Fibers Or Filaments Nonconcentric (e.g., Side-by-side Or Eccentric, Etc.) Patents (Class 428/374)
  • Patent number: 8293364
    Abstract: A highly shrinkable fiber composed of nylon-MXD6 polymer and nylon-6 polymer, characterized in that a weight ratio therebetween is in the range of 35:65 to 70:30, and that each thereof exhibits a breaking strength of 4.00 cN/dtex or greater. Preferably, the weight ratio between nylon-MXD6 polymer and nylon-6 polymer of the highly shrinkable fiber is in the range of 45.55 to 55:45. The highly shrinkable fiber exhibits a high shrinkage ratio in boiling water, so that when the highly shrinkable fiber is used in a woven fabric, there can be realized a high density.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 23, 2012
    Assignee: KB Seiren, Ltd.
    Inventors: Hayato Iwamoto, Yoshitomo Hara, Hideo Ueda, Masaharu Saito
  • Patent number: 8288116
    Abstract: The present invention relates to novel methods and compositions for detection and isolation of cancer cells with metastatic potential. The invention further relates to assays for measuring the metastatic potential of such cancer cells and drug screening assays for the identification of agents having anti-metastatic potential. The present invention further provides methods and compositions for inhibiting the metastatic potential of cancer cells by modulating the activity of serine integral membrane proteases [(SIMP) consisting of seprase and dipetidyl peptidase IV (DPPIV)] expressed on the surface of metastasizing cancer cells.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 16, 2012
    Assignee: The Research Foundation of State University of New York
    Inventor: Wen-Tien Chen
  • Publication number: 20120249275
    Abstract: A power transformer is provided that includes a first transformer component, a second transformer component, and a composite structure positioned between the first transformer component and the second transformer component. The composite structure includes a first composite fiber having at least one base fiber, a sheath of binder material, and nanoclay particles, and a second composite fiber, having at least one base fiber, bound to the first composite fiber by at least a portion of the sheath.
    Type: Application
    Filed: September 25, 2011
    Publication date: October 4, 2012
    Applicant: Waukesha Electric Systems, Inc.
    Inventors: Thomas M. Golner, Shirish P. Mehta, Padma P. Varanasi
  • Publication number: 20120238173
    Abstract: The present invention discloses environmentally degradable multicomponent fibers. The configuration of the multicomponent fibers may be side-by-side, sheath-core, segmented pie, islands-in-the-sea, or any combination of configurations. Each component of the fiber will comprise destructurized starch and/or a biodegradable thermoplastic polymer. The present invention is also directed to nonwoven webs and disposable articles comprising the environmentally degradable multicomponent fibers. The nonwoven webs may also contain other synthetic or natural fibers blended with the multicomponent fibers of the present invention.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 20, 2012
    Inventors: Eric Bryan Bond, Jean-Philippe Marie Autran, Larry Neil MacKey, Isao Noda, Hugh Joseph O'Donnell
  • Patent number: 8268444
    Abstract: The present invention is directed to a crimping conjugate fiber, comprising a first component and a second component, wherein the first component comprises a polybutene-1; the second component comprises a polymer having a melting point higher than that of the polybutene-1 by at least 20° C., or a polymer having a melting initiation temperature (extrapolated melting initiation temperature measured using differential scanning calorimetry (DSC) as defined in JIS-K-7121) of at least 120° C.; in a cross section of the fiber, the first component occupies at least 20% of the surface of the conjugate fiber, and the centroid position of the second component is shifted from the centroid position of the conjugate fiber; and the conjugate fiber is an actualized crimping conjugate fiber in which three-dimensional crimps have been developed or a latently crimpable conjugate fiber in which three-dimensional crimps are developed by heating.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: September 18, 2012
    Assignees: Daiwabo Holdings Co., Ltd., Daiwabo Polytec Co., Ltd.
    Inventor: Hiroshi Okaya
  • Patent number: 8241748
    Abstract: Opaque color shifting strands are disclosed that have an optically variable color with a change in angle of incident light. The strands have an organic substrate and an optical interference structure on one or both sides of the organic substrate. The optical interference design can be a Fabry-Perot structure or can be optically variable ink. Plural strands can be combined to form a textile for example such as a garment label.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: August 14, 2012
    Inventor: Alberto Argoitia
  • Publication number: 20120184168
    Abstract: The present invention provides a thermal bonding conjugate fiber with excellent compression resistance and nonwoven fabric using the same. More specifically, the present invention provides a thermal bonding conjugate fiber and nonwoven fabric using the same, in which the bulkiness of the nonwoven fabric under a light load is retained well even under a heavy load, and the rate of decrease in bulkiness between under a light load and under a heavy load can be reduced. The thermal bonding conjugate fiber with thermal shrinkage properties has an eccentric core-sheath structure in which a first component comprising a polyester resin constitutes a core and a second component comprising a polyolefin resin having a melting point at least 15° C. lower than a melting point of the polyester resin constitutes a sheath, and a shrinkage ratio after a heat treatment of 120° C. is at least 20% when calculated by a predetermined measurement method.
    Type: Application
    Filed: August 27, 2010
    Publication date: July 19, 2012
    Applicants: ES FIBERVISIONS CO., LTD., ES FIBERVISIONS APS, ES FIBERVISIONS LP, ES FIBERVISIONS HONG KONG LIMITED
    Inventors: Tomoaki Suzuki, Shingo Horiuchi
  • Publication number: 20120128975
    Abstract: (A1) Translate this text A composite fiber for stockings which has water-absorbing properties, hygroscopicity, antistatic properties, crimp properties, and cool touch is obtained without sacrificing productivity, transparency, and soft touch. The composite fiber for stockings is an eccentric composite fiber comprising a fiber-forming resin (B) and a polyether block amide copolymer (A). The fiber is characterized in that the polyether block amide copolymer (A), in a cross section of the fiber, is exposed in the surface at an angle of 5-90, and the fiber has 1-10 filaments and a fineness of 1-55 dtex. The fiber especially preferably has a percentage crimp of 10% or higher.
    Type: Application
    Filed: September 29, 2009
    Publication date: May 24, 2012
    Applicant: KB SEIREN, LTD.
    Inventors: Masashi Ueda, Hiroyuki Manabe
  • Patent number: 8178199
    Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 15, 2012
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Melvin Glenn Mitchell, Daniel William Klosiewicz
  • Patent number: 8173254
    Abstract: This invention is polyester fibers with an initial tensile resistivity of 15 to 38 cN/dtex, a elastic recovery rate of 70% or more after 20% elongation, and a self-shrinkage percentage of 0.3% to 1.4% after dry heat treatment at 160° C. The polyester fibers of this invention can be used to obtain a woven or knitted fabric resistant against repeated loads, excellent in surface softness and uniformity, and free from projections/recesses and curling. Since the woven or knitted fabric obtained from the polyester fibers of this invention are highly resistant against repeated loads, it can be suitably used as a car seat loaded with human bodies.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: May 8, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Tsuyoshi Hayashi, Yukinobu Maesaka, Hiroyuki Kurokawa
  • Patent number: 8153253
    Abstract: A conjugate fiber-containing yarn containing side-by-side or eccentric core-in-sheath conjugate fibers each composed of a polyester component and a polyamide component, that can be crimped by heating, and that has properties of increasing its crimp ratio when it absorbs moisture or water and is excellent in windbreaking and warmth-retaining properties, has a wool-like soft and bulky hand, and is capable of forming a fabric in which a see-through property is not increased even when wetted with water.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 10, 2012
    Assignee: Teijin Fibers Limited
    Inventors: Masoto Yoshimoto, Satoshi Yasui, Shigeru Morioka, Suguru Nakajima
  • Patent number: 8147957
    Abstract: A consolidated fibrous structure including a multiplicity of fibrous layers. The fibers of each fibrous layer contain a core, a first layer and a second layer. The core has an exterior surface portion containing polypropylene. The first layer is disposed on at least a portion of the core and contains a first polymer. The first polymer contains a polymer having at least 70% ?-olefin units and is characterized by a melting temperature lower than the melting temperature of the exterior surface portion of the core. The second layer is disposed on at least a portion of the first layer and contains a second polymer.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: April 3, 2012
    Assignee: Milliken & Company
    Inventors: Sujith Nair, Sasha Stankovich, Yunzhang Wang, Venkatkrishna Raghavendran
  • Patent number: 8147956
    Abstract: To obtain an ultrafine heat-shrinkable conjugate fiber at high productivity, in which a flow-drawing state of a polyester undrawn yarn is realized easily and stably. By drawing undrawn yarn comprising a conjugated polyester polymer and olefin polymer, a flow-drawing process can be easily and stably realized using conventional production facilities; and the heat-shrinkable fiber, a drawn intermediate, and an ultrafine hot-melt adhesive conjugate fiber produced by redrawing the drawn intermediate of the present invention can be obtained with high productivity and excellent runnability. More specifically, the ultrafine hot-melt adhesive conjugate fiber obtained by redrawing can be drawn at a heretofore unseen high drawing magnification, and the fiber structure of the olefin polymer constituting part of the conjugate fiber is markedly developed.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 3, 2012
    Assignees: ES Fiber Visions Co., Ltd., ES Fiber Visions Hong Kong Limited, ES Fiber Visions LP, ES Fiber Visons APS
    Inventors: Minoru Miyauchi, Tadashi Ideguchi, Masashi Teranaka
  • Patent number: 8142889
    Abstract: The present invention relates generally to a reinforcement composition and a method of reinforcing an asphalt cement concrete composition. The reinforcement composition includes a core and an outer container. The core includes a plurality of fibers, and the outer container includes a polyolefin selected from the group consisting of polyethylene, polypropylene, and mixtures thereof.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: March 27, 2012
    Assignee: Forta Corporation
    Inventors: Clifford N. MacDonald, Tracy H. Lang
  • Patent number: 8137811
    Abstract: Taggant fibers and methods of use provide for enhanced protection and security when the fibers are used in documents such as land titles, currency, passports and other documents of value. The taggant fibers consist of a minimum of two separate zones with each zone containing a different taggant to emit different wave lengths when excited. The taggants may consist of organic or inorganic compounds as are conventionally known and can be manufactured using for example polymeric materials which can be extruded during the fiber manufacturing process. Authentication of the fibers or documents containing such fibers can be readily viewed using conventional techniques.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: March 20, 2012
    Assignees: Intellectual Product Protection, LLC, Fiber Innovation Technology, Inc.
    Inventors: Timothy P. Merchant, Jeffrey S. Dugan
  • Publication number: 20120058163
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 13, 2010
    Publication date: March 8, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Patent number: 8129019
    Abstract: The present invention is directed to a high surface area fiber and textiles made from the same. In one preferred embodiment the fiber has a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the fiber has a specific surface area of about 140,000 cm2/g or higher and a denier of about 1.0 to about 2.0. The fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: March 6, 2012
    Inventors: Behnam Pourdeyhimi, Walter Chappas
  • Patent number: 8114514
    Abstract: The present invention relates generally to a reinforcement composition and a method of reinforcing an asphalt cement concrete composition. The reinforcement composition includes a core and an outer container. The core includes a plurality of fibers, and the outer container includes a polyolefin selected from the group consisting of polyethylene, polypropylene, and mixtures thereof.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: February 14, 2012
    Assignee: Forta Corporation
    Inventors: Clifford N. MacDonald, Tracy H. Lang
  • Publication number: 20120003472
    Abstract: A yarn having flame-resistant properties comprises a blend of: (a) between 20% and 50% by mass of p-aramid fibres; (b) between 0% and 40% by mass of fire-resistant rayon fibres; and (c) between 0% and 60% by mass of modacrylic fibres, the yarn having a coating of resin polymer and organic pigment.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 5, 2012
    Applicant: COATS AMERICAN INC.
    Inventors: William C. STUCKEY, Yanda JIN, Frederick R. RIDEWOOD
  • Patent number: 8075994
    Abstract: A thermal bonding conjugate fiber constituted from a first component comprising a polyester resin and a second component comprising a polyolefin resin with a melting point lower than that of the polyester resin by not less than 20° C., characterized in that a post-heat treatment bulk retention rate thereof is 20% or more when calculated by the following measurement method: Bulk retention rate=(H1 (mm)/H0 (mm))×100(%) (wherein H0 is the web height when a 0.1 g/cm2 load is applied to a web with a mass per unit area of 200 g/m2; and H1 is the web height after a heat treatment for 5 min at 145° C. when a 0.1 g/cm2 load is applied to that web).
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: December 13, 2011
    Assignees: ES Fibervisions Co., Ltd., ES Fibervisions Hong Kong Limited, ES Fibervisions LP, ES Fibervisions APS
    Inventors: Kazuyuki Sakamoto, Tomoaki Suzuki, Hiroshi Kayama
  • Publication number: 20110275265
    Abstract: An elastic multiple component fiber comprising a cross-section, wherein at least a first region of said cross-section comprises a polyurethaneurea composition; and comprising a second region.
    Type: Application
    Filed: October 12, 2009
    Publication date: November 10, 2011
    Applicant: INVISTA North america S.a.r.1.
    Inventors: Steven W. Smith, Hong Liu, David A. Wilson, James B. Elmore
  • Publication number: 20110263172
    Abstract: A multi-component article with controllable degradation and/or disintegration, comprising: a first part (A) which comprises at least one polyolefin combined with at least one prodegradation/prodisintegration agent; and; a second part (B) which comprises at least one polyolefin combined with at least one prodegradation/prodisintegration agent, provided that said first and said second parts differ at least by either one of type of polyolefin, type of prodegradation/prodisintegration agent and level of prodegradation/prodisintegration agent, the types of polyolefin and of prodegradation/prodisintegration agent and the levels of prodegradation/prodisintegration agent being selected so as said part (B) degrades more slowly than said part (A), and said part (B) at least partially covers said part (A).
    Type: Application
    Filed: November 13, 2009
    Publication date: October 27, 2011
    Applicant: Total Petrochemicals Research Feluy
    Inventors: Gloria Vendrell, Hugues Haubruge, Thierry Saudemont
  • Patent number: 8043700
    Abstract: A multicomponent superabsorbent fiber includes a first superabsorbent material and a second superabsorbent material. In at least a part of the length direction (L) of the superabsorbent fiber, the first superabsorbent material and the second superabsorbent material are located side-by-side in the cross-direction (C) of the superabsorbent fiber. The first and second superabsorbent materials are selected such that at a given point during their swelling, the swelling capacity (SC) of the first superabsorbent material is greater than the swelling capacity of the second superabsorbent material so that the superabsorbent fiber (10) curls upon contact with liquid. Also, a method for reducing gel-blocking in a superabsorbent fiber.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: October 25, 2011
    Assignee: SCA Hygiene Products AB
    Inventor: Charlotta Hansson
  • Publication number: 20110250450
    Abstract: An extruded component formed from an extruded material having antimicrobial components is disclosed. The extruded material may be formed from polymers and formed into a generally elongated shape. The antibacterial components may be included within at least a portion of the material forming the extruded component. The extruded component may be a filament and may include silver glass particles. In some embodiments, the extruded component may be a single component system, a bi-component system, or a tri-component system.
    Type: Application
    Filed: January 14, 2011
    Publication date: October 13, 2011
    Applicant: NOBLE FIBER TECHNOLOGIES, LLC
    Inventors: Vinesh Naik, Jeffery B. Keane
  • Patent number: 8021994
    Abstract: A textile fabric is presented comprising at least a first and a second twisted thread, the first and the second twisted threads containing at least one cut resistant yarn as one component, and the second twisted thread containing a non-cut resistant yarn as a further component, and the non-cut resistant yarn of the second twisted thread consisting of elastomeric fibers. Further, protective clothing is presented, which contains the textile fabric.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: September 20, 2011
    Assignee: Teijin Aramid GmbH
    Inventor: Regine Maria Zumloh
  • Patent number: 8021584
    Abstract: Blending of thermoplastic polyester with fiber-forming polyamide in the production of melt-colored melt-spun fibers results in improved color strength and aesthetics, and dimensional stability.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: September 20, 2011
    Assignee: Universal Fibers, Inc.
    Inventors: Matthew B. Studholme, Arthur Roth, Jr., Brendan Francis McSheehy, Jr.
  • Patent number: 8007904
    Abstract: A multicomponent fiber having a metal phobic component and a metal philic component that allows for the selective distribution of metal across the surface of the fiber is disclosed. The inventive multicomponent fibers may be used in fabrics and other products manufactured therefrom for economically imparting at least one of an antistatic quality, antimicrobial and antifungal efficacy, and ultraviolet and/or electromagnetic radiation shielding.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 30, 2011
    Assignee: Fiber Innovation Technology, Inc.
    Inventor: Jeffrey S. Dugan
  • Patent number: 8003209
    Abstract: Bicomponent fibers comprising a thermoplastic polymer and an elastomeric compound are made which can be continuously extruded from the melt at high production rates. The elastomeric compound has high flow and consists essentially of a selectively hydrogenated block copolymer and a tackifier resin, an alpha-olefin copolymer, an alpha-olefin terpolymer, a wax or mixtures thereof. In one embodiment the block copolymer has at least one polystyrene block of molecular weight from 5,000 to 7,000 and at least one polydiene block of molecular weight from 20,000 to 70,000 and having a vinyl content of greater than 60 mol %. In a second embodiment the block copolymer has a vinyl content of less than 60 mol %. The bicomponent fibers are useful for the manufacture of articles such as woven fabrics, spun bond non-woven fabrics or filters, staple fibers, yarns and bonded, carded webs.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 23, 2011
    Assignee: Kraton Polymers US LLC
    Inventors: John E. Flood, Dale L. Handlin, Jr., Martin L. Ehrlich
  • Patent number: 7998577
    Abstract: This invention relates to a multicomponent fiber having an exposed outer surface, comprising at least a first component of polyarylene sulfide polymer, and at least a second component of a thermoplastic polymer free of polyarylene sulfide polymer, wherein said thermoplastic polymer forms the entire exposed surface of the multicomponent fiber.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 16, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Paul Ellis Rollin, Jr., Xun Ma, Bruce A. Yost
  • Patent number: 7998578
    Abstract: The present invention is directed to a spunbond fiber comprising polyphenylene sulfide polymer having a zero shear viscosity at 300° C. of about 21,500 to about 28,000 Pa·s.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 16, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Paul Ellis Rollin, Jr.
  • Patent number: 7998576
    Abstract: Disclosed is a monofilament allowing contrast X-ray radiography. At least part of the monofilament is formed of a thermoplastic resin containing a radiopaque agent. The monofilament contains the radiopaque agent in the thermoplastic resin in a content of 30 to 80% by mass, and has a Young's modulus of 0.1 to 5.0 cN/dtex and a fineness of 500 to 20000 dtex.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: August 16, 2011
    Assignee: Unitika Ltd.
    Inventors: Seiji Abe, Kenji Chizuka, Shoji Matsumoto, Koji Kakumoto, Takenori Domon, Dai Iwasaki
  • Publication number: 20110168625
    Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell
  • Patent number: 7976947
    Abstract: A powder coating composition for coating on thermoplastic composites comprising an intimate mixture comprising: A) 50 to 99 wt % of at least one ethylene vinyl acetate copolymer with a vinyl acetate content in the range of 10 to 30 wt %, B) 1 to 50 wt % of at least one thermoplastic and/or thermosetting binder resin, and C) 0 to 20 wt % of at least one pigment and/or filler, wherein the wt % amounts are based on the total weight of the powder coating composition A) to C); and the powder coating composition has excellent adhesion to the thermoplastic composite and enhanced impact resistance.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: July 12, 2011
    Inventors: Olivier Magnin, Ludovic Granjou
  • Publication number: 20110165470
    Abstract: The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa.sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.
    Type: Application
    Filed: January 4, 2010
    Publication date: July 7, 2011
    Inventors: Jörg Dahringer, Bernd Blech, Werner Stefani, Werner Grasser, Mehmet Demirors, Gert Claasen
  • Patent number: 7968481
    Abstract: A heat fusible conjugate fiber produced by high-speed melt spinning is disclosed. The conjugate fiber is composed of a first resin component having an orientation index of 40% or higher and a second resin component having a lower melting or softening point than the melting point of the first resin component and an orientation index of 25% or lower. The second resin component is present on at least part of the surface of the fiber in a lengthwise continuous configuration. The conjugate fiber preferably has a heat shrinkage of 0.5% or less at a temperature higher than the melting or softening point of the second resin component by 10° C.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 28, 2011
    Assignee: KAO Corporation
    Inventors: Manabu Matsui, Takeshi Kikutani
  • Publication number: 20110142896
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 16, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Publication number: 20110142909
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 16, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Patent number: 7951258
    Abstract: Method and arrangement for manufacturing core composite layer workpieces (sandwich structures) from at least one first and at least one second cover sheet (1, 2) between which a core sheet (30) including especially short cut fibers (9) is provided, are disclosed with which a continuous and substantially break free manufacture can be conducted which leads to composite layer structures with reasonable costs. Single manufacturing parameters can specifically be varied with different embodiments so that in a relatively simple manner composite layer structures with desired physical properties can be obtained, for example with respect to their strength, stiffness, flexibility, mechanical and acoustic absorption capabilities, working properties, and so on. Composite layer structures for new applications can be manufactured as well.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: May 31, 2011
    Assignee: Lamera AB
    Inventors: Jerry Karlsson, Heinrich Planck, Thomas Stegmaier, Hermann Finckh
  • Publication number: 20110105975
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: May 5, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20110097581
    Abstract: In a fiber there is provided a fiber matrix material having a fiber length; and an array of isolated in-fiber filaments that extend the fiber length. The in-fiber filaments are disposed at a radius in a cross section of the fiber that is a location of a continuous filament material layer in a drawing preform of the fiber. As a result, there is provided a fiber matrix material having a fiber length; and a plurality of isolated fiber elements that are disposed in the fiber matrix, extending the fiber length, where the plurality is of a number greater than a number of isolated domains in a drawing preform of the fiber.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daosheng Deng, Nicholas D. Orf, Ayman F. Abouraddy, Yoel Fink
  • Publication number: 20110091513
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Patent number: 7914897
    Abstract: A composition for coating comprising at least one compound of formula (I): R<a>Si(R<1>)n(X<1>)3-n, and optionally at least one compound of formula (II): R<b>Si(R<2>)m(X<2>)3-m, wherein R<a> is a straight-chain or branched C(1-24) alkyl group, R<b> is an aromatic group, such as an optionally substituted carbocyclic and heterocyclic group comprising five-, six- or ten-membered ring systems, which is linked by a single covalent bond or a spacer unit, such as a straight-chain or branched alkyl residue having 1 to 8 carbon atoms, to the Si- atom, R<1> and R<2> are, independently of each other a lower alkyl group, such as a straight chain and branched hydrocarbon radical having 1 to 6 carbon atoms, X<1> and X<2> are independently of each other a hydrolysable group, such as a halogen or an alkoxy group and n, m are independently of each other 0 or 1, with the proviso that if n and m are independently of each other 0 or 1, X may represent the sam
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: March 29, 2011
    Assignee: University of Zurich
    Inventors: Jan Zimmermann, Stefan Seeger, Georg Artus, Stefan Jung
  • Patent number: 7910208
    Abstract: Bicomponent fibers having a sheath-core morphology where the sheath is a thermoplastic polymer and the core is an elastomeric compound are made which can be continuously extruded from the melt at high production rates. The elastomeric compound comprises a coupled, selectively hydrogenated block copolymer having high flow. The block copolymer has at least one polystyrene block of molecular weight from 5,000 to 7,000 and at least one polydiene block of molecular weight from 20,000 to 70,000 and having a high vinyl content of 60 mol % or greater. The bicomponent fibers are useful for the manufacture of articles such as woven fabrics, spun bond non-woven fabrics or filters, staple fibers, yarns and bonded, carded webs. The bicomponent fibers can be made using a process comprising coextrusion of the thermoplastic polymer and elastomeric compound to produce fibers at greater than 800 mpm and having a denier from 0.1 to 50 g/9000 m.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: March 22, 2011
    Assignee: Kraton Polymers U.S. LLC
    Inventors: John E. Flood, Dale L. Handlin, Jr.
  • Patent number: 7910207
    Abstract: The islands-in-sea type composite fiber of the present invention comprises a sea part containing an easily soluble polymer and 100 or more island parts containing a hardly soluble polymer, per fiber. In a cross-sectional profile of the composite fiber, each of the island parts has a thickness in the range of from 10 to 1,000 nm and the intervals between the island parts adjacent to each other are 500 nm or less. The islands-in-sea type composite fiber is produced by melt spinning the sea part polymer and the island part polymer mentioned above through a spinneret for an islands-in-sea type composite fiber and taking up the spun fiber at a speed of 400 to 6,000 m/min. Dissolution and removal of the sea part polymer from the composite fiber gives a group of fine fibers having a thickness of 10 to 1,000 rim and useful for clothing, industrial materials and other applications.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 22, 2011
    Assignee: Teijin Fibers Limited
    Inventors: Mie Kamiyama, Miyuki Numata
  • Publication number: 20110045293
    Abstract: A process for preparing ultra-high molecular weight poly(alpha-olefin) (UHMWPO) multi-filament yarns having improved tensile properties at higher productivity. The process includes drawing a solution yarn, then drawing a gel yarn and then drawing a dry yarn continuously in sequence to form a partially oriented yarn, winding up the partially oriented yarn, unrolling the yarn, drawing the partially oriented yarn to form a highly oriented yarn, cooling the highly oriented yarn under tension and winding up the highly oriented yarn.
    Type: Application
    Filed: October 28, 2010
    Publication date: February 24, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Thomas Y-T. Tam, Qiang Zhou, John A. Young, Charles R. Arnett, John E. Hermes
  • Patent number: 7892640
    Abstract: The present invention provides novel conjugate fibers being excellent in productivity and having good water absorption, antistatic property and cool feeling by contact. The conjugate fibers include a fiber-forming resin such as polyamide, polyester and the like in the sheath portion and a polyether block amide copolymer in the core portion, in which the area ratio of the core portion to the sheath portion is 5/95 to 95/5, and the exposure angle of the core portion to the surface is 5° to 90°. Specifically it is preferable that the area ratio of the core portion to the sheath portion is 10/90 to 90/10, the exposure angle of the core portion to the surface is 5° to 80°, and the crimp ratio is 2 to 30%.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: February 22, 2011
    Assignee: KB Seiren, Ltd.
    Inventor: Yasushi Nakai
  • Patent number: 7892642
    Abstract: Monofilament string suited for use in tennis rackets and the like, consisting of a core material and a covering material that serves as a matrix, in which the core material is embedded in the covering material in accordance with the ‘island in the sea structure’ and that therefore contains island components and a sea component, whereby the island components largely but not exclusively consist of a thermoplastic polymer; are arranged in a geometrical and preferably symmetrical pattern relative to each other and/or the longitudinal axis of the string; and at least three of the island components have a cross-section that has a multi-angular shape, with one side leaning close against the surface of the string. The one side has a curvature that closely lines the curve of the string surface, and the sea component largely but not exclusively consists of a thermoplastic elastomer.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: February 22, 2011
    Assignee: LUXILON INDUSTRIES, naamloze vennootschap
    Inventor: Dominique Van Malderen
  • Patent number: 7862890
    Abstract: A biomedia apparatus comprising an elongated central core and a plurality of loops positioned along the central core adapted to collect organisms from water. The biomedia apparatus may further comprise at least one reinforcing member associated with the central core. In one embodiment, the biomedia apparatus is utilized in a trickle tower to treat wastewater. In another embodiment, the biomedia apparatus is utilized outside a power plant to minimize spat that is drawn into the plant through water intake valves.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 4, 2011
    Assignee: BioProcess Technologies, Ltd.
    Inventor: John W. Haley, III
  • Patent number: 7846544
    Abstract: [PROBLEMS] To provide a polyester monofilament which shows a high dimensional stability and excellent effects of preventing peel-off in filaments, preventing pirn barre and preventing halation and has a high fineness, a high strength and a high modulus. [MEANS FOR SOLVING PROBLEMS] A core-shell type composite polyester monofilament comprising polyethylene terephthalate at a ratio of 80% by mol or higher, which satisfies the following requirements A to F: A) the intrinsic viscosity of the core component being 0.70 or above and the intrinsic viscosity of the shell component being from 0.55 to 0.60; B) the core component amounting to 50 to 70%; C) at least the shell component containing from 0.2 to 0.4% by weight of metal microparticles; D) the fineness of the monofilament being from 5 to 15 dtex, its modulus at elongation of 5% being from 3 to 4.5 cN/dtex and its elongation at break being from 20 to 40%; E) the free shrinkage of the innermost part under specific conditions being 0.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: December 7, 2010
    Assignee: Teijin Fibers Limited
    Inventor: Satoshi Nagamune
  • Patent number: RE42188
    Abstract: This invention provides security articles comprising fibers, threads and fiber sections (“dots”) possessing multiple verification characteristics. The fibers possess unique and difficulty duplicated combinations of complex cross-sections, components, and multiple luminescent responses. The many verifiable characteristics of the security fibers, threads and dots provide high levels of protection against fraudulent duplication of articles in which they are incorporated. The manifold security features provide means of tailoring specific identity characteristics for specific use and users.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: March 1, 2011
    Assignee: Honeywell International Inc.
    Inventors: Thomas Y-T. Tam, Alfred Siggel, Samir Z. Abdalla, Jiunn-Yow Chen, Thomas Potrawa, Huy X. Nguyen, Sheldon Kavesh, Alexander Lobovsky