Silicic Or Refractory Material Containing (e.g., Tungsten Oxide, Glass, Cement, Etc.) Patents (Class 428/404)
  • Patent number: 8735466
    Abstract: The present invention relates to a film forming composition comprising a resin and modified nanoparticles comprising nanoparticles and adsorbed thereon a segmented copolymer, preferably a segmented blockcopolymer, comprising an adsorbing segment and a hydrophobic surface active segment, wherein the adsorbing segment has one or more functional groups that adsorb on the nanoparticles and wherein the hydrophobic segment is more hydrophobic than the resin providing surface migration of the nanoparticles. The invention also relates to novel modified particles and the use of the specified segmented copolymer of specified modified particles in a film forming composition for imparting thereto improved surface properties such as scratch resistance.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 27, 2014
    Assignee: Nuplex Resins B.V.
    Inventors: Jan Andre Jozef Schutyser, Cornelis Adrianus Maria Vijverberg, Richard Hendrikus Gerrit Brinkhuis
  • Patent number: 8709599
    Abstract: A material is composed of at least one spin transition compound that corresponds to the formula Fe1-mMm(R-Trz)3XbYc (I) in which M is a metal having a 3d4, 3d5, 3d6 or 3d7 configuration, other than Fe; 0?m?1; R-Trz represents a 1,2,4-triazole ligand carrying an R substituent on the nitrogen in the 4 position; R is an alkyl group or an R1R2N— group in which R1 and R2 represent, each independently of the other, H or an alkyl radical; X represents at least one noncoloring monovalent or divalent anion; Y represents at least one anion which has a coloring group; and b and c are chosen so that the electrical neutrality of the compound (I) is adhered to. A process for the preparation of this material and to its use as thermochromic pigment, as support for data storage or as optical limiter.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: April 29, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Jean-François Letard, Nathalie Daro, Sandie Auffret
  • Publication number: 20140113139
    Abstract: A method of producing inorganic compound particles is provided. It includes a step of impregnating a melt liquid of second raw particles into first raw particles by heating a raw material including them at a temperature, which equals to or higher than an eutectic temperature between a region-II (solid-liquid phase range) and a region-I (solid phase range) in a phase diagram and lower than the melting temperature of the inorganic compound. The first raw particles contain an element with a melting point equals to or higher than a melting point of the inorganic compound. The second raw particles contain an element with a melting point lower than the inciting point of the inorganic compound. The method also includes a step of synthesizing inorganic compound particles by a synthetic reaction in the first raw particles between the elements contained in the first and second raw particles.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 24, 2014
    Applicants: Mitsuba Corporation, National Institute for Materials Science
    Inventors: Yukihiro Isoda, Naoki Shioda
  • Patent number: 8703282
    Abstract: A core-shell type magnetic particle comprises magnetic metal particle and an oxide coating layer formed on the surface of the magnetic metal particle. The magnetic metal particle contains a magnetic metal containing at least one selected from the group consisting of Fe, Co and Ni, a nonmagnetic metal and at least one element selected from carbon and nitrogen. The oxide coating layer is constituted of an oxide or a composite oxide containing the nonmagnetic metal which is one of the constituents of the magnetic metal particle.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: April 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Kouichi Harada, Seiichi Suenaga
  • Patent number: 8703017
    Abstract: A method of modifying a phosphor and a phosphor composition and a manufacturing method of the same and a phosphor solution are provided. The phosphor composition includes a silicone resin and a modified phosphor. The modified phosphor includes a phosphor and a nano-silica particle. The nano-silica particle is adhered to the phosphor. A weight ratio of the modified phosphor to the silicone resin is substantially between 1:0.005 and 1:0.1.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: April 22, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Kuo-Tung Huang, Yu-Ying Hsu, Bee-Yu Wei
  • Patent number: 8691365
    Abstract: A composition includes an inorganic particle core and an initiator molecule chemically bonded thereto. The particle core is formed of a material having a dielectric constant of about fifteen or more. The initiator molecule includes a chain having about twenty or fewer carbon atoms and a phosphorous atom chemically bonded to an end of the chain. An alkyl derivative of an aryl moiety terminates another end of the chain.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 8, 2014
    Assignee: Alcatel Lucent
    Inventor: Ashok J. Maliakal
  • Publication number: 20140087188
    Abstract: Crosslinked organic porous particles are non-swellable in propyl acetate and have a crosslinked organic solid phase and discrete pores dispersed within the crosslinked organic solid phase, which discrete pores are isolated from each other. The discrete pores have an average size greater than or equal to 0.1 ?m and the crosslinked organic porous particles have a mode particle size of at least 3 ?m and up to and including 100 ?m. The discrete pores can contain a marker material.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Inventor: Mridula Nair
  • Publication number: 20140079584
    Abstract: Exemplary embodiments are directed to a contact material for a vacuum interrupter, and method of making the contact material. In achieving precise control of the Si concentration of Cu/Cr contact materials, the exemplary contact material has a chromium content which is above 10 wt. % and that the material is doped with silicon below 0.2 wt. % (2000 ppm Si) and the remainder is copper Cu.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 20, 2014
    Applicant: ABB Technology AG
    Inventors: Reinhard SIMON, Dietmar GENTSCH
  • Patent number: 8658184
    Abstract: The present invention relates to glass flakes and to the use thereof, in particular as transparent filler in cosmetic formulations. Glass flakes having certain dimensions are suitable, owing to their transparency, as filler in cosmetic formulations since they do not change the basic color of the formulation and at the same time improve the skin feel.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 25, 2014
    Assignee: Merck Patent GmbH
    Inventors: Elke Schulz, Veronika Hochstein
  • Patent number: 8652637
    Abstract: The present invention is core-shell polymer particles comprising a common binder polymer for the core and the shell wherein the core has a porosity and the shell is non-porous The particles have a porosity from 10 to 70 percent.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: February 18, 2014
    Assignee: Eastman Kodak Company
    Inventors: Dennis J. Massa, Mridula Nair, Tamara K. Jones, Dale E. Hamilton
  • Publication number: 20140037978
    Abstract: Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 6, 2014
    Applicant: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Publication number: 20140037942
    Abstract: There is provided an optical film including an acrylic film, and a functional coating layer formed on at least one side of the acrylic film. The functional coating layer includes a water-dispersible resin and at least two kinds of fine particles having different average particle sizes.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 6, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Jun-Wuk PARK, Yi-Rang Lim, Nam-Jeong Lee, Hwa-Sub Shim
  • Patent number: 8637116
    Abstract: A coating composition including an inorganic sol material and an organic colorant is applied to mineral particles and cured at a temperature less than 200 degrees Celsius provides roofing granules with improved luster.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: January 28, 2014
    Assignee: CertainTeed Corporation
    Inventors: Ming Liang Shiao, Van Nhan Nguyen, Emmanuel Garre
  • Patent number: 8637156
    Abstract: Layers of a passivating material and/or containing luminescent centers are deposited on phosphor particles or particles that contain a host material that is capable of capturing an excitation energy and transferring it to a luminescent center or layer. The layers are formed in an ALD process. The ALD process permits the formation of very thin layers. Coated phosphors have good resistance to ambient moisture and oxygen, and/or can be designed to emit a distribution of desired light wavelengths.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 28, 2014
    Inventors: Alan W. Weimer, Steven M. George, Karen J. Buochler, Joseph A. Spencer, II, Jarod McCormick
  • Patent number: 8628850
    Abstract: Solar-reflective roofing granules having deep-tone colors are formed by coating base mineral particles with a coating composition including an infrared-reflective pigment. Color is provided by a colored infrared pigment, a light-interference platelet pigment, or a metal oxide.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 14, 2014
    Assignee: CertainTeed Corporation
    Inventors: Ming Liang Shiao, Husnu M. Kalkanoglu, Keith C. Hong
  • Patent number: 8629076
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicon carbide, improving the thermal stability of the carbon aerogel.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joshua D. Kuntz, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Publication number: 20140011034
    Abstract: A process for conversion of conventional sand granules (or other particulates) to a ‘core-shell’ adsorbent granules in which GO (or GO-f) coating imparts nano structural features on the surface of the sand granules (or other particulates). Such materials are useful in a variety of engineering applications such as water purification, catalysis, capacitors, proppants, casting, and magnetic shielding.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 9, 2014
    Applicants: William Marsh Rice University, NanoHoldings LLC
    Inventors: Mainak Majumder, Wei Gao, Pulickel Madhavapanicker Ajayan, Tharangattu Narayanan, Bhabendra K. Pradhan
  • Patent number: 8623508
    Abstract: Material with hierarchical and organized porosity in the microporosity and mesoporosity domains, consisting of at least two elementary spherical particles, each one of said particles comprising a matrix based on silicon oxide, mesostructured, having a mesopore diameter ranging between 1.5 and 30 nm and exhibiting microporous and crystallized walls of thickness ranging between 1 and 60 nm, said elementary spherical particles having a maximum diameter of 200 microns. The preparation of said material is also described.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 7, 2014
    Assignee: IFP
    Inventors: Alexandra Chaumonnot, Stephanie Pega, Clement Sanchez, Cedric Boissiere
  • Patent number: 8618595
    Abstract: A method for the production of a robust, chemically stable, crystalline, passivated nanoparticle and composition containing the same, that emit light with high efficiencies and size-tunable and excitation energy tunable color. The methods include the thermal degradation of a precursor molecule in the presence of a capping agent at high temperature and elevated pressure. A particular composition prepared by the methods is a passivated silicon nanoparticle composition displaying discrete optical transitions.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: December 31, 2013
    Assignee: Merck Patent GmbH
    Inventors: Brian A. Korgel, Keith P. Johnston, Katherine Brosh, Paul Thurk
  • Patent number: 8617710
    Abstract: The present invention relates to a process for forming cobalt nanoparticles and coating them with copper or copper oxide, in which process a copper salt is mixed to a cobalt salt so that the formed salt mixture obtains a cobalt:copper ratio of >1:1, and a reduction is carried out with a reducing gas, whereby nanoparticles are formed while a coating is formed onto their surface.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: December 31, 2013
    Assignee: Teknologian Tutkimuskeskus VTT
    Inventors: Ari Auvinen, Jorma Jokiniemi, Pipsa Mattila, Unto Tapper
  • Patent number: 8608979
    Abstract: A luminescent particle includes an interior portion of the luminescent particle comprising a luminescent compound that reacts with atmospherically present components and a passivating layer on an outer surface of the luminescent particle that is operable to inhibit the reaction between the luminescent compound and the atmospherically present components.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 17, 2013
    Assignee: Cree, Inc.
    Inventors: Brian Thomas Collins, Jesse Colin Reiherzer, Florin A. Tudorica
  • Patent number: 8609748
    Abstract: Provided is a modified perovskite type composite oxide in which the dielectric characteristics are equal to or better than those prior to modification, there is no substantial elution of coating components from the modifying coating components, and change in the specific surface areas over time and elution of the A-site metals are suppressed effectively, while the cracking traits are good. A modified perovskite type composite oxide in which the particle surface of a perovskite type composite oxide is coated with a first component of at least one selected from TiO2 and SiO2 and a second component of at least one selected from a group consisting of Al, Zr, Nd, La, Ce, Pr, and Sm, wherein the coating is formed by hydrolyzing at least one selected from a hydrolyzable TiO2 precursor and a hydrolyzable SiO2 precursor as a source of the first component and a salt of at least one selected from a group consisting of Al, Zr, Nd, La, Ce, Pr, and Sm as a source of the second component, and then calcining them.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: December 17, 2013
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventor: Shinji Tanabe
  • Patent number: 8597789
    Abstract: The present invention relates to innovative antifouling additives, to a process for producing them, to coating systems comprising the antifouling systems of the invention, to a process for producing the coating systems, and to the use of the antifouling additives and coating systems of the invention for preventing the underwater fouling of surfaces of objects which are in contact or come into contact with water.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: December 3, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Katharina Schulz, Rüdiger Mertsch, Jürgen Meyer, Günther Michael, Matthias Rochnia, Thorsten Schultz, Juri Tschernjaew
  • Patent number: 8580382
    Abstract: Provided are a coated metal pigment which can satisfy both the coating stability in use as an aqueous coating, i.e., water resistance, and the chemical resistance of coating films produced by application thereof at practically satisfactory levels; a method for producing the same; and an aqueous coating containing the same. The invention relates to a coated metal pigment including a metal pigment and a composite coating layer, wherein the composite coating layer includes an adhesion layer which is disposed on the surface of the metal pigment either in contact with the metal pigment or at an interposition of another layer and contains polysiloxane and/or silica, and a resin layer which is disposed on the surface of the adhesion layer either in contact with the adhesion layer or at an interposition of another layer.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: November 12, 2013
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Takayuki Sato, Taro Morimitsu, Shunichi Setoguchi, Yoshiki Hashizume
  • Publication number: 20130288057
    Abstract: Provided are a resin blend for forming a layer-separated structure, a pellet, a method of preparing a resin article using the same and a resin article. The resin blend may include a first resin, and a second resin that comprises an acrylic copolymer containing a silica particle and has a molecular weight distribution of 1 to 2.5. The resin blend can improve surface characteristics of a resin article. Also, the resin blend can realize excellent scratch resistance of a resin article. Further, since an additional coating is not required for manufacturing a resin article, a manufacturing time and/or cost can be reduced, and productivity can be increased.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 31, 2013
    Inventor: LG CHEM, LTD.
  • Patent number: 8568882
    Abstract: A mesostructured material is described, which consists of at least two elementary spherical particles, each one of said particles comprising a mesostructured matrix based on aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, and an aluminium oxide content representing more than 46 wt. % of the mass of said matrix, which has amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D greater than 10 ?m and less than or equal to 100 ?m (10<D(?m)?100). Said mesostructured matrix can also contain silicon oxide. Each spherical particle of the mesostructured material can also contain zeolite nanocrystals so as to form a mixed porosity material of both mesostructured and zeolitic nature. The preparation of said material is also described.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Patent number: 8568881
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: October 29, 2013
    Assignee: Luminex Corporation
    Inventors: Don J. Chandler, Jason Bedre
  • Patent number: 8568879
    Abstract: A polymer-coated particulate material having: a particulate substrate; and an applied compound, wherein the applied compound coats at least 50% of the surface of the particulate substrate, and wherein, at the time of application, the applied compound includes a dispersion including: a thermoplastic polymer; and a stabilizing compound. In another aspect, embodiments disclosed herein relate to a method of forming a polymer-coated particulate material, the method including the steps of: incorporating a particulate substrate and a dispersion, the dispersion comprising: a thermoplastic polymer; a stabilizing compound; and a dispersion medium selected from the group consisting of an organic solvent, water, and combinations thereof; removing at least a portion of the dispersion medium.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: October 29, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Loic F. Chereau, Julien H. J. M. Damen, Thomas Allgeuer
  • Patent number: 8563135
    Abstract: A mesostructured aluminosilicate material is described, which consists of at least two elementary spherical particles, each one of said spherical particles consisting of a matrix based on silicon oxide and aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, a Si/Al molar ratio at least equal to 1 and amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D such that 10<D(?m)?100. A method of preparing said material and its application in the spheres of refining and petrochemistry are also described.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 22, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Patent number: 8563133
    Abstract: Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure, for reversibly modifying nanostructures, and for manipulating the electronic properties of nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures. Ligands of the present invention are also useful for manipulating the electronic properties of nanostructure compositions (e.g., by modulating energy levels, creating internal bias fields, reducing charge transfer or leakage, etc.).
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: October 22, 2013
    Assignee: SanDisk Corporation
    Inventors: Jeffery A. Whiteford, Mihai A. Buretea, Jian Chen, William P. Freeman, Andreas Meisel, Linh Nguyen, J. Wallace Parce, Erik Scher
  • Publication number: 20130267629
    Abstract: The mesoporous silica particles each comprise a core particle comprising first mesopores, wherein a periphery of the core particle is covered with silica. Preferably, second mesopores, smaller than the first mesopores, are provided in the silica-covered part formed by the silica covering. The mesoporous silica particles are produced by: a surfactant complex silica particle preparation step of mixing a surfactant, water, an alkali, a hydrophobic part-containing additive and a silica source to thereby prepare surfactant complex silica particles, said hydrophobic part-containing additive including a hydrophobic part for increasing a volume of micelles to be formed by the surfactant; and a silica covering step of adding the silica source to the surfactant complex silica particles to thereby cover a periphery of each core particle with silica.
    Type: Application
    Filed: December 22, 2011
    Publication date: October 10, 2013
    Applicants: THE UNIVERSITY OF TOKYO, PANASONIC CORPORATION
    Inventors: Ayumu Fukuoka, Hiroki Yabe, Tatsuya Okubo, Atsushi Shimojima, Hirotaka Ishii
  • Patent number: 8552108
    Abstract: A room temperature curable organopolysiloxane composition is provided. The composition comprises (I) an organopolysiloxane which is a condensation product of component (A) (an organopolysiloxane comprising R3SiO1/2 unit and SiO4/2 unit and containing 0.02 to 0.12 mol/100 g of hydroxy group bonded to the silicon atom) and component (B) (a diorganopolysiloxane raw rubber having hydroxy group on opposite ends thereof), (II) an organosilane compound having at least 2 hydrolyzable groups bonded to the silicon atom on average per molecule, and/or its partial hydrolytic condensate, (III) a solvent, and (IV) a silica nano particle having its surface modified by a branch structure. The composition is capable of providing a high strength film without incorporating reinforcement fillers, with no curing inhibition by the inorganic nano particles, and without inhibiting gas separation performance realized by the inorganic nano particles.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 8, 2013
    Assignees: Tokyo Metropolitan University, Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroyoshi Kawakami, Shoichi Hasebe, Tsuneo Kimura
  • Patent number: 8550645
    Abstract: An illumination device for a display device, which is formed from a substrate and a plurality of white light-emitting devices disposed on top of the substrate, and can be used as a backlight for a liquid crystal display panel, wherein the white light-emitting devices have a light source and a phosphor that is excited by the light source and emits light, and a fluorescent material with a composition represented by a general formula: M(0)aM(1)bM(2)x?(vm+n)M(3)(vm+n)?yOnNz?n is used as the phosphor.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 8, 2013
    Assignees: Showa Denko K.K., National Institute for Materials Science
    Inventors: Hisayuki Miki, Kousuke Shioi, Naoto Hirosaki
  • Publication number: 20130259808
    Abstract: Multifunctional nanoparticles can include two or more different populations of nanocrystals that impart a combination of properties arising from the constituent populations in a single, multifunctional nanoparticle.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 3, 2013
    Inventors: Ou Chen, Moungi G. Bawendi
  • Patent number: 8535803
    Abstract: Solar-reflective roofing granules having deep-tone colors are formed by coating base mineral particles with a coating composition including an infrared-reflective pigment. Color is provided by colored infrared pigment, light-interference platelet pigment, or a metal oxide.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: September 17, 2013
    Assignee: CertainTeed Corporation
    Inventors: Ming Liang Shiao, Husnu M. Kalkanoglu, Keith C. Hong
  • Patent number: 8529694
    Abstract: A composition including particles of a carrier having on a surface thereof a compound according to structure (A) wherein either m is 1 and R is according to structure (B) in which n is an integer from 3 to 7, or m is 2 and R is according to structure C in which p is an integer from 1 to 10. Such compositions are useful for a variety of applications, for example the preparation of mortars and cements.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: September 10, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Laurent Herschke, Roger William Franciscus Reinartz
  • Patent number: 8518540
    Abstract: Multilayer expanded polypropylene resin beads that are heat moldable at low steam pressure and can provide an expanded mold with sufficient rigidity and heat resistance. The beads are formed from a polypropylene resin and a coating layer formed from a different polypropylene resin. The multilayer expanded resin beads can be molded in-mold at a steam pressure lower than the steam pressure for molding single-layer expanded beads made from the polypropylene resin which forms the core layer. The coating layer to core layer resin weight ratio in the multi-layer resin beads is not less than 0.001 and not greater than 0.040 and the expansion ratio of the expanded beads, the average value of the thickness of the coating layer of the expanded beads, calculated based on the coating weight ratio of the multi-layer resin beads, is not less than 0.1 ?m and not greater than 3.0 ?m.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: August 27, 2013
    Assignee: JSP Corporation
    Inventors: Masakazu Sakaguchi, Kouki Nishijima, Masaharu Oikawa
  • Patent number: 8519609
    Abstract: The invention relates to coated phosphor particles comprising luminescent particles and a, preferably substantially transparent, metal, transition-metal or semimetal oxide coating, and to a process for the production thereof.
    Type: Grant
    Filed: October 11, 2008
    Date of Patent: August 27, 2013
    Assignee: Merck Patent GmbH
    Inventors: Holger Winkler, Ralf Petry, Reinhold Rueger, Tim Vosgroene
  • Publication number: 20130209806
    Abstract: The present invention relates to a coated particle containing a particle and a coating, wherein the particle contains glutamic acid N,N-diacetic acid or a partial salt thereof of the formula HnYm-GLDA, wherein Y is a cation, selected from the group of sodium, potassium and mixtures thereof, n+m=4, and wherein the coating contains at least one salt that contains as a cation at least one of sodium, potassium or lithium and as anion at least one of silicate sulfate, carbonate, chloride, nitrate, percarbonate, glycolate, oxalate, citrate, stearate, lactate, succinate, malonate, maleate, diglycolate, and fumarate, to a process to prepare such a particle, and, to the use thereof.
    Type: Application
    Filed: June 27, 2011
    Publication date: August 15, 2013
    Applicant: AKZO NOBEL CHEMICALS INTERNATIONAL B.V.
    Inventors: Cornelis Elizabeth Johannus Van Lare, Martin Heus
  • Patent number: 8507095
    Abstract: A metal oxide-based fine particle includes a metal oxide-based core region; an intermediate region formed on the outer periphery of the core region, the intermediate region having an alkoxyorganosiloxane condensate structure; and a surface region including an organic molecular chain or an organic silicon molecular chain or a reactive functional group.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: August 13, 2013
    Assignee: NEC Corporation
    Inventors: Masatoshi Iji, Naoki Morishita, Hiroyuki Kai
  • Patent number: 8501320
    Abstract: In a particular embodiment, a particulate material includes alumina hydrate. The particulate material has a 500 psi Compaction Volume Ratio of at least about 4.0 cc/cc.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: August 6, 2013
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Olivier Guiselin, Nathalie Pluta, Yves Boussant-Roux, Doruk O. Yener
  • Patent number: 8500901
    Abstract: The present invention relates to interference pigments based on coated flake-form substrates which are distinguished by the fact in that they comprise (A) a layer of SiO2 having a layer thickness of 5-350 nm, (B) a high-refractive-index coating having a refractive index n of >1.8 and/or (C) an interference system consisting of alternating high- and low-refractive-index layers and optionally (D) an outer protective layer, and to the use thereof in paints, coatings, automotive paints, powder coatings, printing inks, security printing inks, plastics, ceramic materials, glasses, paper, in toners for electrophotographic printing processes, in seed, in greenhouse sheeting and tent awnings, as absorbers in the laser marking of paper and plastics, in cosmetic formulations, for the preparation of pigment pastes with water, organic and/or aqueous solvents, and for the preparation of pigment preparations and dry preparations.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: August 6, 2013
    Assignee: Merck Patent GmbH
    Inventors: Reinhold Rueger, Klaus Ambrosius, Marcus Mathias, Helge Bettina Kniess
  • Patent number: 8497022
    Abstract: Provided is a composite nanometal paste which, when a layer of the paste interposed between upper and lower bodies is sintered in an inert gas under no load until the layer turns to a metal layer, attains a shear bond strength between the upper and lower bodies of 10 MPa or higher. The composite nanometal paste contains, as metallic components, composite metallic nanoparticles comprising metal cores with an average particle diameter of X (nm) and an organic coating layer formed around the circumference, metallic nanofiller particles having an average particle diameter of d (nm), and metallic filler particles having an average particle diameter of D (nm), and satisfies the first relation X<d<D and the second relation X<d<100 (nm).
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: July 30, 2013
    Assignees: Applied Nanoparticle Laboratory Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Teruo Komatsu, Yoshinori Shibata, Hideo Nakamura, Masashi Furukawa, Ryosuke Gomi, Mitsuhiro Kanou, Tsukasa Sugie, Narutaka Kasuya, Shuhei Yamaguchi, Toshitaka Ishizaki, Tadashi Oshima, Hisaaki Takao, Naotoshi Tominaga
  • Patent number: 8491998
    Abstract: Provided is a composite nanometal paste, whose layer, when sintered in an inert gas under no load, gives a metal layer that is equal or superior in electrical conductivity and thermal conductivity to conventional lead-rich solders. The composite nanometal paste contains, as metal components, composite metal nanoparticles comprising metal cores with an average particle diameter of d (nm) and an organic coating layer formed around the circumference, and metal filler particles having an average particle diameter of D (nm), and satisfies the first relation d<D and the second relation d<100 (nm).
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: July 23, 2013
    Assignees: Applied Nanoparticle Laboratory Corporation, Shindengen Electric Manufacturing Co., Ltd.
    Inventors: Teruo Komatsu, Ryo Matsubayashi
  • Patent number: 8491985
    Abstract: Dark colored roofing granules include an inert base particle coated with a composition including a metal silicate, a non-clay latent heat reactant, and a dark colored but solar reflective prigment.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: July 23, 2013
    Assignee: CertainTeed Corporation
    Inventors: Husnu M. Kalkanoglu, Thomas McShea, Ming Liang Shiao
  • Patent number: 8487020
    Abstract: Aqueous suspensions of silicate shell microcapsules are disclosed wherein a first portion of the silicate shell micro-capsules contain an organopolysiloxane having at least two alkenyl groups and a hydrosilylation catalyst as Part A of a curable siloxane composition, and a second portion of the silicate shell microcapsules contain an organohydrogensiloxane as Part B of the curable siloxane composition.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: July 16, 2013
    Assignee: Dow Corning Corporation
    Inventors: Fabrizio Galeone, Axel Kretschmer, Leon Marteaux, Jean-Thierry Simonnet, Brett Lee Zimmerman
  • Patent number: 8486532
    Abstract: The present invention relates to treating of reflective surfaces to prevent fouling. The present invention also relates to reflective materials treated to prevent fouling, as well as methods of using such reflective materials.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 16, 2013
    Assignee: Nanosys, Inc.
    Inventors: Robert Enzerink, R. Hugh Daniels
  • Publication number: 20130171416
    Abstract: Composite particles comprising core particles completely or partially coated with a precipitated polymer, where the d50 median diameter of the core particles is from 1 to 70 ?m and wherein the core particle is an inorganic material which does not include titanium dioxide are provided. A method to prepare the particles includes dissolution of a polymer in a solvent and precipitation of the polymer in the presence of a suspension of the core particles. Further provided is a layer by layer moulding process employing the composite particles and mouldings obtained therefrom.
    Type: Application
    Filed: June 27, 2012
    Publication date: July 4, 2013
    Applicant: Evonik Degussa GmbH
    Inventors: Wolfgang DIEKMANN, Franz-Erich Baumann, Maik Grebe, Kristiane Warnke, Sylvia Monsheimer
  • Publication number: 20130164529
    Abstract: A colored platelet including a substrate, an adhesion layer, a color pigment layer, and a secure layer and a method of producing the colored platelet are described. The disclosed colored platelet can provide a superior bright color effect in a coating composition. The color effect can depend on the material used for the substrate and/or the color pigment layer.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: SILBERLINE MANUFACTURING COMPANY, INC.
    Inventors: Shufang YU, Peter Lloyd REDMOND, Rajasekar PITCHIMANI, Hai Hui LIN, Parfait Jean Marie LIKIBI
  • Publication number: 20130149536
    Abstract: A particle of titanium dioxide treated with a polysiloxane is disclosed. One or more silicon atoms of the polysiloxane is substituted with an alkylene group terminating with a silyl group containing three substituents selected from the group consisting of hydroxy, halo, alkoxy, acetoxy, and mixtures thereof. These treated particles are blended with organic polymers to form a polyethylene polymer matrix having dispersed therein at least 55 wt % polysiloxane modified titanium dioxide particles.
    Type: Application
    Filed: February 7, 2013
    Publication date: June 13, 2013
    Inventors: Robert J Kostelnik, Christopher J. Drury, Charles A. Wheddon