This invention relates generally to carbon fiber produced from fullerene nanotube arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 fullerene nanotubes in generally parallel orientation.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: February 2, 2010
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7651767
    Abstract: To provide a carbon fiber reinforcement having excellent thermal conductivity and mechanical properties which is manufactured by mixing together two different types of pitch-based carbon short fibers having a ratio of the degree of filament diameter distribution to average fiber diameter of 0.05 to 0.2 and a fiber length of 20 to 6,000 ?m which differ from each other in average fiber diameter or by mixing one of them with a pitch-based carbon fiber web to improve dispersibility into a matrix resin or increase the dispersion ratio of the pitch-based carbon short fibers.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: January 26, 2010
    Assignee: Teijin Limited
    Inventors: Masumi Hirata, Hiroshi Hara, Tetsuo Ban
  • Patent number: 7651768
    Abstract: A string for use in a string ribbon crystal has a base portion with a refractory material, and an externally exposed layer radially outward of the refractory material. The base portion has a coefficient of thermal expansion that is generally matched with the coefficient of thermal expansion for silicon. The externally exposed layer has a contact angle with silicon of between about 15 and 120 degrees.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 26, 2010
    Assignee: Evergreen Solar, Inc.
    Inventors: Christine Richardson, Weidong Huang, Richard Wallace, Daniel Doble, Scott Reitsma
  • Patent number: 7651766
    Abstract: A carbon nanotube reinforced metal nanocomposite material includes a continuous metal phase, and a plurality of carbon nanotubes dispersed in the continuous metal phase. The metal phase extends throughout substantially an entire thickness of the nanocomposite material. The nanotubes are preferably single wall nanotubes (SWNTs). Carbon nanotube reinforced metal nanocomposites according to the invention provide thermal conductivity and electrical conductivity which are generally significantly higher than the pure metal continuous phase material, mechanical strength is 2 to 3 times greater than that of the pure metal, and a tailorable coefficient of thermal expansion obtainable through changing the percentage of nanotubes in the nanocomposite.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: January 26, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Quanfang Chen
  • Publication number: 20100015444
    Abstract: A three dimensional network of carbon fibrous structure includes a granular part formed by thermal decomposition of carbon in peripheral directions of a catalyst; and a plurality of carbon fibers each having an outside diameter of 15-100 nm and bound to the granular part and extending outwardly from the granular part, wherein an outside diameter of the granular part is larger than an outside diameter of each carbon fiber, and wherein the plurality of carbon fibers are fused together at the granular part during the formation of the carbon fibrous structure. The granular part may look like a knot of the plurality of carbon fibers. The carbon fibers may be tubular carbon fibers that are bound to the granular part, but are not entangled with each other.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 21, 2010
    Applicant: Hodogaya Chemical Co., Ltd.
    Inventors: Takayuki Tsukada, Jiayi Shan
  • Publication number: 20100009160
    Abstract: A method of producing carbon nanofibers includes grinding untreated carbon nanofibers produced by a vapor growth method. The untreated carbon nanofibers are ground so that the ground carbon nanofibers have a tap density 1.5 to 10 times higher than that of the untreated carbon nanofibers. A method of producing a carbon fiber composite material includes mixing carbon nanofibers into an elastomer, and uniformly dispersing the carbon nanofibers in the elastomer by applying a shear force to obtain a carbon fiber composite material.
    Type: Application
    Filed: December 2, 2008
    Publication date: January 14, 2010
    Applicants: NISSIN KOGYO CO., LTD., MEFS KABUSHIKI KAISHA
    Inventors: Toru NOGUCHI, Hiroyuki UEKI, Satoshi IINOU, Kenji TAKEUCHI
  • Publication number: 20100009183
    Abstract: A carbon fiber composite material having an elastomer and vapor-grown carbon fibers dispersed in the elastomer. The vapor-grown carbon fibers are rigid fibers having an average diameter of 20 to 200 nm, an average length of 5 to 20 micrometers, and an average value of bending indices defined by the following expression (1) of 5 to 15, Bending index=Lx÷D??(1) Lx: length of linear portion of the vapor-grown carbon fiber, and D: diameter of the vapor-grown carbon fiber. The carbon fiber composite material has a dynamic modulus of elasticity (E?) at 150° C. of 30 MPa or more and an elongation at break (EB) of 140% or more.
    Type: Application
    Filed: April 20, 2007
    Publication date: January 14, 2010
    Applicant: NISSIN KOGYO CO., LTD.
    Inventors: Toru Noguchi, Akira Magario, Morinobu Endo
  • Publication number: 20100008994
    Abstract: The present invention relates to structures that contain one or more fiber and/or nanofiber structures where such structures can be formed on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In one embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In another embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.) where such fibers and/or structures are designed to sequester, carry and/or encapsulate one or more substances.
    Type: Application
    Filed: May 9, 2007
    Publication date: January 14, 2010
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Darrell Reneker, Tao Han, Daniel Smith, Camden Ertley, Joseph W. Reneker
  • Publication number: 20100003515
    Abstract: A polyacrylonitrile-based polymer, containing a polymer of which main component is acrylonitrile, which satisfies at least one kind requirement selected from the following [a] to [d]. [a] Z-average molecular weight (Mz) determined by gel-permeation chromatograph is 800,000 to 6,000,000 and degree of polydispersity (Mz/Mw) (Mw denotes weight average molecular weight) is 3.0 to 10.0. [b] Z+1-average molecular weight (Mz+1) determined by GPC method is 3,000,000 to 10,000,000 and degree of polydispersity (Mz+1/Mw) is 6.0 to 25.0. [c] Mzm determined by gel-permeation chromatograph multi-angle laserlight scattering photometry is 400,000 to 1,000,000 and degree of polydispersity (Mzm/Mwm) is 3.0 to 10.0. [d] Z-average radius of gyration (Rz) determined by gel-permeation chromatograph multi-angle laserlight scattering photometry is 25 to 45 nm and its ratio to weight average radius of gyration (Rz/Rw) is 1.3 to 2.5.
    Type: Application
    Filed: October 15, 2007
    Publication date: January 7, 2010
    Applicant: Toray Industries, Inc., A Corporation of Japan
    Inventors: Fumihiko Tanaka, Makoto Endo, Yuuki Okishima
  • Publication number: 20090318043
    Abstract: The invention concerns a method for making polymeric extruded composite products and carbon nanotubes. Said method includes the following steps: a) performing an oxidation pretreatment of the carbon nanotubes; b) dispersing the nanotubes in a polymer solution; c) extruding the resulting dispersion into an intermediate product; d) drying said intermediate product; e) post-treating said dried intermediate product by hot drawing process; f) post-treating said dried intermediate product of said drawn intermediate product by drawing in an ionic solution; g) performing a formalizing treatment process: Steps e) f) and g) are optional. The extruded polymeric products obtained by the inventive method can contain up to 80 wt. % of nanotubes.
    Type: Application
    Filed: March 5, 2007
    Publication date: December 24, 2009
    Applicant: NANOLEDGE INC.
    Inventors: Thibault Vaugien, Kai Schierholz
  • Patent number: 7631419
    Abstract: A disk processing device holds and rotates a disk with a spindle. Processing tapes are supplied out and wound up by a tape reel unit so as to sandwich and be pressed on both surfaces of the disk through contact rollers. As a crankshaft is rotated, a sliding plate rotates around it and a slidable shaft rotates around a fulcrum part while sliding along the sliding plate such that the contact roller undergoes a reciprocating motion in a radial direction of the disk together with a slider rotatably attached to the slidable shaft.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: December 15, 2009
    Assignee: NIHON Micro Coating Co., Ltd.
    Inventors: Hiromitsu Okuyama, Yuji Horie
  • Publication number: 20090302030
    Abstract: A composite material that increases in temperature upon exposure to electromagnetic radiation comprising single crystal silicon carbide whiskers and fibrils in a matrix material. Also, heat-generating objects comprising the composite material, and a method of generating heat.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 10, 2009
    Applicant: Advanced Composite Materials Corporation
    Inventors: Thomas E. QUANTRILLE, William M. Rogers
  • Publication number: 20090297847
    Abstract: Ultralong carbon nanotubes can be formed by placing a secondary chamber within a reactor chamber to restrict a flow to provide a laminar flow. Inner shells can be successively extracted from multi-walled carbon nanotubes (MWNTs) such as by applying a lateral force to an elongated tubular sidewall at a location between its two ends. The extracted shells can have varying electrical and mechanical properties that can be used to create useful materials, electrical devices, and mechanical devices.
    Type: Application
    Filed: March 27, 2009
    Publication date: December 3, 2009
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Philip Kim, Byung Hee Hong, Ju Young Lee, Kwang S. Kim
  • Publication number: 20090297846
    Abstract: An aligned double-walled carbon nanotube bulk structure composed of plural aligned double-walled carbon nanotubes and having a height of 0.1 ?m or more and a double-walled carbon nanotube are produced by chemically vapor depositing (CVD) a carbon nanotube in the presence of a metal catalyst with controlled particle size and thickness, preferably in the presence of moisture. According to this, it is possible to provide a double-walled nanotube which is free from inclusion of the catalyst, has high purity, is easy to control the alignment and growth, is able to achieve the fabrication through the formation of a bulk structure and has excellent electron emission characteristic (particularly, a double-walled carbon nanotube bulk structure) and also to provide a production technology thereof.
    Type: Application
    Filed: November 27, 2006
    Publication date: December 3, 2009
    Inventors: Kenji Hata, Takeo Yamada, Motoo Yumura, Sumio Iijima
  • Publication number: 20090286079
    Abstract: Strengthened filaments and fibers are realized by mixing and dissolving monomer and catalyst in a solvent into open-ended nanotubes to form a polymer precursor prior to polymerization in which the open nanotubes are filled with monomer and catalyst. The remaining steps for forming a stabilized filament may follow the conventional sequence. The result is that the nanotubes are “doubly-embedded” in the polymer matrix (bonds to the polymer inside and extending through the nanotube and bonds to other polymer chains outside the nanotube) in the filament. These additional bonds provide additional mechanical strength. The number of bonds may be further enhanced by pretreating the nanotubes to create defects in the nanotubes to form sites along the inner and outer walls for additional polymer-to-nanotube bonds.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 19, 2009
    Inventors: Delmar L. Barker, Mead M. Jordan, W. Howard Poisl
  • Publication number: 20090280324
    Abstract: A method is provided for producing a prepreg nanoscale fiber film. The method includes providing a network of nanoscale fibers, impregnating the network of nanoscale fibers with a resin, and B-stage curing the resin. A method is also provided for producing a composite structure from the prepreg nanoscale fiber film.
    Type: Application
    Filed: April 27, 2009
    Publication date: November 12, 2009
    Applicant: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Zhiyong Liang, Ben Wang, Chun Zhang
  • Patent number: 7615204
    Abstract: Long, macroscopic nanotube strands or cables, up to several tens of centimeters in length, of aligned single-walled nanotubes are synthesized by the catalytic pyrolysis of n-hexane using an enhanced vertical floating catalyst CVD technique. The long strands of nanotubes assemble continuously from ropes or arrays of nanotubes, which are intrinsically long. These directly synthesized long nanotube strands or cables can be easily manipulated using macroscopic tools.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: November 10, 2009
    Assignees: Rensselaer Polytechnic Institute, Tsinghua University
    Inventors: Pulickel M. Ajayan, Bingqing Wei, Hongwei Zhu, Cailu Xu, Dehai Wu
  • Patent number: 7597941
    Abstract: A method of synthesizing and controlling the internal diameters, conical angles, and morphology of tubular carbon nano/micro structures. Different morphologies can be synthesized included but not limited to cones, straight tubes, nozzles, cone-on-tube (funnels), tube-on-cone, cone-tube-cone, n-staged structures, multijunctioned tubes, Y-junctions, dumbbell (pinched morphology) and capsules. The process is based on changing the wetting behavior of a low melting metals such as gallium, indium, and aluminum with carbon using a growth environment of different gas phase chemistries. The described carbon tubular morphologies can be synthesized using any kind of gas phase excitation such as, but not limited to, microwave excitation, hot filament excitation, thermal excitation and Radio Frequency (RF) excitations. The depositions area is only limited by the substrate area in the equipment used and not limited by the process.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: October 6, 2009
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Mahendra Kumar Sunkara, Gopinath Bhimarasetti
  • Publication number: 20090226719
    Abstract: A system according to the present invention may be comprised of an epoxy resin, hardener and catalyst. One particular preferred system ratio is 1:1.64:0.005, respectively. The epoxy resin may be a tetrafunctional resin. The hardner may be a nadic methyl anhydride. One particularly preferred heat activated catalyst is 1-(2-hydroxypropyl) imidazole available from the Lindau Company under the brand name LINDAX 1. The amount of catalyst may be tailored to a certain desired pot life, oven cure and to promote polymer crosslinking at a faster rate. The system is particularly advantageous in the fabrication of composite bridge plugs.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Inventor: SARA MOLINA
  • Patent number: 7585434
    Abstract: (1) A carbonaceous material for forming an electrically conductive composition, comprising a vapor grown carbon fiber, each fiber filament of the carbon fiber having an outer diameter of 2 to 500 nm and an aspect ratio of 10 to 15,000, or the carbon fiber containing boron in an amount of 0.01 to 5 mass %, and graphitic particles and/or amorphous carbon particles, wherein the amount of the vapor grown carbon fiber is 10 to 90 mass %, the amount of the graphitic particles is 0 to 65 mass %, and the amount of the amorphous carbon particles is 0 to 35 mass %; (2) an electrically conductive composition comprising the carbonaceous material for forming an electrically conductive composition, and a producing method thereof; (3) an electrically conductive coating material comprising, as an electrically conductive material, the electrically conductive composition, and an electrically conductive coating film and electric device using the electrically conductive coating material.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: September 8, 2009
    Assignee: Showa Denko K.K.
    Inventors: Toshio Morita, Ryuji Yamamoto, Masaharu Toki
  • Publication number: 20090208742
    Abstract: A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.
    Type: Application
    Filed: October 2, 2008
    Publication date: August 20, 2009
    Inventors: Yuntian T. Zhu, Paul Arendt, Xiefei Zhang, Qingwen Li, Lei Fu, Lianxi Zheng
  • Publication number: 20090208708
    Abstract: Carbon-nanotube arrays, yarns, films and composites, and the methods for preparing the same are provided. The substrate used is non-flat and has a radius of curvature of at least about 10 ?m. The length of the carbon-nanotube yarns and films is at least about 1 cm. The method for preparing the carbon-nanotube composites includes the step of contacting a carbon-nanotube yarn or film with a polymer.
    Type: Application
    Filed: April 27, 2009
    Publication date: August 20, 2009
    Inventors: Fei Wei, Qiang Zhang, Weiping Zhou, Weizhong Qian
  • Publication number: 20090197082
    Abstract: A individually coated carbon nanotube wire-like structure includes an amount of carbon nanotubes and a conductive coating on an outside surface of the carbon nanotubes. The carbon nanotubes are joined end-to-end by van der Waals attractive force therebetween.
    Type: Application
    Filed: January 22, 2009
    Publication date: August 6, 2009
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Kai-Li Jiang, Liang Liu, Kai Liu, Qing-Yu Zhao, Yong-Chao Zhai, Shou-Shan Fan
  • Publication number: 20090186223
    Abstract: It relates to high purity single-walled carbon nanotubes having controlled diameter, useful as industrial materials, including high-strength carbon wire rods, particularly uniform single-walled carbon nanotubes having diameter fallen in a range of from 1.0 to 2.0 nm, and a method for producing the same efficiently, in large amount and inexpensively. The single-walled carbon nanotube obtained is characterized in that its diameter is fallen in a range of from 1.0 to 2.0 nm, and an intensity ratio IG/ID between G-band and D-band in a Raman spectrum is 200 or more. Furthermore, those single-walled carbon nanotubes are synthesized by a gas-phase flow CVD method that uses a saturated aliphatic hydrocarbon which is liquid at ordinary temperature as a first carbon source and an unsaturated aliphatic hydrocarbon which is gas at ordinary temperature as a second carbon source.
    Type: Application
    Filed: April 24, 2007
    Publication date: July 23, 2009
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Takeshi Saito, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20090176090
    Abstract: Disclosed is a method of forming an Al—C covalent bond between aluminum and a carbon material by applying an electric arc to a mixture of the aluminum and the carbon material under vacuum, heated and pressurized conditions. In order to enhance the reactivity of the carbon material, the method may include the step of introducing defects in the carbon material and thus functionalizing the carbon material by treating the carbon material with acid, a microwave, or plasma.
    Type: Application
    Filed: July 24, 2008
    Publication date: July 9, 2009
    Applicants: Sungkyunkwan University Foundation for Corporate Collaboration, Dayou Smart Aluminium Co., Ltd.
    Inventors: Kang Pyo So, Young Hee Lee, Kay Hyeok An
  • Publication number: 20090173918
    Abstract: The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
    Type: Application
    Filed: March 6, 2006
    Publication date: July 9, 2009
    Inventors: Mark C. Hersam, Samuel I. Stupp, Michael S. Arnold
  • Publication number: 20090162654
    Abstract: Disclosed is a method of encapsulating a carbon material within aluminum, the method including the steps of: (i) functionalizing a carbon material by introducing a defect therein; (ii) mixing the functionalized carbon material with aluminum; and (iii) ball milling the mixture under an inert gas atmosphere. In addition, the present invention discloses a method of fabricating an aluminum-carbon material composite, the method comprising the steps of: (i) functionalizing the carbon material by introducing a defect therein; (ii) mixing the functionalized carbon material with aluminum; and (iii) ball milling the mixture under an inert gas atmosphere, thereby encapsulating a carbon material within aluminum. Furthermore, the present invention discloses an aluminum-carbon material composite fabricated according to the method.
    Type: Application
    Filed: July 24, 2008
    Publication date: June 25, 2009
    Applicants: Sungkyunkwan University Foundation for Corporate Collaboration, Dayou Smart Aluminium Co., Ltd.
    Inventors: Kang Pyo So, Young Hee Lee
  • Publication number: 20090162653
    Abstract: A carbon fiber bundle is coated with a sizing agent containing a flexible epoxy resin (A) and an epoxy resin (B) incompatible with the flexible epoxy resin (A) as essential components, wherein the epoxy resin (B) is an aliphatic polyglycidyl ether compound having three or more epoxy groups and an epoxy equivalent of 200 or less. The carbon fiber bundle of this invention provides a carbon fiber reinforced composite excellent in the tensile strength and the compressive strength in the fiber direction and excellent in the tensile strength in the perpendicular direction to the fiber direction and the interlaminar shear strength.
    Type: Application
    Filed: November 8, 2006
    Publication date: June 25, 2009
    Applicant: TORAY Industries
    Inventors: Hiroaki Sakata, Motohiro Kuroki, Masanobu Kobayashi
  • Patent number: 7547472
    Abstract: A new, non-wrapping approach to functionalizing nanotubes, such as carbon nanotubes, in organic and inorganic solvents is provided. In accordance with certain embodiments, carbon nanotube surfaces are functionalized in a non-wrapping fashion by functional conjugated polymers that include functional groups. Various embodiments provide polymers that noncovalently bond with carbon nanotubes in a non-wrapping fashion. For example, various embodiments of polymers are provided that comprise a relatively rigid backbone that is suitable for noncovalently bonding with a carbon nanotube substantially along the nanotube's length, as opposed to about its diameter. In preferred polymers, the major interaction between the polymer backbone and the nanotube surface is parallel ?-stacking. In certain implementations, the polymers further comprise at least one functional extension from the backbone that are any of various desired functional groups for functionalizing a carbon nanotube.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: June 16, 2009
    Assignees: Zyvex Performance Materials, Inc., University of Pittsburgh - of the Commonwealth System of Higher Education
    Inventors: Jian Chen, Haiying Liu
  • Patent number: 7544415
    Abstract: A new, non-wrapping approach to solubilize nanotubes, such as carbon nanotubes, in organic and inorganic solvents is provided. In accordance with certain embodiments, carbon nanotube surfaces are functionalized in a non-wrapping fashion by functional conjugated polymers that include functional groups for solubilizing such nanotubes. Various embodiments provide polymers that noncovalently bond with carbon nanotubes in a non-wrapping fashion. For example, various embodiments of polymers are provided that comprise a relatively rigid backbone that is suitable for noncovalently bonding with a carbon nanotube substantially along the nanotube's length, as opposed to about its diameter. In preferred polymers, the major interaction between the polymer backbone and the nanotube surface is parallel ?-stacking. The polymers further comprise at least one functional extension from the backbone that are any of various desired functional groups that are suitable for solubilizing a carbon nanotube.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: June 9, 2009
    Assignees: Zyvex Performance Materials, Inc., University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: Jian Chen, Haiying Liu
  • Publication number: 20090143524
    Abstract: According to the present invention, a fiber-reinforced thermoplastic resin composition that is superior in adhesivity between reinforcing fiber and thermoplastic resin is provided. It is possible to sufficiently improve mechanical properties of a molded product with such composition. Such fiber-reinforced thermoplastic resin composition comprises a (meth)acrylic polymer (A1) having an aminoalkylene group in a side chain or a polymer having an oxazoline group (A2) (0.1% to 10% by weight), reinforcing fibers (B) (1% to 70% by weight), and a thermoplastic resin (C) (20% to 98.9% by weight).
    Type: Application
    Filed: September 27, 2006
    Publication date: June 4, 2009
    Inventors: Yoshifumi Nakayama, Masato Honma
  • Publication number: 20090136751
    Abstract: A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.
    Type: Application
    Filed: August 28, 2007
    Publication date: May 28, 2009
    Inventors: Yuntian T. Zhu, Paul Arendt, Qingwen Li, Xiefie Zhang
  • Publication number: 20090138077
    Abstract: According to an aspect of the invention, articles are provided which comprise a substrate and a ceramic coating which covers at least a portion of the substrate surface. The ceramic coating includes raised ceramic shells connected by a ceramic layer that is conformal with the substrate. According to another aspect of the present invention, carbon nanotubes are provided, which comprise a ceramic coating covering at least a portion of the carbon nanotubes.
    Type: Application
    Filed: July 27, 2007
    Publication date: May 28, 2009
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Jan Weber, Michele Zoromski
  • Patent number: 7537824
    Abstract: A friction material includes a fibrous base material having at least one type of petroleum pitch-based carbon fiber.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: May 26, 2009
    Assignee: BorgWarner, Inc.
    Inventor: Feng Dong
  • Publication number: 20090130442
    Abstract: An expanded graphite is derived from a graphitic or partially graphitic starting material selected from the group consisting of natural graphite, compressed expanded graphite, partially oxidized graphite and/or graphite fibers having a BET surface area of >30 m2/g. The expanded graphite is obtained by reaction of the starting material with substances capable of intercalation or mixtures of substances capable of intercalation to give a compound designated as an intercalation compound and subsequent expansion in plasma.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 21, 2009
    Applicants: SGL CARBON AG, BUNDESANSTALT FUR MATERIALFORSCHUNG UND -PRUFUNG
    Inventors: Martin Christ, Reinhard Mach, Asmus Meyer-Plath, Heinz-Eberhard Maneck
  • Publication number: 20090120600
    Abstract: The present invention discloses a nano carbon crystal material and a method of manufacturing electrothermal board using the same, which is a crystal material and a method of using the facial heat generating body to overcome the present existing problems related to even temperature rise and heat dissipation at the surface of the carbon fiber electrothermal board, poor contact between the carbon fiber and the conducting band, poor insulation, and short life expectancy. The nano carbon crystal material is composed of acrylonitrile-based carbon fibers occupying 70˜80% of the total weight, nano carbon fibers occupying 1˜5% of the total weight and carbon crystals occupying 15˜29% of the total weight. After the nano carbon crystal material is mixed with a paper pulp and an adhesive is added, the electrothermal board produced under pressurized conditions will have the advantages of high stability, fast temperature rise, good insulation, and long life.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 14, 2009
    Inventors: Ching-Ling Pan, Yung-Shun Wu
  • Patent number: 7527779
    Abstract: A vapor grown carbon fiber, each fiber filament of the carbonfiber having a branching degree of at least 0.15 occurrences/?m and a bulk density of 0.025 g/cm3 or less and a producing method of the carbon fiber by spraying a raw material solution containing a carbon source and a transition metallic compound into a reaction zone and subjecting the raw material solution to thermal decomposition, which is characterized in (1) spraying the raw material solution at a spray angle of 3° to 30° and (2) feeding a carrier gas through at least one site other than an inlet through which the raw material solution is sprayed, and a composite material comprising the carbon fiber.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: May 5, 2009
    Assignee: Showa Denko K.K.
    Inventors: Kotaro Yano, Masaharu Toki, Hitoshi Inoue, Tomoaki Yoshida, Eiji Kanbara
  • Patent number: 7517516
    Abstract: The invention provides a high purity carbonaceous material which is reduced in contents of oxygen, nitrogen and chlorine readily binding to carbon atoms and in contents of elements, phosphorus, sulfur and boron, readily binding to carbon atoms upon heating and which can be used in producing single crystals such as semiconductors, a high purity carbonaceous material for use as a substrate for ceramic layer coating, and a ceramic layer-coated high purity carbonaceous material. The high purity carbonaceous material has oxygen content of 1×1018 atoms/cm3 or less as determined by SIMS. Its chlorine content is preferably 1×1016 atoms/cm3 or less as determined by SIMS, and its nitrogen content is preferably 5×1018 atoms/cm3 or less as determined by SIMS. Its phosphorus, sulfur and boron contents are preferably not higher than respective specified values. Such a high purity carbonaceous material is coated with ceramic layer.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: April 14, 2009
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Ichiro Fujita, Satoru Nogami
  • Publication number: 20090093582
    Abstract: Carbon nanostructures are formed from a carbon precursor and catalytic templating nanoparticles and are treated with a severe oxidative agent to introduce oxygen-containing functional groups to the surface of the graphitic material. Methods for manufacturing carbon nanostructures generally include (1) forming a precursor mixture that includes a carbon precursor and a plurality of catalytic templating particles, (2) carbonizing the precursor mixture to form an intermediate carbon material including carbon nanostructures, amorphous carbon, and catalytic metal, (3) purifying the intermediate carbon material by removing at least a portion of the amorphous carbon and optionally at least a portion of the catalytic metal, and (4) treating the intermediate carbon material with a severe oxidative treatment to increase surface functionalization.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Cheng Zhang, Bing Zhou
  • Publication number: 20090093886
    Abstract: There is disclosed a gold surface for the catalytic release of hydrogen from an alkane thiol. More specifically, the present disclosure provides a large surface area of gold on a carbon fiber scaffold that does not contain any sublayers of metals that can block the catalytic release of hydrogen from alkane thiols or form other reactions that remove the sulfur moiety from alkane thiol. There is further disclosed a method for forming a gold surface onto woven carbon fiber sheets wherein no sublayer or other intermediate material is used.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 9, 2009
    Applicant: Asemblon, Inc.
    Inventors: David O'Connor, Robert Nelson
  • Publication number: 20090092831
    Abstract: Carbon fibers and carbon fiber yarn consisting of carbon fibers, the fibers having been pretreated by electrochemical oxidation, characterized in that they have a finish consisting of epoxy resin(s), a vinyl component, and a plasticizer in an amount of 0.3 to 5 wt. % relative to the carbon fibers, which are to be provided with the finish.
    Type: Application
    Filed: April 19, 2007
    Publication date: April 9, 2009
    Applicant: TOHO TENAX EUROPE GMBH
    Inventors: Silke Stusgen, Bernd Wohlmann, Matthias Schubert
  • Publication number: 20090087622
    Abstract: The present invention provides methods and tools for directed assembly of nanoelements across a large area using a nanosubstrate. The nanosubstrate has a substrate layer, an adhesive layer, a conductive layer, and an insulating layer that is interrupted by one or more nanotrenches or nanowells having a width of at least 20 nm. The nanosubstrate allows the rapid assembly of linear assemblies and arrays of single walled carbon nanotubes and nanoparticles by DC electrophoresis. The density of nanoelements assembled can be controlled by varying the voltage and trench size. Functionalized nanoparticles can be assembled into arrays useful, e.g., as biosensors.
    Type: Application
    Filed: December 1, 2006
    Publication date: April 2, 2009
    Inventors: Ahmed Busnaina, Nicol E. McGruer
  • Publication number: 20090081454
    Abstract: The invention relates to carbon nanoparticles from fibers or tubes or combinations thereof, which have the morphology of macroscopic, spherical and/or spheroid secondary agglomerates, separated from each other. The invention also relates to a method for producing carbon nanoparticles by a CVD method using nanoporous catalyst particles having a spherical and/or spheroid secondary structure and comprising nanoparticulate metals and/or metal oxides or the precursors thereof as the catalytically active components. The inventive carbon nanoparticles are suitable for use in adsorbents, additives or active materials in energy accumulating systems, in supercapacitors, as filtering media, as catalysts or supports for catalysts, as sensors or as substrate for sensors, as additives for polymers, ceramics, metals and metal alloys, glasses, textiles and composite materials.
    Type: Application
    Filed: July 7, 2006
    Publication date: March 26, 2009
    Applicant: ZENTRUM FUR SONNENENERGI-UND WASSERSTOFF- FORSCHUNG BADEN WURTTEMBERG GEMEINNUTZIGE SHIFTUNG
    Inventors: Peter Axmann, Margret Wohlfahrt-Mehrens, Ulrich Storr
  • Patent number: 7506523
    Abstract: This invention relates to a low cost method of converting solid glass or ceramic microparticles into hollow microspheres by feeding them, along with pulverized coal, into coal-powered furnaces. Coal-powered furnaces generally produce microsized fused particles of the ash in the coal—called fly ash; and some of the fly ash particles may be hollow. By the present invention the yield of hollow microparticles is greatly increased by co-feeding, along with the pulverized coal, very small amounts of microparticles of inorganic materials known to have the ability to form hollow microspheres upon fusion.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: March 24, 2009
    Inventor: Warren R. Beck
  • Publication number: 20090075077
    Abstract: The present invention discloses ultra-fine fibrous carbon and preparation of the same. Specifically, the present ultra-fine fibrous carbon is characterized by the graphite-like structure with the sp2 hybrid carbon content of more than 95% per total content; the (002) plane interlayer spacing (d002, d-spacing of C(002) profiles determined by X-ray diffraction method) of 0.3370˜0.3700 nm; the (002) plane stacking of more than 4 layers, namely the stacking height (Lc002) of more than 1.5 nm; fibrous carbon length per fibrous carbon width or diameter (aspect ratio) of more than 20; the average diameter of 5˜50 nm.
    Type: Application
    Filed: November 12, 2008
    Publication date: March 19, 2009
    Applicant: NEXEN NANO TECH CO., LTD.
    Inventor: Seong Ho YOON
  • Publication number: 20090061224
    Abstract: A method of making string for string ribbon crystal provides a substrate having an outer surface, and extrudes refractory material over the substrate. The refractory material substantially covers the outer surface of the substrate. The method then cures the refractory material.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Applicant: EVERGREEN SOLAR, INC.
    Inventors: Christine Richardson, Lawrence Felton
  • Publication number: 20090053512
    Abstract: A polymer coated nanoparticle containing a metallic core and a polymer shell encapsulating said metallic core is useful, for example, in magnetic tapes and supercapacitors.
    Type: Application
    Filed: March 12, 2007
    Publication date: February 26, 2009
    Applicant: THE ARIZONA BD OF REG ON BEHALF OF THE UNIV OF AZ
    Inventors: Jeffrey Pyun, Bryan Korth, Steven Bowles, Pei Yuin Keng
  • Publication number: 20090042028
    Abstract: A method for the synthesis of nanocomposites is provided. The method comprises the steps of mixing carbon nanotubes with a urea solution to form urea/carbon nanotube composites (first step), mixing the urea/carbon nanotube composites with a solution of a metal oxide or hydroxide precursor to prepare a precursor solution (second step), and hydrolyzing the urea in the precursor solution to form a metal oxide or hydroxide coating on the carbon nanotubes (third step). Further provided are nanocomposites synthesized by the method. In the nanocomposites, a metal oxide or hydroxide is coated to a uniform thickness in the nanometer range on porous carbon nanotubes. Advantageously, the thickness of the coating can be easily regulated by controlling the urea content of urea/carbon nanotube composites as precursors. In addition, the nanocomposites are nanometer-sized powders and have high electrical conductivity and large specific surface area.
    Type: Application
    Filed: January 25, 2008
    Publication date: February 12, 2009
    Inventors: Jin Go Kim, Sang Bok Ma, Kwang Heon Kim, Kwang Bum Kim
  • Publication number: 20090035569
    Abstract: The object of the present invention is carbon nanofibers mainly characterized by their high specific volume of mesopores, their high gas adsorption capacity and presenting a graphitic hollow structure. A second object of this invention is a procedure for obtaining such carbon nanofibers, which makes use of a metallic nickel catalyst and specific process furnace parameters that combined with the chemical composition of the furnace atmosphere and the fluidodynamic conditions of the gas stream inside the furnace, result in a faster growth of the carbon nanofibers and also in a higher quality of the carbon nanofibers obtained.
    Type: Application
    Filed: May 9, 2008
    Publication date: February 5, 2009
    Inventors: Jose Luis GONZALEZ MORAL, Jose VERA AGULLO, Cesar MERINO SANCHEZ, Ignacio MARTIN GULLON