In Coating Or Impregnation Patents (Class 428/368)
  • Patent number: 8574315
    Abstract: The present invention relates to structures that contain one or more fiber and/or nanofiber structures where such structures can be formed on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In one embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In another embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.) where such fibers and/or structures are designed to sequester, carry and/or encapsulate one or more substances.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 5, 2013
    Assignee: The University of Akron
    Inventors: Darrell Reneker, Tao Han, Daniel Smith, Camden Ertley, Joseph W. Reneker
  • Publication number: 20130281604
    Abstract: Provided are a reinforcing cord using a reinforcing fiber treating agent for improving the performance, particularly oil resistance, of rubber products, and a highly oil-resistant rubber product. By using a reinforcing fiber treating agent that has an ?,?-ethylenically unsaturated nitrile monomer unit content of 30-55 wt %, an acid group-containing ?,?-ethylenically unsaturated monomer unit content of 3-20 wt %, an iodine value of 120 or less and a tetrahydrofuran insoluble fraction of 30 wt % or more, the oil resistance of the reinforcing cord and thus the oil resistance of rubber products using the reinforcing cord are improved.
    Type: Application
    Filed: January 20, 2012
    Publication date: October 24, 2013
    Applicants: Nippon Sheet Glass Company, Limited, Zeon Corporation
    Inventors: Osamu Senda, Tomonori Nakashima
  • Publication number: 20130244121
    Abstract: This invention relates to novel applications for alliform carbon, useful in conductors and energy storage devices, including electrical double layer capacitor devices and articles incorporating such conductors and devices. Said alliform carbon particles are in the range of 2 to about 20 percent by weight, relative to the weight of the entire electrode. Said novel applications include supercapacitors and associated electrode devices, batteries, bandages and wound healing, and thin-film devices, including display devices.
    Type: Application
    Filed: September 16, 2011
    Publication date: September 19, 2013
    Applicants: Universite Paul Sabatier De Toulouse France, Drexel University
    Inventors: Yury Gogotsi, Vadym Mochalin, John Kenneth McDonough, Patrice Simon, Pierre-Louis Taberna
  • Publication number: 20130216828
    Abstract: A thermally and electrically conductive structure comprises a carbon nanotube (110) having an outer surface (111) and a carbon coating (120) covering at least a portion of the outer surface of the carbon nanotube. The carbon coating may be applied to the carbon nanotube by providing a nitrile-containing polymer, coating the carbon nanotube with the nitrile-containing polymer, and pyrolyzing the nitrile-containing polymer in order to form the carbon coating on the carbon nanotube. The carbon nanotube may further be coated with a low contact resistance layer (130) exterior to the carbon coating and a metal layer (140) exterior to the low contact resistance layer.
    Type: Application
    Filed: March 28, 2013
    Publication date: August 22, 2013
    Inventors: Linda Shekhawat, Nachiket Raravikar
  • Patent number: 8481158
    Abstract: An aggregate of carbon-based fine structures in which a plurality of carbon-based fine structures are collected, wherein respective carbon-based fine structures are oriented in the same direction. The above aggregate of carbon-based fine structures is an aggregate of a plurality of carbon-based fine structures in a state they are pulled by one another with strong interaction, and has such a length that allows the improvement of the handleability and workability thereof.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: July 9, 2013
    Assignees: Technology Research Institute of Osaka Prefecture, Taiyo Nippon Sanso Corporation, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd., Public University Corporation, Osaka Prefecture University
    Inventors: Yoshikazu Nakayama, Toshikazu Nosaka, Osamu Suekane, Takeshi Nagasaka, Toshiki Goto, Hiroyuki Tsuchiya, Keisuke Shiono
  • Publication number: 20130142987
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Application
    Filed: November 16, 2012
    Publication date: June 6, 2013
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Publication number: 20130143067
    Abstract: A metal plate or wire coated with a graphene layer and a method for manufacturing the graphene coated metal plate or wire are provided. The graphene coated metal plate or wire can include a nickel layer or a copper layer coated on an outer surface of the metal plate or wire, and a graphene layer coated on an outer surface of the nickel layer or the copper layer. The graphene coated metal plate or wire can be manufactured by using a chemical vapor deposition equipment or spraying a reduced graphene oxide (RGO) solution or a graphene oxide (GO) solution on the surface.
    Type: Application
    Filed: February 8, 2012
    Publication date: June 6, 2013
    Applicant: K-TECHNOLOGY USA, INC.
    Inventors: Ki Il KIM, Young K. Kim, Sang-Woo Kim
  • Publication number: 20130126793
    Abstract: [Problems] To provide a vapor-grown carbon fiber aggregate, wherein the carbon fiber has a structure of two or more tubular graphene layers and of which the central portion in cross section of the fiber is hollow, has a little unevenness in the structure and exhibits excellent electric conductivity. [Means for Solution] A vapor-grown carbon fiber aggregate, wherein the carbon fiber has a structure of two or more tubular graphene layers and of which the central portion in cross section of the fiber is hollow, the average outer fiber diameter of the carbon fibers is from 10 to 300 nm, and not less than 70% of the whole number of the carbon fibers have hollow diameters of from 2 to 20 nm and hollow diameter/outer fiber diameter ratios of from 1.4 to 20%.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 23, 2013
    Applicant: HODOGAYA CHEMICAL CO., LTD.
    Inventors: Yoshinori Hitoe, Jun Suzuki, Hiroshi Sato, Shoji Kawashima
  • Publication number: 20130087552
    Abstract: Provided is a method of preparing carbon-carbon composite fibers including forming a mixed solution including a carbon precursor and an organic solvent, dipping carbon fibers in the mixed solution, and performing a heat treatment on the dipped carbon fibers to convert the carbon precursor into a carbon material and impregnating the carbon fibers with the carbon material.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 11, 2013
    Inventors: Youngjun LEE, Seongho Cho, Kapseung Yang, Bohye Kim, Changhyo Kim, Donghun Lee
  • Publication number: 20130090030
    Abstract: A method of treatment for synthetic or natural fibre or yarn includes coating the fibre/yarn with a dispersion of carbon nanotubes in a coating composition which is cured by actinic radiation, such as UV, to provide a flexible conductive layer on the fibre/yarn. The liquid coating composition is sheared along the direction of a long axis of the yarn as it is applied to the yarn whereby the carbon nanotubes are substantially aligned prior to curing of the coating layer to provide improved longitudinal conductance. The method provides conductive fibre/yarn, from which anti-static textiles and fabrics can be formed, by treatment of conventional fibre/yarn and in a method with low energy consumption. The improved conductance allows thin or partial (e.g.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 11, 2013
    Applicant: DEVAN CHEMICALS NV
    Inventors: David Van De Vyver, Frank Godefroidt, Dirk Luyckx, Laure Chaboche, Karin Eufinger, Paul Roshan, Myriam Vanneste, Marc Van Parys, Xavier Decant, Helena Esteve Nunez
  • Publication number: 20130072077
    Abstract: Systems and methods for the formation of nanostructures, including carbon-based nanostructures, are generally described. In certain embodiments, substrate configurations and associated methods are described.
    Type: Application
    Filed: February 29, 2012
    Publication date: March 21, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Stephen A. Steiner, III, Brian L. Wardle, Richard Li
  • Patent number: 8394296
    Abstract: An electroconductive fiber, a method of manufacturing an electroconductive fiber, and a fiber complex including an electroconductive fiber are provided, the electroconductive fiber includes an electroconductive polymer, an elastic polymer that forms a structure with the electroconductive polymer, and a carboneous material on at least one of the electroconductive polymer and the elastic polymer.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-jin Park, Jae-hyun Hur, Jong-min Kim, Seung-nam Cha, Un-jeong Kim, Hyung-bin Son
  • Patent number: 8357433
    Abstract: Polymer brushes (50) in a resin that create phonon pathways therein. The polymer brushes themselves comprise structured polymer hairs having a density of 0.8 to 1.0 g/cc, a chain length of 1 to 1000 nm, and a thermal conductivity of 0.5 to 5.0 W/mK. The polymer brushes are 10-25% by volume of the resin, and the polymer hairs can orient surrounding resin molecules to the polymer hairs alignment (55).
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 22, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Gary C. Stevens, James D. B. Smith, John W. Wood
  • Publication number: 20120315065
    Abstract: An electro-conductive multifilament yarn for forming an electro-conductive brush comprises an electro-conductive fiber containing a synthetic fiber and a carbon nanotube covering a surface of the fiber. The synthetic fiber may have a single-filament fineness of not more than 30 dtex. The synthetic fiber may have 3 to 6 elongated recesses or grooves extending in a longitudinal direction thereof and have a multi-leaves or star-shaped cross-section. The electro-conductive multifilament yarn of the present invention has a high electro-conductivity and may have an electric resistance value of 1×106 to 1×1011 ?/cm at 20° C. Further, the electro-conductivity has a high uniformity; the standard deviation of a logarithm of the electric resistance value may be not more than 1.0.
    Type: Application
    Filed: March 3, 2011
    Publication date: December 13, 2012
    Applicants: Kurarayliving Co., Ltd., National University Corporation Hokkaido University, Tsuchiya TSCO Co., Ltd., Chakyu Dyeing Co., Ltd.
    Inventors: Eiji Akiba, Masaaki Hachiya, Hidetaka Yamauchi, Bunshi Fugetsu
  • Publication number: 20120308818
    Abstract: Tin powder is heated in a flowing stream of an inert gas, such as argon, containing a small concentration of carbon-containing gas, at a temperature to produce metal vapor. The tin deposits as liquid on a substrate, and reacts with the carbon-containing gas to form carbon nanotubes in the liquid tin. Upon cooling and solidification, a composite of tin nanowires bearing coatings of carbon nanotubes is formed.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicants: THE UNIVERSITY OF WESTERN ONTARIO, GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xueliang SUN, Ruying LI, Yuqin ZHOU, Mei CAI, Hao LIU
  • Publication number: 20120298396
    Abstract: The present disclosure relates to a manufacturing method of a graphene fiber, a graphene fiber manufactured by the same method, and use thereof. The graphene fiber formed by using graphenes of linear pattern can be applied to various fields such as an electric wire and coaxial cable.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: VRYUS CO., LTD.
    Inventors: Byung Hee HONG, Keun Soo KIM, Hyeong Keun KIM, Su Kang BAE
  • Publication number: 20120295108
    Abstract: This invention provides a carbon nanostructure including: carbon containing rod-shaped materials and/or carbon containing sheet-shaped materials which are bound three-dimensionally; and graphene multilayer membrane walls which are formed in the rod-shaped materials and/or the sheet-shaped materials; wherein air-sac-like pores, which are defined by the graphene multilayer membrane walls, are formed in the rod-shaped materials and/or the sheet-shaped materials.
    Type: Application
    Filed: August 2, 2012
    Publication date: November 22, 2012
    Inventors: Nobuyuki NISHI, Kazuhiko MIZUUCHI, Norikazu ADACHI, Yasuyuki OOBA
  • Publication number: 20120288762
    Abstract: Embodiments of the present disclosure provide for flexible graphene-coated pyrolytic carbon materials or structures, methods of making, methods of use, materials including the graphene-coated pyrolytic carbon material or structure, structures including the graphene-coated pyrolytic carbon material or structure, and the like.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 15, 2012
    Applicant: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.
    Inventors: Ian R. Hardin, Ming Zhang
  • Publication number: 20120276383
    Abstract: A carbon fiber bundle has carbon fibers and a sizing agent, wherein the sizing agent comprises a water soluble polyurethane resin having an SP value of 11.2 to 13.3, and the sizing agent is deposited on the carbon fibers at a rate of 0.5 to 7% by mass. In another carbon fiber bundle, the sizing agent is composed of the component shown in (A) and the component shown in (B1) or (B2) below, and the sizing agent is deposited on the carbon fibers at a rate of 0.5 to 7% by mass: (A) 73 to 98% by mass of a polyoxyalkylene unit; (B1) 0.5 to 15% by mass of an aromatic ester unit, 1.5 to 10% by mass of an aromatic urethane unit; and (B2) 0.5 to 10% by mass of an aromatic ester unit, 1.5 to 11% by mass of an aliphatic urethane unit.
    Type: Application
    Filed: January 6, 2011
    Publication date: November 1, 2012
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Noriyuki Hirano, Atsuki Tsuchiya, Masato Honma
  • Publication number: 20120263935
    Abstract: A composition includes a carbon nanotube (CNT) yarn or sheet and a plurality of carbon nanostructures (CNSs) infused to a surface of the CNT yarn or sheet, wherein the CNSs are disposed substantially radially from the surface of the CNT yarn or outwardly from the sheet. Such compositions can be used in various combinations in composite articles.
    Type: Application
    Filed: June 5, 2012
    Publication date: October 18, 2012
    Applicant: Applied Nanostructured Solutions, LLC
    Inventors: Jordan T. Ledford, Matthew R. Laszewski, Harry C. Malecki
  • Publication number: 20120258308
    Abstract: Heterogeneous nanowires having a core-shell structure consisting of single-crystal apatite as the core and graphitic layers as the shell and a synthesis method thereof are provided. More specifically, provided is a method capable of producing large amounts of heterogeneous nanowires, composed of graphitic shells and apatite cores, in a reproducible manner, by preparing a substrate including an element corresponding to X of X6(YO4)3Z which is a chemical formula for apatite, adding to the substrate a gaseous source containing an element corresponding to Y of the chemical formula, adding thereto a gaseous carbon source, and allowing these reactants to react under optimized synthesis conditions using chemical vapor deposition (CVD), and to a method capable of freely controlling the structure and size of the heterogeneous nanowires and also to heterogeneous nanowires synthesized thereby.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Nam Jo Jeong, Jung Hoon Lee
  • Publication number: 20120195733
    Abstract: A cable contains filaments containing carbon, surrounded by a sizing. The filaments surrounded by the sizing are covered by a matrix which is composed of a material containing at least one elastomer and/or at least one thermoplastic elastomer. The cable can be used, in particular for pulling a load, for example in a goods lift.
    Type: Application
    Filed: March 12, 2012
    Publication date: August 2, 2012
    Applicant: SGL CARBON SE
    Inventors: CHRISTIAN BRUCH, FLORIAN GOJNY
  • Publication number: 20120189846
    Abstract: A composition includes a carbon nanotube (CNT)-infused ceramic fiber material, wherein the CNT-infused ceramic fiber material includes: a ceramic fiber material of spoolable dimensions; and carbon nanotubes (CNTs) bonded to the ceramic fiber material. The CNTs are uniform in length and uniform in distribution. A continuous CNT infusion process includes (a) disposing a carbon-nanotube forming catalyst on a surface of a ceramic fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the ceramic fiber material, thereby forming a carbon nanotube-infused ceramic fiber material.
    Type: Application
    Filed: November 2, 2009
    Publication date: July 26, 2012
    Applicant: Lockheed Martin Corporation
    Inventors: Tushar K. SHAH, Slade H. GARDNER, Mark R. ALBERDING, Harry C. MALECKI
  • Publication number: 20120164448
    Abstract: A carbon fiber bundle dispersion method, which sequentially includes the following steps: a degumming step, an oxidation step, a surface impurity removing step, a film forming step, a first baking step, a carbonization reaction step, a slight acid neutralization step, an alkaline matter rinsing step, a second baking step and a rubbing step. Through the present invention, a carbon fiber bundle can be dispersed into thinner carbon fiber fine bundles, without need to be soaked in a special liquid to keep their dispersion state. In an ordinary air, the respective carbon fiber fine bundles can still maintain a separation state relative to each other, and thus are convenient to be used in a subsequent mixing process.
    Type: Application
    Filed: December 27, 2010
    Publication date: June 28, 2012
    Inventors: PAO-HWA YU, YUN-PING WANG, CHUNG-HUA CHEN
  • Publication number: 20120107610
    Abstract: The present invention relates to fullerene carbon nanotubes having a cylindrical wall comprising a double layer of carbon atoms and methods for the production and application of these double-wall carbon nanotubes; and, more particularly, to nanotubes with controlled number of carbon layers and methods for the production of macroscopic amounts of these nanotubes and there application as cathode materials in the cold field electron emission devices, notable such devices comprising light emitting CRT's.
    Type: Application
    Filed: January 9, 2012
    Publication date: May 3, 2012
    Applicant: MATERIALS AND ELECTROCHEMICAL RESEARCH CORPORATION
    Inventors: Alexander P. MORAVSKY, Raouf O. LOUTFY
  • Patent number: 8153229
    Abstract: Provided is an epoxy resin composition for fiber-reinforced composite materials, which serves as a matrix resin for a prepreg. This epoxy resin composition is improved in tackiness stability during storage, while maintaining mechanical characteristics. The epoxy resin composition for fiber-reinforced composite materials is characterized by containing 25 to 50 parts by weight of an amine curing agent (B) selected from aliphatic polyamines, alicyclic polyamines and aromatic polyamines, and 1 to 20 parts by weight of an organic acid dihydrazide compound (C) having a melting point of not less than 150° C., per 100 parts by weight of an epoxy resin (A).
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 10, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Takashi Kousaka, Mitsuhiro Iwata, Tomohiro Ito
  • Patent number: 8142875
    Abstract: Provided is an epoxy resin composition for fiber-reinforced composite materials, which serves as a matrix resin composition for use in a self-adhesive prepreg for a face sheet of a honeycomb panel. The epoxy resin composition enables to increase self-adhesiveness of the prepreg, while improving workability and appearance quality of the prepreg. The epoxy resin composition is characterized by containing: an epoxy resin (A) which is in a liquid state at room temperature; a thermoplastic resin (B) which dissolves in the epoxy resin (A) at a temperature not less than 90° C.; thermosetting resin particles (C) which do not completely dissolve in the epoxy resin (A) at a temperature less than 90° C. and has a softening point of not less than 120° C.; and a curing agent (D).
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: March 27, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Takashi Kousaka, Mitsuhiro Iwata, Tomohiro Ito
  • Patent number: 8137786
    Abstract: Provided is an epoxy resin composition for fiber-reinforced composite materials, which is improved in toughness necessary for improving the strength of self-adhesion of a matrix resin for use in a prepreg for a face sheet of a honeycomb panel. The epoxy resin composition, which comprises: an epoxy resin (A); a thermoplastic resin (B); fine solid resin particles (C); and a curing agent (D), is characterized in that the epoxy resin composition after being cured has a morphology in which the epoxy resin (A) and the thermoplastic resin (B) form co-continuous phases, and the fine solid resin particles (C) are dispersed in at least the continuous phase of the epoxy resin (A) in the co-continuous phases.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: March 20, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Takashi Kousaka, Tomohiro Ito, Mitsuhiro Iwata, Koichiro Miyoshi
  • Publication number: 20120045645
    Abstract: A macro-scale carbon nanotube tube structure is provided. The carbon nanotube tube structure is a tube-shaped structure. The tube-shaped structure includes a plurality of carbon nanotubes combined with each other by van der Waals force. The carbon nanotubes are substantially parallel to the outer surface of the tube-shaped structure, and substantially spirally arranged around a linear axis of the tube-shaped structure by van der Waals force therebetween.
    Type: Application
    Filed: March 9, 2011
    Publication date: February 23, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Publication number: 20120045643
    Abstract: The present disclosure provides a carbon nanotube wire structure. The carbon nanotube wire structure includes a flexible core and a carbon nanotube layer. The carbon nanotube layer wraps around the flexible core. The flexible core is a linear structure. The carbon nanotube layer includes a number of carbon nanotubes oriented around the flexible core in a helix manner. The present disclosure also provides a method for making the carbon nanotube wire structure.
    Type: Application
    Filed: December 25, 2010
    Publication date: February 23, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: KAI LIU, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20120045644
    Abstract: A carbon nanotube composite wire structure includes a conductive thread structure and a carbon nanotube layer. The carbon nanotube layer can be wrapped around the conductive thread structure from one end of the conductive thread structure to the other end of the conductive thread structure. The carbon nanotube layer is a consecutive layer structure and comprises of a plurality of carbon nanotubes. A method for making the above mentioned carbon nanotube composite wire structure is also provided.
    Type: Application
    Filed: December 28, 2010
    Publication date: February 23, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Patent number: 8092904
    Abstract: Disclosed herein is an optical article having a first optical layer; a second optical layer; and an antistatic layer disposed between the first and second optical layers, the antistatic layer having conducting particles having an aspect ratio greater than about 10. The conducting particles may comprise vanadium oxide particles or carbon nanotubes. The optical article may be a brightness enhancement film, a retro-reflecting film, or a reflective polarizer, and be used in a display device, for example, a liquid crystal display device.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: January 10, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Mark J. Pellerite, Eileen M. Flaherty Haus, Tzu-Chen Lee
  • Publication number: 20110245576
    Abstract: The invention relates to textile fibers at least partially covered with a nanometric-sized semiconducting material having photocatalytic properties for degrading chemical compounds, in particular chemical or biological agents, wherein said semiconducting material is in the form of nanostructure or nanocomposites with a one-dimensional morphology. The textile fibers can be used for application in the military, medical, and civilian domains, etc. The curves 60 and 62 respectively show the photocatalytic degradation of organic compounds at the surface of textile fibers covered with nanostructures or nanocomposites having a one-dimensional morphology according to the invention, and nanoparticles having a granular morphology according to the prior art. The nanostructures are nanocomposites of the invention 60 are more efficient.
    Type: Application
    Filed: March 6, 2009
    Publication date: October 6, 2011
    Inventors: Valèrie Keller-Spitzer, Nicolas Keller, Mathieu Grandcolas, Alain Louvet
  • Patent number: 8017228
    Abstract: Composite materials with a polymer matrix, low resistivity graphite coated fillers having exfoliated and pulverized graphite platelets coated on an outer surface of high resistivity fillers, are provided. The fillers can be fibers or particles. The composite materials incorporating the graphite coated fillers as reinforcements can be electrostatically painted without using a conductive primer on the polymer matrix.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 13, 2011
    Assignee: Board of Trustees of Michigan State University
    Inventors: Lawrence T. Drzal, Wanjun Liu, Hiroyuki Fukushima, InHwan Do
  • Publication number: 20110183139
    Abstract: This invention relates generally to organized assemblies of carbon and non-carbon compounds and methods of making such organized structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. This invention is further drawn to the separation of single-wall carbon nanotubes. In particular, it relates to the separation of semiconducting single-wall carbon nanotubes from conducting (or metallic) single-wall carbon nanotubes. It also relates to the separation of single-wall carbon nanotubes according to their chirality and/or diameter.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 28, 2011
    Inventors: Leonid Grigorian, Steven G. Colbern, Alex E. Moser, Robert L. Gump, Daniel A. Niebauer, Sean Imtiaz Brahim
  • Patent number: 7978946
    Abstract: An optical fiber includes a glass fiber having a glass core and a cladding which contains voids spaced apart from the core. The voids act as trapping sites for ingressing molecules from the surrounding environment, thereby reducing the effect of such molecules on the fiber's light-transmission properties.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: July 12, 2011
    Assignee: Verrillon, Inc.
    Inventors: Imtiaz Majid, Abdel Soufiane, Kanxian Wei, Gary Drenzek, Chih-Hao Wang
  • Publication number: 20110151254
    Abstract: Electro-conductive fibers comprise synthetic fibers and an electro-conductive layer containing carbon nanotubes and covering a surface of the synthetic fibers, and the coverage of the electro-conductive layer relative to the whole surface of the synthetic fibers is not less than 60% (particularly not less than 90%). The electric resistance value of the electro-conductive fibers ranges from 1×10?2 to 1×1010 ?/cm, and the standard deviation of the logarithm of the electric resistance value is less than 1.0. The thickness of the electro-conductive layer ranges from 0.1 to 5 ?m, and the ratio of the carbon nanotubes may be 0.1 to 50 parts by mass relative to 100 parts by mass of the synthetic fibers. The electro-conductive layer may further contain a binder. The electro-conductive fibers may be produced by immersing the synthetic fibers in a dispersion with vibrating the synthetic fibers to form the electro-conductive layer adhered to the surface of the synthetic fibers.
    Type: Application
    Filed: August 31, 2009
    Publication date: June 23, 2011
    Applicants: NATIONAL UNIVERSITY CORP. HOKKAIDO UNIVERSITY, KURARAYLIVING CO., LTD., MITSUI & CO., LTD.
    Inventors: Bunshi Fugetsu, Eiji Akiba, Masaaki Hachiya
  • Publication number: 20110133051
    Abstract: A system for applying tension to a component for use in molten metal processing. Preferably, the component includes an outer core and at least one tension rod positioned partially within the outer core. The component is preferably elongated, such as a support post or an impeller shaft. The tension rod applies compression to the outer cover, which makes the outer cover more resistant to breakage if it strikes, or is stricken by, an object.
    Type: Application
    Filed: August 9, 2010
    Publication date: June 9, 2011
    Inventor: Paul V. Cooper
  • Patent number: 7956025
    Abstract: Fibers and fabrics having microcapsules containing active components adhered to the fibers and textiles by a binder material are provided. The fibers and textiles are produced by applying to the fiber and textiles a dispersion containing the microcapsules and the binder.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: June 7, 2011
    Assignee: Cognis IP Management GmbH
    Inventors: Terese Copete Vidal, Rafael Pi Subirana, Anna Tacies Capdevila
  • Patent number: 7951452
    Abstract: The suede artificial leather of the present invention comprises a three-dimensional entangled body comprising a superfine fiber having a fineness of 0.2 dtex or less and an elastomeric polymer A, and satisfies the requirements (1) to (4) as specified in the specification. By meeting the requirements, the suede artificial leather acquires excellent color fastness to light and color development in a wide range of colors and a high quality with good suede feeling, surface touch, hand, mechanical properties and color fastness.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: May 31, 2011
    Assignee: KURARAY Co., Ltd.
    Inventors: Kimio Nakayama, Tsuyoshi Yamasaki, Nobuo Takaoka, Mitsuru Kato, Shuhei Yorimitsu
  • Publication number: 20110123858
    Abstract: The invention relates to a composite material comprising carbon fibers and complex oxide particles, wherein the carbon fibers and the complex oxide particles have a carbon coating on at least part of their surface, said carbon coating being a non powdery coating The material is prepared by a method comprising mixing a complex oxide or precursors thereof, an organic carbon precursor and carbon fibers, and subjecting the mixture to a heat treatment in an inert or reducing atmosphere for the decomposition of the precursors The material is useful as the cathode material in a battery
    Type: Application
    Filed: July 24, 2009
    Publication date: May 26, 2011
    Applicants: HYDRO-QUEBEC, SHOWA DENKO K.K.
    Inventors: Karim Zaghib, Chiaki Sotowa, Abdelbast Guerfi, Masataka Takeuchi, Patrick Charest
  • Patent number: 7940381
    Abstract: A semiconductor nanowire is coated with a chemical coating layer that selectively attaches to the semiconductor material and which forms a dye in a chemical reaction. The dye layer comprises a material that absorbs electromagnetic radiation. A portion of the absorbed energy induces electronic excitation in the chemical coating layer from which additional free charge carriers are temporarily donated into the semiconductor nanowire. Thus, the conductivity of the semiconductor nanowire increases upon illumination on the dye layer. The semiconductor nanowire, and the resulting dye layer collective operate as a detector for electromagnetic radiation.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Lidija Sekaric
  • Publication number: 20110101265
    Abstract: A catalyst for producing a carbon nanofiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or the fluid dispersion, and then impregnating a particulate carrier with the solution or the fluid dispersion. A carbon nanofiber is obtained by bringing a carbon element-containing compound into contact with the catalyst in a vapor phase at a temperature of 300 degrees C. to 500 degrees C.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Publication number: 20110104490
    Abstract: A catalyst for production of a carbon fiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or a fluid dispersion, and then by impregnating a particulate carrier with the solution or the fluid dispersion. By means of a step of bringing a carbon source into contact with the catalyst in a vapor phase, the carbon fiber is obtained which is tubular and in which a graphite layer is approximately parallel with the carbon fiber axis, and a shell is in a multi-walled structure.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Patent number: 7897241
    Abstract: A composite spacer operable to be mounted on a first component is disclosed herein, wherein compression loads associated with attaching the first component to some other structure are born by the composite spacer to limit compressive deformation of the first component. The composite spacer includes a first body formed of resin and defining an aperture extending along an axis. The composite spacer also includes a plurality of first fibers positioned in the first body about the aperture. Each of the first fibers extends substantially parallel to the axis and increases a compressive strength of the first body relative to the axial direction.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 1, 2011
    Assignee: Rolls-Royce Corporation
    Inventor: Edward Claude Rice
  • Publication number: 20110039057
    Abstract: A laminated composite rod includes a rod body having a generally circular or oval cross-section and comprising a plurality of laminated composite plies disposed at various orientations with respect to each other.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 17, 2011
    Inventors: Douglas A. Frisch, Marc J. Piehl, Kava S. Crosson-Elturan, Kirk B. Kajita
  • Patent number: 7887917
    Abstract: Provided are inorganic fibers containing calcium and alumina as the major fiber components. According to certain embodiments, the inorganic fibers containing calcia and alumina are provided with a coating of a phosphorous containing compound on at least a portion of the fiber surfaces. Also provided are methods of preparing the coated and non-coated inorganic fibers and of thermally insulating articles using thermal insulation comprising the inorganic fibers.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: February 15, 2011
    Assignee: Unifrax I LLC
    Inventors: Bruce K. Zoitos, Michael J. Andrejcak, Paul M. Boymel
  • Patent number: 7865055
    Abstract: The invention relates to coated optical fibers comprising soft primary coatings and to such primary coatings for protecting glass optical fibers having a sufficient high resistance against cavitation. In particular, the primary coatings have a cavitation strength at which a tenth cavitation appears (?10cav) of at least about 1.0 MPa as measured at a deformation rate of 0.20% min?1 and of at least about 1.4 times their storage modulus at 23° C. The coating preferably shows strain hardening in a relative Mooney plot, preferably has a strain energy release rate Go of about 20 J/m2 or more, and preferably has a low volumetric thermal expansion coefficient. The invention furthermore provides a method and apparatus for measuring the cavitation strength of a primary coating.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 4, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Markus J. H. Bulters, Gerrit Rekers, Philippe W. P. V. Bleiman, Jozef M. H. Linsen, Alexander A. M. Stroeks, Johannes A. Van Eekelen, Adrianus G. M. Abel, Marko Dorschu, Paulus A. M. Steeman
  • Patent number: 7857988
    Abstract: The present invention relates to a sound deadener melt pad composition, wherein the composition includes an asphalt, EVA H2020, a oil palm fiber, a hydraulic lime and an oil palm olein.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: December 28, 2010
    Assignee: Malaysian Palm Oil Board (MPOB)
    Inventors: Ridzuan bin Ramli, Mohd Basri bin Wahid, Nasrin bin Abu Bakar, Robaya bt Mohamed Halim, Ravindranathan a/l N. Narayana Menon, Astimar bt Abd Aziz
  • Publication number: 20100316873
    Abstract: Tin powder is heated in a flowing stream of an inert gas, such as argon, containing a small concentration of carbon-containing gas, at a temperature to produce metal vapor. The tin deposits as liquid on a substrate, and reacts with the carbon-containing gas to form carbon nanotubes in the liquid tin. Upon cooling and solidification, a composite of tin nanowires bearing coatings of carbon nanotubes is formed.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 16, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC
    Inventors: Xueliang Sun, Ruying Li, Yuqin Zhou, Mei Cai, Hao Liu