Physical Dimension Patents (Class 428/401)
  • Publication number: 20120104335
    Abstract: The present invention provides phthalocyanine nanowires having a minor diameter of 100 nm or less and a ratio (length/minor diameter) of length to minor diameter of 10 or more, an ink composition characterized by containing, as essential components, the phthalocyanine nanowires and an organic solvent, a film including the phthalocyanine nanowires, and an electronic element including a film. Since by using an ink composition containing the phthalocyanine nanowires of the present invention a phthalocyanine film can be formed by a wet process such as coating or printing, a break-proof, lightweight, low-cost electronic element can be provided on a flexible plastic substrate.
    Type: Application
    Filed: April 13, 2010
    Publication date: May 3, 2012
    Applicant: DIC CORPORATION
    Inventors: Hideki Etori, Hideyuki Murata, Norimasa Fukazawa, Shou Inagaki, Hiroshi Isozumi, Masanori Kasai
  • Publication number: 20120107527
    Abstract: The present invention relates to the use of polymer blends for producing slit film tapes comprising: A) 30% to 50% by weight of a biodegradable, aliphatic-aromatic polyester; B) 50% to 70% by weight of polylactic acid and C) 0% to 2% by weight of a compatibilizer.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 3, 2012
    Applicant: BASF SE
    Inventor: Jörg Auffermann
  • Publication number: 20120097832
    Abstract: The invention teaches electrospun light-emitting fibers made from ionic transition metal complexes (‘iTMCs”) such as [Ru(bpy)3]2+(PF6?)2]/PEO mixtures with dimensions in the 10.0 nm to 5.0 micron range and capable of highly localized light emission at low operating voltages such as 3-4 V with turn-on voltages approaching the band-gap limit of the organic semiconductor that may be used as point source light emitters on a chip.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 26, 2012
    Applicant: CORNELL UNIVERSITY
    Inventors: Jose M. Moran-Mirabal, Harold G. Craighead, George G. Malliaras, Hector D. Abruna, Jason D. Slinker
  • Publication number: 20120094120
    Abstract: A method for producing fibers with improved color and anti-microbial properties is described. One embodiment includes a method for generating a halogen stable anti-microbial synthetic fiber, the method comprising creating a mixture that includes a polymer, an anti-microbial agent, and a cationic pigment, and extruding the mixture to form an anti-microbial synthetic fiber.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 19, 2012
    Applicant: PurThread Technologies, Inc.
    Inventors: Stephen Woodrow Foss, Reyad Ilayan Sawafta
  • Publication number: 20120094124
    Abstract: Single crystal MoO3 nanowires were produced using an electrospinning technique. High resolution transmission electron microscopy (HRTEM) revealed that the 1-D nanostructures are from 10-20 nm in diameter, on the order of 1-2 ?m in length, and have the orthorhombic MoO3 structure. The structure, crystallinity, and sensoric character of these electrostatically processed nanowires are discussed. It has been demonstrated that the non-woven-network of MoO3 nanowires exhibits higher sensitivity and an n-type response to NH3 as compared to the response of a sol-gel based sensor.
    Type: Application
    Filed: June 9, 2011
    Publication date: April 19, 2012
    Inventors: Pelagia-Irene Gouma, Aisha Suzette Haynes, Krithika Kalyanasundaram
  • Publication number: 20120095149
    Abstract: A glass composition for a glass fiber includes, in terms of oxides by mass %, 45 to 65% of SiO2, 10 to 20% of Al2O3, 13 to 25% of B2O3, 5.5 to 9% of MgO, 0 to 10% of CaO, 0 to 1% of Li2O+Na2O+K2O, SrO, and BaO.
    Type: Application
    Filed: November 16, 2009
    Publication date: April 19, 2012
    Inventors: Kaori Sawanoi, Jiro Abe, Toshikatsu Tanaka
  • Publication number: 20120094123
    Abstract: Provided is a core wire for guide wire in which high rigidity can be attained even with a fine wire diameter so that pushability is improved while the core wire is prevented from fatigue deformation, and a method for manufacturing the core wire. This core wire 15 for guide wire is made of a Ti—Ni based alloy and has a wire diameter not larger than 0.5 mm and a Young's modulus not lower than 50 GPa. According to the manufacturing method, first, wire drawing is performed on a raw material M0 so that the raw material M0 is passed through a wire drawing dice 2 to be drawn to a certain length while the wire diameter of the core wire is reduced. Thus, a primary processed material M1 is formed. After that, the primary processed material M1 is hammered and drawn by swaging dices 5 and 5 so that a secondary processed material M2 is formed. In this manner, the core wire 15 having a wire diameter not larger than 0.5 mm and a Young's modulus not lower than 50 GPa is manufactured.
    Type: Application
    Filed: March 2, 2010
    Publication date: April 19, 2012
    Inventors: Kiyoshi Yamauchi, Akihisa Furukawa, Kiyohito Ishida, Takeshi Ishikawa, Kiyonori Takezawa, Mitsuya Takezawa
  • Patent number: 8158256
    Abstract: A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L×H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W×H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L×W dimensions define a pair of substantially parallel top and bottom surfaces.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: April 17, 2012
    Assignee: Forest Concepts, LLC
    Inventors: James H. Dooley, David N. Lanning, Thomas F. Broderick
  • Publication number: 20120085145
    Abstract: A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.
    Type: Application
    Filed: September 26, 2011
    Publication date: April 12, 2012
    Inventor: Zhili Xiao
  • Publication number: 20120088104
    Abstract: Provided is a carbon fiber bundle for obtaining a fiber-reinforced plastic having high mechanical characteristics. An acrylonitrile swollen fiber for a carbon fiber having openings of 10 nm or more in width in the circumference direction of the swollen fiber at a ratio in the range of 0.3 openings/?m2 or more and 2 openings/?m2 or less on the surface of the swollen fiber, and the swollen fiber is not treated with a finishing oil agent. A precursor fiber obtained by treating the swollen fiber with a silicone-based finishing oil agent has a silicon content of 1700 ppm or more and 5000 ppm or less, and the silicon content is 50 ppm or more and 300 ppm or less after the finishing oil agent is washed away with methyl ethyl ketone by using a Soxhlet extraction apparatus for 8 hours. The fiber is preferably an acrylonitrile copolymer containing acrylonitrile in an amount of 96.0 mass % or more and 99.7 mass % or less and an unsaturated hydrocarbon having at least one carboxyl group or ester group in an amount of 0.
    Type: Application
    Filed: June 10, 2010
    Publication date: April 12, 2012
    Applicant: MITSUBISHI RAYON CO., LTD.
    Inventors: Hiroshi Hashimoto, Naoki Sugiura, Yasuyuki Fujii, Hiroko Matsumura, Takahiro Okuya, Isao Ooki, Masahiro Hata, Kouki Wakabayashi, Akiyoshi Kogame, Kazunori Sumiya, Akito Hatayama
  • Publication number: 20120077034
    Abstract: A method for making silicon nanorods is provided. In accordance with the method, Au nanocrystals are reacted with a silane in a liquid medium to form nanorods, wherein each of said nanorods has an average diameter within the range of about 1.2 nm to about 10 nm and has a length within the range of about 1 nm to about 100 nm.
    Type: Application
    Filed: April 14, 2010
    Publication date: March 29, 2012
    Inventors: Andrew T. Heitsch, Colin M. Hessel, Brian A. Korgel
  • Publication number: 20120076711
    Abstract: A structure is disclosed containing a sorbent with amine groups that is capable of a reversible adsorption and desorption cycle for capturing CO2 from a gas mixture wherein said structure is composed of fiber filaments wherein the fiber material is carbon and/or polyacrylonitrile.
    Type: Application
    Filed: February 8, 2010
    Publication date: March 29, 2012
    Applicant: ETH ZURICH
    Inventors: Christoph Gebald, Jan André Wurzbacher, Aldo Steinfeld
  • Publication number: 20120077032
    Abstract: A method for producing one or more nanofibers includes providing (a) a solution comprising a polymer and a solvent, (b) a nozzle for ejecting the solution, and (c) a stationary collector disposed a distance d apart from the nozzle. A voltage is applied between the nozzle and the stationary collector, and a jet of the solution is ejected from the nozzle toward the stationary collector. An electric field intensity of between about 0.5 and about 2.0 kV/cm is maintained, where the electric field intensity is defined as a ratio of the voltage to the distance d. At least a portion of the solvent from the stream is evaporated, and one or more polymer nanofibers are deposited on the stationary collector as the stream impinges thereupon. Each polymer nanofiber has an average diameter of about 500 nm or less and may serve as a precursor for carbon fiber production.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 29, 2012
    Inventors: Ioannis Chasiotis, Mohammad Naraghi, Salman N. Arshad
  • Publication number: 20120077020
    Abstract: (Problem) In conventional method for producing artificial graphite, in order to obtain a product having excellent crystallinity, it was necessary to mold a filler and a binder and then repeat impregnation, carbonization and graphitization, and since carbonization and graphitization proceeded by a solid phase reaction, a period of time of as long as 2 to 3 months was required for the production and cost was high and further, a large size structure in the shape of column and cylinder could not be produced. In addition, nanocarbon materials such as carbon nanotube, carbon nanofiber and carbon nanohorn could not be produced.
    Type: Application
    Filed: May 25, 2010
    Publication date: March 29, 2012
    Inventors: Kazuo Muramatsu, Masahiro Toyoda
  • Publication number: 20120070728
    Abstract: The disclosure describes compositions and methods for producing a change in the voltage at which hydrogen gas is produced in a lead acid battery. The compositions and methods relate to producing a concentration of one or more metal ions in the lead acid battery electrolyte.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 22, 2012
    Applicant: HOLLINGSWORTH & VOSE COMPANY
    Inventors: John Wertz, Christopher Campion, Yuri Vulfson, Nicolas Clement, Randall Keisler
  • Publication number: 20120071589
    Abstract: The present invention relates to a novel polymer fiber obtainable by melt-spinning of a polymer, the use of the fiber and a process for the manufacture of the fiber.
    Type: Application
    Filed: March 12, 2010
    Publication date: March 22, 2012
    Applicant: BAUMHUETER EXTRUSION GmbH
    Inventor: Ingo Knack
  • Publication number: 20120064788
    Abstract: The present invention relates to fiber glass strands, yarns, fabrics, composites, prepregs, laminates, fiber-metal laminates, and other products incorporating glass fibers formed from glass compositions. The glass fibers, in some embodiments, are incorporated into composites that can be used in reinforcement applications. Glass fibers formed from some embodiments of the glass compositions can have certain desirable properties that can include, for example, desirable electrical properties (e.g. low Dk) or desirable mechanical properties (e.g., specific strength).
    Type: Application
    Filed: September 14, 2011
    Publication date: March 15, 2012
    Inventors: James Carl Peters, Juan Camilo Serrano, Hong Li, Cheryl A. Richards, Steven Joel Parks
  • Publication number: 20120061124
    Abstract: In accordance with various example embodiments, an apparatus includes two or more circuit nodes and a conductive material that is located between and configured to electrically couple the circuit nodes. The conductive material includes a network of elongated portions of at least one electrospun Cu-based nanostructure. Each elongated portion has an aspect ratio of at least 50,000 and a length that is greater than 100 microns, and at least one fused crossing point that joins with a fused crossing point of another of the elongated portions. The network of elongated portions is distributed and aligned in the conductive material to set a conductance level and a transparency level along the network, along at least one direction.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 15, 2012
    Inventors: Yi Cui, Hui Wu, Liangbing Hu
  • Publication number: 20120060996
    Abstract: Reinforcement layer for pneumatic vehicle tires that includes reinforcements formed by one of filaments or cords made of steel that are disposed substantially parallel to and spaced apart from one another and are embedded in rubber material. A cord is formed by a maximum of two filaments twisted together and all of the filaments of the reinforcements have a diameter of less than 0.24 mm and a maximum of two filaments are twisted in each case to form a cord.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 15, 2012
    Applicant: CONTINENTAL REIFEN DEUTSCHLAND GMBH
    Inventors: Viktor BLUEMEL, Wolfgang REESE
  • Publication number: 20120064342
    Abstract: Particle-loaded fibers include a fiber body having inorganic particles bound together by an organic binder. The fiber body has a diameter less than about 150 ?m, and the inorganic particles comprise a particle density of greater than 20%, 30%, 40% or even 50% by volume of the fiber body. Methods for producing such particle loaded fibers include extruding a composition through a die orifice having a diameter of less than 1000 ?m to form a fiber having a first diameter, and drawing the fiber from the first diameter to a smaller second diameter of less than 150 ?m, wherein the inorganic particles are greater than 50% by weight of the extruded composition.
    Type: Application
    Filed: May 25, 2010
    Publication date: March 15, 2012
    Inventors: Atanas Valentinov Gagov, James William Zimmermann
  • Publication number: 20120064327
    Abstract: Fiber-like or film-like moldings are produced from a plastified mixture which, based on its weight, is from 60 to 10% by weight of a carrier component and from 40 to 90% by weight of a phase change material. The carrier component contains from 5 to 20% by weight of a polymer or polymer blend from the group of LDPE (low density polyethylene), HDPE (high density polyethylene), PMMA (polymethyl methacrylate), polycarbonate, or mixtures thereof, from 5 to 20% by weight of a styrene block copolymer, and from 0 to 20% by weight of one or more additives. Especially suitable phase change materials include natural and synthetic paraffins, polyethylene glycol (=polyethylene oxide), and mixtures thereof. The plasticized mixture is extruded through a spinneret or a slit die at a temperature of from 130 to 220° C. and is stretched.
    Type: Application
    Filed: February 1, 2011
    Publication date: March 15, 2012
    Inventors: Angelo Schütz, Stefan Reinemann
  • Patent number: 8129019
    Abstract: The present invention is directed to a high surface area fiber and textiles made from the same. In one preferred embodiment the fiber has a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the fiber has a specific surface area of about 140,000 cm2/g or higher and a denier of about 1.0 to about 2.0. The fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: March 6, 2012
    Inventors: Behnam Pourdeyhimi, Walter Chappas
  • Patent number: 8124227
    Abstract: The object of the present invention is carbon nanofibers mainly characterized by their high specific volume of mesopores, their high gas adsorption capacity and presenting a graphitic hollow structure. A second object of this invention is a procedure for obtaining such carbon nanofibers, which makes use of a metallic nickel catalyst and specific process furnace parameters that combined with the chemical composition of the furnace atmosphere and the fluidodynamic conditions of the gas stream inside the furnace, result in a faster growth of the carbon nanofibers and also in a higher quality of the carbon nanofibers obtained.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: February 28, 2012
    Assignee: Grupo Antolin-Ingenieria, S.A.
    Inventors: José Luis Gonzalez Moral, José Vera Agulló, César Merino Sánchez, Ignacio Martín Gullón
  • Publication number: 20120043039
    Abstract: The present invention provides a method for producing modified nanofibrillated cellulose characterized by bringing cellulosic material into a fiber suspension, adsorbing a cellulose derivative or polysaccharide or polysaccharide derivative onto fibers in said fiber suspension under special conditions and subjecting the obtained fiber suspension derivative to mechanical disintegration. A modified nanofibrillated cellulose obtainable by a method of the present invention is provided. Furthermore, the invention relates to the use of said modified nanotibrillated cellulose.
    Type: Application
    Filed: February 12, 2010
    Publication date: February 23, 2012
    Applicant: UPM-KYMMENE OYJ
    Inventors: Jouni Paltakari, Janne Laine, Monika Österberg, Ramjee Subramanian, Jan-Erik Teirfolk
  • Publication number: 20120040167
    Abstract: The present invention relates to a polyester fiber that can be applied to a fabric for an airbag, and particularly, to a polyester fiber having elongation of 0.5% or more at a stress of 1.0 g/d, elongation of 4.3% or more at a stress of 4.0 g/d, and elongation of 7.5% or more at a stress of 7.0 g/d, and an initial modulus of 40 to 100 g/d, a method of preparing the same, and a fabric for an airbag prepared therefrom. Since the polyester fiber of the present invention remarkably decreases stiffness and secures superior mechanical properties, it is possible to provide superior packing properties, dimensional stability, and gas barrier effect, and to protect occupants safely by minimizing the impact applied to the occupants, when it is used for the fabric for an airbag.
    Type: Application
    Filed: April 14, 2010
    Publication date: February 16, 2012
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Young-Jo Kim, Gi-Woong Kim, Sang-Mok Lee, Young-Soo Lee
  • Publication number: 20120040185
    Abstract: Polylactic acid fibers formed from a thermoplastic composition that contains polylactic acid and a polymeric toughening additive are provided. The present inventors have discovered that the specific nature of the components and process by which they are blended may be carefully controlled to achieve a composition having desirable morphological features. More particularly, the toughening additive can be dispersed as discrete physical domains within a continuous phase of the polylactic acid. These domains have a particular size, shape, and distribution such that upon fiber drawing, they absorb energy and become elongated. This allows the resulting composition to exhibit a more pliable and softer behavior than the otherwise rigid polylactic acid. Through selective control over the components and method employed, the present inventors have discovered that the resulting fibers may thus exhibit good mechanical properties, both during and after melt spinning.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 16, 2012
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Peiguang Zhou, Gregory J. Wideman, Tom Eby, Ryan J. McEneany
  • Publication number: 20120040186
    Abstract: The present invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method. More particularly, this invention relates to a process for preparing catalyst composition for the synthesis of carbon nanotube comprising the steps of i) dissolving multi-component metal precursors of catalyst composition in de-ionized water; ii) spraying obtained catalytic metal precursor solution into the high temperature reactor by gas atomization method; iii) forming the catalyst composition powder by pyrolysis of gas atomized material; and iv) obtaining the catalyst composition powder, wherein said catalyst composition comprises i) main catalyst selected from Fe or Co, ii) Al, iii) optional co-catalyst at least one selected from Ni, Cu, Sn, Mo, Cr, Mn, V, W, Ti, Si, Zr or Y, iv) inactive support of Mg. Further, the catalyst composition prepared by this invention has a very low apparent density of 0.01˜0.
    Type: Application
    Filed: May 11, 2011
    Publication date: February 16, 2012
    Applicant: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Sang-Hyo Ryu, Hyun-Kyung Sung, Namsun Choi, Wan Sung Lee, Dong Hwan Kim, Youngchan Jang
  • Publication number: 20120040582
    Abstract: A method for forming biodegradable fibers is provided. The method includes blending polylactic acid with a polyepoxide modifier to form a thermoplastic composition, extruding the thermoplastic composition through a die, and thereafter passing the extruded composition through a die to form a fiber. Without intending to be limited by theory, it is believed that the polyepoxide modifier reacts with the polylactic acid and results in branching of its polymer backbone, thereby improving its melt strength and stability during fiber spinning without significantly reducing glass transition temperature. The reaction-induced branching can also increase molecular weight, which may lead to improved fiber ductility and the ability to better dissipate energy when subjected to an elongation force. To minimize premature reaction, the polylactic acid and polyepoxide modifier are first blended together at a relatively low temperature(s).
    Type: Application
    Filed: August 13, 2010
    Publication date: February 16, 2012
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Tom Eby, Tyler J. Lark
  • Patent number: 8115190
    Abstract: An apparatus and a method of manufacturing the apparatus. The apparatus includes a main nanowire and branch nanowires emanating from the main nanowire. The main nanowire may have a first portion and a second portion. The first portion may have a first carrier concentration and the second portion may have a second carrier concentration, different to the first carrier concentration. Each branch nanowire may emanate from the first portion of the main nanowire. Each branch nanowire may emanate from the main nanowire at a substantially fixed distance along a length of the main nanowire.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 14, 2012
    Assignee: Nokia Corporation
    Inventors: Samiul Haque, Richard White
  • Publication number: 20120034462
    Abstract: Hair-like shaped crosslinked hydrogels and methods for preparing such crosslinked hydrogels and are provided.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 9, 2012
    Applicant: ALLERGAN, INC.
    Inventors: Dimitrios Stroumpoulis, Karina Heredia Guillen
  • Publication number: 20120009419
    Abstract: Embodiments of this invention are directed to substituted polyaniline nanofibers and methods of synthesizing and using the same. The invention is also directed to polyaniline derivatives that can be synthesized without the need for templates or functional dopants by using an initiator as part of a reaction mixture.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 12, 2012
    Applicant: The Regents of the University of California
    Inventors: Henry Hiep D. Tran, Richard B. Kaner
  • Publication number: 20120003471
    Abstract: The invention relates to a process for preparing a composition comprising 10 to 45% of the total solids weight lignin, polyacrylonitrile or a polyacrylonitrile copolymer, and a solvent to form a lignin-based polyacrylonitrile-containing dope and the resulting products. The dope can be processed to produce fibers, including precursor, oxidized and carbonized fibers. The oxidized fibers are of value for their flame resistant properties and carbonized fibers are suitable for use in applications requiring high strength fibers, or to be used to form composite materials.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: WEYERHAEUSER NR COMPANY
    Inventors: PAUL J. BISSETT, CAROLE W. HERRIOTT
  • Publication number: 20110318982
    Abstract: Disclosed are liquid crystal polyester fibers, which have a peak half-width of 15° C. or greater at an endothermic peak (Tm1) observed by differential calorimetry under a temperature elevation of 20° C./minute from 50° C., polystyrene equivalent weight average molecular weight of 250,000 or more and 2,000,000 or less, and a variable waveform of less than 10% in terms of the half inert diagram mass waveform determined by a Uster yarn irregularity tester. Also disclosed is a method for producing liquid crystal polyester fibers, wherein liquid crystal polyester fibers are formed into a package, the fibers are then subjected to solid-phase polymerization, and the solid-phase polymerized liquid crystal polyester fibers are unrolled from the package and successively heat treated without being once taken up. The heat treatment temperature is controlled at a temperature of the endothermic peak temperature (Tm1) of the solid-phase polymerized liquid crystal polyester fibers+60° C.
    Type: Application
    Filed: March 4, 2010
    Publication date: December 29, 2011
    Inventors: Yoshitsugu Funatsu, Yuhei Maeda, Norio Suzuki, Hiroo Katsuta
  • Publication number: 20110319528
    Abstract: The present invention provides a method for producing chitin nanofibers, which includes the steps of deproteinizing a material derived from a chitin-containing organism by an alkali treatment, deashing a deproteinized integument by an acid treatment, optionally treating the deashed integument under acidic conditions, and then subjecting to a fiber-loosening treatment. The present invention also provides chitin nanofibers obtained by the method, and a composite material and a coating composition each containing the same. The present invention provides a method for producing chitosan nanofibers, which includes, in addition to the above steps, a deacetylation step and chitosan nanofibers obtained by the method, and a composite material and a coating composition each containing the same.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 29, 2011
    Inventors: Shinsuke Ifuku, Hiroyuki Saimoto, Hiroyuki Yano, Masaya Nogi, Yoshihiko Omura
  • Publication number: 20110311815
    Abstract: A ternary single crystal relaxor piezoelectric of PMN-PZ-PT grown from a novel melt using the Vertical Bridgeman method. The ternary single crystals are characterized by a Curie temperature, Tc, of at least 150° C. and a rhombohedral to tetragonal phase transition temperature, Trt, of at least about 110° C. The ternary crystals further exhibit a piezoelectric coefficient, d33, in the range of at least about 1200-2000 pC/N.
    Type: Application
    Filed: May 16, 2011
    Publication date: December 22, 2011
    Applicant: TRS TECHNOLOGIES, INC.
    Inventors: Jun LUO, Wesley HACKENBERGER
  • Publication number: 20110311814
    Abstract: This disclosure concerns a method of making nanowires in a single flask and in non-coordinating solvent involving the reaction of PbO with oleic acid to produce Pb oleate, heating the Pb oleate to a preferred temperature with additional coordinating ligands, injecting a solution of Se to produce a second solution, heating the second solution, and maintaining the temperature, resulting in nucleation and growth of PbSe nanowires.
    Type: Application
    Filed: April 15, 2011
    Publication date: December 22, 2011
    Inventor: Edward E. Foos
  • Publication number: 20110311813
    Abstract: Nanostructures are formed from alkylated derivatives of aromatic acids of the formula: wherein at least one of R1 to R6 represents a carboxylic acid group, a primary amide group, an ester group, an amidine group, or a salt thereof, at least one other of R1 to R6 is X—Rc, and the remaining of R1 to R6 independently represent H or substituted or unsubstituted organic groups; X represents a linking group; and Rc represents a substituted or unsubstituted alkyl group.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicants: NATIONAL RESEARCH COUNCIL OF CANADA, XEROX CORPORATION
    Inventors: Darren Andrew MAKEIFF, Rina Carlini
  • Publication number: 20110300383
    Abstract: The invention relates to supports consisting of nanoscalar polymer fibres, polymer tubes or hollow fibres for the application and targeted and/or delayed release of ingredients, in particular, agricultural active ingredients. The invention also relates to a method and a device for the production of supports of this type in a charged or empty state. The method and device use electrospinning technology.
    Type: Application
    Filed: August 8, 2011
    Publication date: December 8, 2011
    Applicants: Justus-Liebig Universitat Giessen, Philipps-Universitat Marburg
    Inventors: Andreas GREINER, Hans E. Hummel, Joachim H. Wendorff, Mathias Becker, Roland Dersch
  • Publication number: 20110300375
    Abstract: The invention pertains to a process for processing fibers of polyethylene having a molecular weight Mw of at least 10.000.000 g/mol and the use of the so-obtained fiber pieces.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 8, 2011
    Applicant: HD KUNSTDTOFFE & KUNSTSTOFFERZEUGNISSE GMBH
    Inventor: Heinrich Derenowski
  • Publication number: 20110300382
    Abstract: Disclosed herein are articles produced from the vitrification of uncross-linked alkyd oligomers. The articles include fibers, nonwovens, and articles made from nonwovens such as, for example, diapers, wipes, feminine hygiene articles, drapes, gowns, sheeting, and bandages. Also disclosed herein is a method for making articles composed of uncross-linked alkyd oligomers.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 8, 2011
    Inventors: Isao Noda, William Maxwell Allen
  • Publication number: 20110287255
    Abstract: Heat-resistant, high strength fibers useful in a wide range of end-use applications are prepared using a polymeric composition containing polyetherketoneketone and mineral nanotubes.
    Type: Application
    Filed: February 2, 2010
    Publication date: November 24, 2011
    Applicant: Arkema Inc.
    Inventors: Christopher A. Bertelo, Anthony Decarmine
  • Publication number: 20110288026
    Abstract: The invention is directed to formation and use of electroprocessed collagen, including use as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed collagen may also be combined with other molecules in order to deliver substances to the site of application or implantation of the electroprocessed collagen. The collagen or collagen/cell suspension is electrodeposited onto a substrate to form tissues and organs.
    Type: Application
    Filed: March 21, 2011
    Publication date: November 24, 2011
    Inventors: David G. Simpson, Gary L. Bowlin, Gary E. Wnek, Peter J. Stevens, Marcus E. Carr, Jamil A. Matthews, Saravanamoorthy Rajendran
  • Patent number: 8064203
    Abstract: A free standing film includes: i. a matrix layer having opposing surfaces, and ii. an array of nanorods, where the nanorods are oriented to pass through the matrix layer and protrude an average distance of at least 1 micrometer through one or both surfaces of the matrix layer. A method for preparing the free standing film includes (a) providing an array of nanorods on a substrate, optionally (b) infiltrating the array with a sacrificial layer, (c) infiltrating the array with a matrix layer, thereby producing an infiltrated array, optionally (d) removing the sacrificial layer without removing the matrix layer, when step (b) is present, and (e) removing the infiltrated array from the substrate to form the free standing film. The free standing film is useful as an optical filter, ACF, or TIM, depending on the type and density of nanorods selected.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: November 22, 2011
    Assignee: Dow Corning Corporation
    Inventors: Carl Fairbank, Mark Fisher
  • Publication number: 20110277947
    Abstract: Cellulose nanofilaments from cellulose fibers, a method and a device to produce them are disclosed. The nanofilaments are fine filaments with widths in the sub-micron range and lengths up to a couple of millimeters. These nanofilaments are made from natural fibers from wood and other plants. The surface of the nanofilaments can be modified to carry anionic, cationic, polar, hydrophobic or other functional groups. Addition of these nanofilaments to papermaking furnishes substantially improves the wet-web strength and dry sheet strength much better than existing natural and synthetic polymers. The cellulose nanofilaments produced by the present invention are excellent additives for reinforcement of paper and paperboard products and composite materials, and can be used to produce superabsorbent materials.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 17, 2011
    Applicant: FPINNOVATIONS
    Inventors: Xujun HUA, Makhlouf LALEG, Thomas OWSTON
  • Publication number: 20110281487
    Abstract: The present invention provides the gas barrier molded article having high permeation barrier properties against oxygen gas, water vapor and the like. A gas barrier material containing cellulose fibers having an average fiber diameter of not more than 200 nm wherein the content of carboxyl group in a cellulose ranges from 0.1 to 2 mmol/g; and further a cross-linking agent having a reactive functional group or the cellulose fibers being dried or heated or a gas barrier molded article containing a molded substrate and a layer composed of the gas barrier material on the surface of the molded substrate.
    Type: Application
    Filed: December 25, 2009
    Publication date: November 17, 2011
    Applicant: KAO CORPORATION
    Inventors: Kenta Mukai, Yoshiaki Kumamoto, Akira Isogai, Zenbei Meiwa, Takahiro Maezawa, Toru Ugajin
  • Publication number: 20110281111
    Abstract: A template-free reverse micelle (RM) based method is used to synthesize pyrochlore nanostructures having photocatalytic activity. In one embodiment, the method includes separately mixing together a first acid stabilized aqueous solution including pyrochlore precursor A and a second acid stabilized aqueous solution including pyrochlore precursor B with an organic solution including a surfactant to form an oil-in-water emulsion. Next, equimolar solutions of the first and second acid stabilized oil-in-water emulsions are mixed together. Then, the mixture of the first and second acid stabilized oil-in-water emulsion is treated with a base to produce a precipitate including pyrochlore precursors A and B. After which, the precipitate is dried to remove volatiles. The precipitate is then calcined in the presence of oxygen to form a pyrochlore nanostructure, such as a bismuth titanate (Bi2Ti2O7) pyrochlore nanorod. The method of synthesizing the pyrochlore nanorod is template-free.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 17, 2011
    Applicant: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada,
    Inventors: Vaidyanathan Subramanian, Sankaran Murugesan
  • Publication number: 20110274927
    Abstract: An inorganic fiber structure comprising inorganic nanofibers having an average fiber diameter of 3 ?m or less, in which an entirety including the inside thereof is adhered with an inorganic adhesive, and the porosity thereof is 90% or more, is disclosed.
    Type: Application
    Filed: January 14, 2010
    Publication date: November 10, 2011
    Inventors: Rie Watanabe, Takashi Tarao, Masaaki Kawabe, Tetsu Yamaguchi, Koei Kawakami
  • Publication number: 20110274906
    Abstract: Disclosed is: a single crystalline silicon carbide nanofiber having improved thermal and mechanical stability as well as a large specific surface area which is applicable to a system for purifying exhaust gas, silicon carbide fiber filter, diesel particulate filter having a high temperature stability and may be used in the form of nanostructures such as nanorods and nanoparticles.
    Type: Application
    Filed: January 24, 2011
    Publication date: November 10, 2011
    Applicant: Korea Institute of Science and Technology
    Inventors: Il Doo KIM, Seung Hun Choi, Seong Mu Jo, Jae-Min Hong
  • Publication number: 20110262749
    Abstract: The present invention enables easy manufacturing of a thermal insulating fine fiber and the like, for example, having a high degree of freedom in size and shape and excellent thermal insulating properties. In a manufacturing method according to the present invention, a first end of a preform constituted by bundling a plurality of pipes 1 is sealed, and suction of inner gas of each of the pipes is carried out from a second end side of the preform. By heating the preform with the internal pressure of each of the pipes being thus reduced from the first end side and drawing the preform, a fine fiber is made from the preform. While drawing the preform, by intermittently providing the fine fiber with sealing portions for sealing holes in the fine fiber, a thermal insulating fine fiber is manufactured.
    Type: Application
    Filed: April 26, 2011
    Publication date: October 27, 2011
    Inventor: Eisuke Sasaoka
  • Publication number: 20110260584
    Abstract: Piezoelectric fibers include a polypeptide wherein molecules of the polypeptide have electric dipole moments that are aligned such that the piezoelectric fiber provides a piezoelectric effect at an operating temperature. A piezoelectric component provides a plurality of piezoelectric fibers, each comprising an organic polymer. A method of producing piezoelectric fibers includes electrospinning a polymer solution to form a fiber and winding the fiber onto a rotating target in which the rotating target is electrically grounded. An acoustic sensor includes a plurality acoustic transducers, wherein the plurality of acoustic transducers are structured and arranged to detect a corresponding plurality of vector components of an acoustic signal, and at least one of the plurality of acoustic transducers comprises a piezoelectric fiber.
    Type: Application
    Filed: August 19, 2009
    Publication date: October 27, 2011
    Inventors: Michael Yu, Dawnielle Farrar, Wonkyu Moon, James West, Sangkyu Lee