Metal Continuous Phase Interengaged With Nonmetal Continuous Phase Patents (Class 428/539.5)
  • Patent number: 10184554
    Abstract: A differential carrier case with an inserted pipe for high pressure casting may include a mold core into which a first end of a pipe is inserted, a mold core pin fixed to the mold core to fix the mold core and the first end of the pipe, a drive core pin inserted into a second end of the pipe, and a thick portion surrounding an outer portion of the pipe.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: January 22, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation, INZI AMT.co., ltd., Hyundai Dymos Incorporated
    Inventors: Mun-Gu Kang, Cheol-Ung Lee, Kwang-Min Yoon, Hyung-Sop Yoon, Jung-Hwan Jang, Kyui-Joo Park, Sung-Yong Jang, Yo-Sub Han, Hoon-Gab Choi, Seung-Un Lim
  • Patent number: 10161262
    Abstract: A method for producing a thermal barrier in a multilayered system for protecting a metal part made of superalloy, by producing a thermal treatment by flash sintering protection materials in layers superposed on the metal part in an SPS machine enclosure. The layers contain, on a superalloy substrate, at least two layers of zirconium-based refractory ceramics. A metal part is produced according to a SPS flash sintering method and contains a superalloy substrate, a metal sub-layer, a TGO oxide layer and the thermal barrier formed by the method. A first ceramic is an inner ceramic designed to have a substantially higher expansion coefficient. An outer ceramic is designed to have at least lower thermal conductivity, and at least one of a sintering temperature or maximum operating temperature that is substantially higher. The thermal barrier has a composition and porosity gradient from the metal sub-layer to the outer ceramic.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: December 25, 2018
    Assignees: SAFRAN AIRCRAFT ENGINES, Centre National De La Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul-SABATIER Toulouse III
    Inventors: Juliette Hugot, Mathieu Boidot, Daniel Monceau, Djar Oquab, Claude Estournes
  • Patent number: 10132416
    Abstract: The invention relates to pipeline control valves, in particular to manufacturing of ball gates on the basis of TiC. The cermet structure consists of a homogeneous metal matrix and uniformly arranged TiC grains in it, and has fragments with a matrix, matrix-framework and framework structures. TiC powder is placed in the mold with preliminary placed porous TiC inserts in it and sintered in the heating furnace in the chamber with non-oxidizing environment. The mold with the carbide semi-product is removed from the heating furnace after sintering. The infiltrate is placed and melted in the crucible located in the same chamber and cast in the mold till contacting the carbide semi-product ensuring its complete infiltration with the molten metal. The invention enables combining the structure and properties over the zones and improving the quality of cermet items.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 20, 2018
    Assignee: MAROMA TECHHNOLOGIES LTD.
    Inventor: Rustam Faritovich Mamleev
  • Patent number: 10017647
    Abstract: Material for surface treatment, mainly with thermo-reflexive and/or thermoinsulative characteristics, and with high water resistance level, contains first hollow glass bodies (1) with size fraction ranging from 65 to 110 ?m, second, filler hollow glass bodies (2) intended to fill the spaces within main fraction of the bodies (1) and these second, filler hollowed glass bodies (2) have size fraction ranging from 30 to 105 ?m, it also contains silicon dioxide processed to form of the nanoparticles and a binder (3). Hollow glass bodies (1, 2) will be mainly shaped as hollow, vacuumed microballs. A mixture forming the material can contain hollow glass bodies (1) making up 3 to 30% of its mass, filler hollow glass bodies making up 3 to 15% of its mass and silicon dioxide making up 1 to 17% of its mass.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: July 10, 2018
    Assignee: HEISKE Limited
    Inventor: Matej Rusnak
  • Patent number: 9920836
    Abstract: Provided is a piston ring for an internal combustion engine capable of preventing aluminum cohesion for a long time under conditions with high temperature and a high load and also suppressing the wearing of a piston member. A piston ring 1 for the internal combustion engine including a piston ring body 11 having at least one of an upper side face and a lower side face coated with an aluminum cohesion resistance film 12, wherein the aluminum cohesion resistance film 12 has a first coating film 12a made of first ceramics material formed on the piston ring body and a second coating film having Vickers hardness HV smaller than that of the first ceramics material formed on the first coating film 12a.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: March 20, 2018
    Assignee: KABUSHIKI KAISHA RIKEN
    Inventors: Hayato Sasaki, Takashi Ono, Yongtie Yan
  • Patent number: 9695090
    Abstract: A composite material combining—a precious metal or an alloy containing a precious metal—and a boron-based ceramic having a melting point greater than that of said precious metal and a density at most equal to 4 g/cm3.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: July 4, 2017
    Assignee: HUBLOT SA
    Inventors: Senad Hasanovic, Andreas Mortensen, Ludger Weber, Reza Tavangar
  • Patent number: 9670101
    Abstract: A method for producing a metal detectible ceramic, including mixing a first amount of ceramic material with a second metal oxide to define an admixture, forming the admixture into a green body, sintering the green body to yield a densified body, wherein the densified body has a plurality of metallic particles distributed therethrough, and wherein the densified body is detectible by a metal detector.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: June 6, 2017
    Assignee: Thomas Blaszczykiewicz
    Inventors: Michelene Hall, Thomas Blaszczykiewicz
  • Patent number: 9611181
    Abstract: A process for applying an oxidation resistant coating to an article includes the steps of mixing at least about 10% by volume to up to about 99% by volume of a slurry at least one silica based material having a viscosity of about 1×102 poise to about 1×107 poise at a temperature of about 1,292° F. (700° C.) to about 3,272° F. (1,800° C.) at least about 1% by volume to up to about 90% by volume of the slurry at least one oxygen scavenger, and a liquid medium to form the slurry; coating an article with the slurry to form a slurry coated article; and heat treating under an inert atmosphere the slurry coated article to form an article having at least one oxidation resistant coating layer containing the at least one oxygen scavenger.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 4, 2017
    Assignee: United Technologies Corporation
    Inventors: Xia Tang, Tania Bhatia Kashyap, David C. Jarmon, Wayde R. Schmidt, Harry E. Eaton, Jr., John G. Smeggil
  • Patent number: 9222158
    Abstract: A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: December 29, 2015
    Assignee: Purdue Research Foundation
    Inventors: Qingyou Han, Zhiwei Liu
  • Patent number: 9202634
    Abstract: The present invention makes it possible to increase the thickness of a sintered body. Thus, the present invention provides a production method that is suitable for the production of anode electrode materials with high capacitance useful for medium- to high-voltage aluminum electrolytic capacitors, that does not involve an etching treatment, and that enables desired formation of the resulting electrode material for aluminum electrolytic capacitor into the desired shape. Specifically, the present invention provides a method for producing an electrode material for aluminum electrolytic capacitor, comprising the steps of: (1) forming, in a sintering mold, an unsintered laminate in which a substrate is held between compositions comprising a powder of at least one member selected from the group consisting of aluminum and aluminum alloys; and (2) sintering the unsintered laminate in the sintering mold, wherein the method does not comprise an etching step.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: December 1, 2015
    Assignee: TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Toshifumi Taira, Masashi Mehata
  • Patent number: 9167966
    Abstract: A dissipation device having a proximal end, which is located outside the body, and a distal end, which is suited in particular for elongate medical instruments, in particular electrophysiological catheters or temporary electrode leads, placed temporarily in the body. The dissipation device including a dissipation sleeve which extends from the proximal end to the distal end of the dissipation device, and a lumen which extends from the proximal end to the distal end, and in which the instrument can be displaceably guided, wherein the lumen is enclosed by the dissipation sleeve. The dissipation device is characterized in that the dissipation sleeve is composed, at least partially, of electrically conductive material, and/or the dissipation sleeve includes dissipation means composed of electrically conductive material and, therefore, the dissipation sleeve is designed to dissipate or divert electrical energy induced by electromagnetic radiation.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: October 27, 2015
    Assignee: BIOTRONIK CRM Patent AG
    Inventors: Wolfgang Geistert, Erhard Flach, Ingo Weiss
  • Patent number: 9142359
    Abstract: The present invention provides an electrode material for use in an aluminum electrolytic capacitor that does not necessitate an etching treatment. Specifically, the present invention provides an electrode material for use in an aluminum electrolytic capacitor, the electrode material comprising a sintered body of at least one of aluminum and an aluminum alloy.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: September 22, 2015
    Assignee: TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Toshifumi Taira, Masashi Mehata
  • Patent number: 9123367
    Abstract: A swage mount is manufactured for attaching a head suspension assembly to a head actuator arm for a hard disk drive. A conductive material is deposited on a predetermined part of the swage mount. A coating material is deposited on the swage mount including the predetermined part. Heat is applied to the swage mount, forming a mixture of the conductive material and the coating material. The mixture is conductive and supports a reliable connection between the swage mount and other disk drive components. Furthermore, the mixture enhances cleanliness by reducing particles shed from the swage mount. The conductive material is preferably gold, and the coating material is preferably nickel-based.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: September 1, 2015
    Assignee: INTRI-PLEX TECHNOLOGIES, INC.
    Inventors: David Django Dexter, Ryan John Schmidt, Paul Wesley Smith
  • Patent number: 8916675
    Abstract: A method for forming a polymer comprising the polymerization of a plurality of monomers, wherein at least one of the plurality of monomers is one or both of: a charge transporting unit and a hydrocarbon monomer in which at least one carbon atom has been substituted by an atom or group with a greater quantity of unshared valence electrons than the carbon atom it has been substituted for, and wherein at least one of the plurality of monomers comprises an end-capping compound at one end of said monomer, the end-capping compound preventing polymerization at the end, wherein the end-capping compound is not charge transporting and comprises at least two rings. The end capping compound preferably consists of or includes a structural unit having the formula: (Ar)n—X, wherein Ar in each occurrence independently represents an aryl or heteroaryl group; X represents a leaving group comprising a boron derivative group or halogen; and n is 2 or more.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: December 23, 2014
    Assignees: Cambridge Display Technology Limited, Sumitomo Chemical Company Limited
    Inventors: Mary McKiernan, Thomas Pounds
  • Patent number: 8829929
    Abstract: An environmental degradation sensor for rubber products comprises a conductive composite having a matrix of at least one polymeric component of the rubber product, a conductive filler, and a degradation control agent. The sensor is attached to the rubber product and communicates with a reader through electrical contact or by use of a radio frequency identification device.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: September 9, 2014
    Inventor: Kenneth S. Watkins, Jr.
  • Publication number: 20140087202
    Abstract: The invention relates to a metal matrix ceramic composite and manufacturing method and application thereof. The metal matrix ceramic composite, is completely formed by permeating at least part of a matrix metal into an array of ceramic granules by means of squeeze-casting, and the volume percentage of the ceramic granules may be adjusted within a range of 10%-80% of the metal matrix ceramic composite according to the usage requirements. The metal matrix ceramic composites can not only retain high performance of anti-penetration, but also have the strong toughness of the metal; in addition, this composite has features of low density, resistance against ordinary mechanical cutting and flame cutting, and inhibition of crack propagation and the like. Therefore, said composite has broad application prospects in the protection of such important security facilities as safes, automatic teller machines and vault gates.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 27, 2014
    Applicant: CHINA WEAPON SCIENCE ACADEMY NINGBO BRANCH
    Inventor: CHINA WEAPON SCIENCE ACADEMY NINGBO BRANCH
  • Patent number: 8673453
    Abstract: Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 18, 2014
    Assignee: Nano Materials International Corporation
    Inventors: Sion M. Pickard, James C. Withers, Raouf O. Loutfy
  • Publication number: 20130288049
    Abstract: Composite products and methods of making the same are provided.
    Type: Application
    Filed: March 22, 2013
    Publication date: October 31, 2013
    Applicant: ALCOA INC.
    Inventors: Vivek M. Sample, J. Daniel Bryant, Hasso Weiland, Eider A. Simielli
  • Patent number: 8431254
    Abstract: The invention relates to a composite material element (1), the composite material comprising a microfissured matrix (7) in the form of a three-dimensional interconnected network (4) of microfissures exposed on the surface of the ceramic matrix, an additive material (6) consisting of a flux or glass being dispersed in the matrix, the additive material (6) being a material which, when the composite material is brought to a predetermined temperature, softens and migrates by capillarity in the network (4) of microfissures (4) to said surface of the element. The quantity of additive material dispersed initially in the matrix is in a sufficient proportion compared to the matrix intended to coat a surface (5) of the composite material element left exposed so as to create a gas-tight barrier.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: April 30, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Luc Bianchi, Joel Toulc'Hoat, Charles Bories
  • Publication number: 20130089457
    Abstract: Provided is a composite material suitable for forming a part for continuous casting capable of producing cast materials of excellent surface quality for a long period of time and with which a molten metal is inhibited from flowing into a gap between a nozzle and a moving mold. A composite material (nozzle 1) includes a porous body 2 having a large number of pores and a filler incorporated in at least part of a portion that comes into contact with the molten metal, the portion being part of a surface portion of the porous body. The filler incorporated in the porous body 2 is at least one selected from a nitride, a carbide, and carbon.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 11, 2013
    Applicant: Sumitomo Electric Industries Ltd
    Inventors: Michimasa Miyanaga, Takeshi Uchihara, Masatada Numano, Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 8399107
    Abstract: In one embodiment, a composition (10) to be mixed with a molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (12), the ceramic reinforcing filler not being wettable by molten aluminum and/or not being chemically stable in molten aluminum, the ceramic reinforcing filler being coated with a ceramic material, the ceramic material being wettable by and chemically stable in molten aluminum. In a related embodiment, a composition (20) to make a porous preform to be infiltrated by molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (23), the ceramic reinforcing filler not being wettable by molten aluminum, the ceramic reinforcing filler being coated with a ceramic material (22) and optionally with a metal (21) such as nickel, the ceramic material being wettable by molten aluminum.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: March 19, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Aleksander J. Pyzik, Ted A. Morgan, Terry I. Hu, Daniel R. Lister, Robert A. Newman, Richard Allen Lundgard, Qin Deng
  • Publication number: 20130017071
    Abstract: Disclosed is a foam structure, a process of fabricating the foam structure, and a turbine including the foam structure. The foam structure includes a cast metallic foam having pores and a gel positioned within at least a portion of the pores. The process of fabricating the foam structure includes providing the cast metallic and infusing the cast metal foam with the gel. The turbine includes a rotating portion and a turbine seal including the foam structure.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert GOLLER, Dennis William CAVANAUGH
  • Patent number: 8354037
    Abstract: To provide a high-frequency magnetic material having a superior radio wave absorption property in a high frequency region and a method of manufacturing the same. The high-frequency magnetic material and the method of manufacturing the same includes a magnetic substance containing metal nanoparticles, the metal nanoparticles are magnetic metals containing at least one kind of Fe, Co, and Ni, an average particle diameter of the metal nanoparticles is equal to or less than 200 nm, first clusters having network-like structures with continuous metal nanoparticles and the average diameter equal to or less than 10 ?m are formed, second clusters having network-like structures with the continuous first clusters and the average diameter equal to or less than 100 ?m are formed, and the entire magnetic substance has a network-like structure with the continuous second clusters.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 15, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Harada, Tomohiro Suetsuna, Seiichi Suenaga
  • Patent number: 8349466
    Abstract: Composite materials comprising a hard ceramic phase and an infiltration alloy are disclosed. The hard ceramic phase may comprise a carbide such as tungsten carbide and/or cast carbide. The infiltration alloy is Cu-based and comprises Ni and Sn. The infiltration alloy may further include Nb, and may be substantially free of Mn. The composite material may be heat treated in order to improve its mechanical properties. For example, the composition of the Cu—Ni—Sn infiltration alloy may be selected such that its hardness, wear resistance, toughness and/or transverse rupture strength are improved after the composite material is solutioned and aged at elevated temperatures.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: January 8, 2013
    Assignee: Kennametal Inc.
    Inventors: Arunkumar Shamrao Watwe, Harold E. Kelley
  • Patent number: 8349759
    Abstract: A metal-carbon composition including a metal and carbon, wherein the metal and the carbon form a single phase material, characterized in that the carbon does not phase separate from the metal when the single phase material is heated to a melting temperature, the metal being selected from the group consisting of gold, silver, tin, lead, and zinc.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: January 8, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8334031
    Abstract: An article coated with a highly durable, wetting resistant coating is provided. The article comprises a coating that comprises a cermet material. The cermet material includes a nickel-bearing metal matrix and a phase disposed within the matrix. The phase includes an anion moiety, for example nitrogen, carbon, or boron; and a cation moiety, for example chromium, zirconium, titanium, vanadium, hafnium, niobium, or tantalum. The phase is present in the cermet at a level of at least about 5 volume %.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: December 18, 2012
    Assignee: General Electric Company
    Inventors: Leonardo Ajdelsztajn, James Anthony Ruud, Dalong Zhong, Molly Maureen Gentleman
  • Patent number: 8178213
    Abstract: In a method for applying a multilayer wear-resistant coating on metallic, optionally already coated, surfaces, the coating is composed of at least two anti-wear layers (5) and an intermediate layer (10) each arranged between two anti-wear layers (5). The intermediate layer (10) is comprised of a material composition containing the material of the anti-wear layer (5) and a further material, wherein the application of the intermediate layer (10) is effected with a content of the material of the anti-wear layer (5) decreasing over a first transition region (a) and a content of the material of the anti-wear layer (5) increasing over a second transition region (b), the content of the material of the anti-wear layer (5) in the intermediate layer (10) being selected to be at least 5% by weight in every point.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: May 15, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Heinrich Werger
  • Patent number: 8153229
    Abstract: Provided is an epoxy resin composition for fiber-reinforced composite materials, which serves as a matrix resin for a prepreg. This epoxy resin composition is improved in tackiness stability during storage, while maintaining mechanical characteristics. The epoxy resin composition for fiber-reinforced composite materials is characterized by containing 25 to 50 parts by weight of an amine curing agent (B) selected from aliphatic polyamines, alicyclic polyamines and aromatic polyamines, and 1 to 20 parts by weight of an organic acid dihydrazide compound (C) having a melting point of not less than 150° C., per 100 parts by weight of an epoxy resin (A).
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 10, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Takashi Kousaka, Mitsuhiro Iwata, Tomohiro Ito
  • Patent number: 8142875
    Abstract: Provided is an epoxy resin composition for fiber-reinforced composite materials, which serves as a matrix resin composition for use in a self-adhesive prepreg for a face sheet of a honeycomb panel. The epoxy resin composition enables to increase self-adhesiveness of the prepreg, while improving workability and appearance quality of the prepreg. The epoxy resin composition is characterized by containing: an epoxy resin (A) which is in a liquid state at room temperature; a thermoplastic resin (B) which dissolves in the epoxy resin (A) at a temperature not less than 90° C.; thermosetting resin particles (C) which do not completely dissolve in the epoxy resin (A) at a temperature less than 90° C. and has a softening point of not less than 120° C.; and a curing agent (D).
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: March 27, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Takashi Kousaka, Mitsuhiro Iwata, Tomohiro Ito
  • Patent number: 8138303
    Abstract: The present invention relates to novel polymers comprising a repeating unit of the formula (I) and their use in electronic devices. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high charge carrier mobilities and high stability of the emission color can be observed, if the polymers according to the invention are used in organic light emitting diodes (OLEDs).
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: March 20, 2012
    Assignee: BASF SE
    Inventors: Natalia Chebotareva, Roger Prétôt, Paul Adriaan Van der Schaaf, Thomas Schäfer, Beat Schmidhalter, Peter Murer
  • Patent number: 8137786
    Abstract: Provided is an epoxy resin composition for fiber-reinforced composite materials, which is improved in toughness necessary for improving the strength of self-adhesion of a matrix resin for use in a prepreg for a face sheet of a honeycomb panel. The epoxy resin composition, which comprises: an epoxy resin (A); a thermoplastic resin (B); fine solid resin particles (C); and a curing agent (D), is characterized in that the epoxy resin composition after being cured has a morphology in which the epoxy resin (A) and the thermoplastic resin (B) form co-continuous phases, and the fine solid resin particles (C) are dispersed in at least the continuous phase of the epoxy resin (A) in the co-continuous phases.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: March 20, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Takashi Kousaka, Tomohiro Ito, Mitsuhiro Iwata, Koichiro Miyoshi
  • Patent number: 8101283
    Abstract: A composite is formed by inserting a ceramic powder into a channel of a preform to form a ceramic powder filled preform. The ceramic powder has at least one reactive ceramic powder. The preform is a ceramic, ceramic-metal composite, metal or combination thereof that has walls that define a plurality of channels each channel having an opening at a surface of the preform. The ceramic powder filled preform is infiltrated with a molten metal to form the ceramic-metal body, which has at least one ceramic phase that is a reaction product of the reactive ceramic and molten infiltrated metal.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: January 24, 2012
    Inventors: Aleksander Jozef Pyzik, Robert Alan Newman, Alveda J. Williams, Shaofu Wu
  • Patent number: 8003193
    Abstract: The present invention provides a low-cost MEMS functional device by improving air tightness of a jointed section by anode junction in wafer level packaging for MEMS based functional devices. The MEMS functional device comprises a function element section formed by processing a substrate mainly made of Si, a metallized film for sealing formed around the functional element, and a glass substrate jointed to the metallized film for sealing by anode junction. Formed on a surface of the metallized film for sealing is a metallized film containing at least one of Sn and Ti as a main component.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 23, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Shohei Hata, Eiji Sakamoto, Naoki Matsushima
  • Patent number: 7988758
    Abstract: Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: August 2, 2011
    Assignee: Nano Materials International Corporation
    Inventors: Sion M. Pickard, James C. Withers, Raouf O. Loutfy
  • Patent number: 7959706
    Abstract: A sintering compound containing a sinterable powder and a binder removable in a debinding step is injected into a metal mold set provided with a sintering compound injecting mold, in a sintering compound molding step (S104). An add-on forming compound which becomes removable or separable from the sintering compound injection molded body in the debinding step or the sintering step is injected into the metal mold set provided with an add-on mold in an add-on forming step (S102). The sintering compound injection molded body and the add-on are formed integrally with each other in the metal mold set. The integral formation of the add-on and the sintering compound injection molded body enables to prevent damage during release from the mold and make easy to handle the injection molded body.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: June 14, 2011
    Assignee: Taisei Kogyo, Ltd.
    Inventor: Shigeo Tanaka
  • Patent number: 7955712
    Abstract: A semifinished product of composite material consists of a metallic matrix material and high tensile strength fibers embedded in the matrix material, whereby the metallic matrix material is formed of titanium or a titanium based alloy. Ceramic particles are encased or embedded in the matrix material for increasing the strength of the semifinished product with respect to torsional loading or transverse loading. The product is produced by a method in which the fibers are coated with the matrix material, ceramic particles are embedded in the matrix material coating the fibers, and then the thusly coated fibers are arranged in a desired geometry and are consolidated to form the product.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: June 7, 2011
    Assignee: MTU Aero Engines GmbH
    Inventors: Bertram Kopperger, Axel Rossmann, Alexander Sagel
  • Patent number: 7955706
    Abstract: A cermet armor material for highly effective ballistic performance which is comprised of a layer of base metal in which is deposited a layer or layers of ceramic and a compatible metal such that the deposited metal in combination with the base metal forms a continuous matrix around the ceramic particles. The body has a structure which is continuously graded from a highest ceramic content at the outer surface (strike face) decreasing to zero within the base substrate, and contained no abrupt interfaces.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: June 7, 2011
    Assignee: Materials & Electrochemical Research Corp.
    Inventors: James C. Withers, Roger S. Storm, Vladimir Shapovalov, Raouf Loutfy
  • Patent number: 7910219
    Abstract: A cermet armor material for highly effective ballistic performance which is comprised of a layer of base metal in which is deposited a layer or layers of ceramic and a compatible metal such that the deposited metal in combination with the base metal forms a continuous matrix around the ceramic particles. The body has a structure which is continuously graded from a highest ceramic content at the outer surface (strike face) decreasing to zero within the base substrate, and contained no abrupt interfaces.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: March 22, 2011
    Assignee: Materials & Electrochemical Research Corp.
    Inventors: James C. Withers, Roger S. Storm, Vladimir Shapovalov, Loutfy Raouf
  • Publication number: 20100261028
    Abstract: A method for producing a composite metal material includes preparing a solution containing a surfactant having both hydrophilicity and hydrophobicity, dispersing a nanosized to micro-sized fine carbonaceous substance into a state of being monodispersed in the solution, bringing the solution having the dispersed fine carbonaceous substance into contact with surface of a metal powder particle, drying the metal powder particle to make the fine carbonaceous substance in the monodispersed state adhere to the surface of the metal powder particle via a component of the solution, and thermally decomposing and removing the solution component adhering to the surface of the metal powder particle by heat-treating the metal powder particle either in a hydrogen-containing reducing atmosphere or in a vacuum atmosphere to partially expose the surface of the metal powder particle out of the adhering fine carbonaceous substance, and thus progress diffusion and sintering among the metal powder particles through exposed parts.
    Type: Application
    Filed: October 16, 2008
    Publication date: October 14, 2010
    Inventors: Katsuyoshi Kondoh, Bunshi Fugetsu
  • Publication number: 20100221564
    Abstract: A cermet and method of forming the cermet, the cermet including a Sialon and an alloy comprising nickel aluminide and boron, wherein the Sialon includes silicon aluminum oxynitride, and wherein at least a portion of the Sialon is bonded with at least a portion of the alloy. In one example, the cermet is about 70 weight percent to about 90 weight percent of the Sialon, and about 10 weight percent to about 30 weight percent of the alloy.
    Type: Application
    Filed: September 9, 2008
    Publication date: September 2, 2010
    Applicant: CAMERON INTERNATIONAL CORPORATION
    Inventor: Michael E. Parsons
  • Patent number: 7776432
    Abstract: Sandwich plate-like construction and method for making such a construction, wherein the construction comprises a steel plate, a contact layer and an inorganic layer, said inorganic layer at least comprises ultra fine particles and a binder. This type of construction is especially suitable as bridge decks, on oil platforms, ship decks, windmill foundations or towers, outdoor furniture, balconies and other tough and exposed applications.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: August 17, 2010
    Assignee: Serwin Holdings ApS
    Inventors: Bo Serwin, Peter Buitelaar
  • Publication number: 20100143704
    Abstract: A metal composite material is obtained by casting a melt of a metal and has an outer surface on which aluminum borate particles maintained in a porous form are exposed. Therefore, an oil is allowed to infiltrate the aluminum borate particles on the outer surface, to be retained therein and to ooze out during sliding. As a consequence, the sliding life during which desired sliding properties are maintained can be significantly prolonged. The metal composite material may be produced from a preform obtained by sintering aluminum borate particles covered with electrically neutralized silica and alumina particles which have been formed by mixing a silica sol and an alumina sol with aluminum borate particles in an aqueous solution to cover aluminum borate particles.
    Type: Application
    Filed: June 20, 2007
    Publication date: June 10, 2010
    Applicant: Central Motor Wheel Co., Ltd
    Inventors: Makoto Fujita, Kunio Kumagai, Masaoki Hashimoto, Kazuko Hashimoto
  • Publication number: 20100143620
    Abstract: An article coated with a highly durable, wetting resistant coating is provided. The article comprises a coating that comprises a cermet material. The cermet material includes a nickel-bearing metal matrix and a phase disposed within the matrix. The phase includes an anion moiety, for example nitrogen, carbon, or boron; and a cation moiety, for example chromium, zirconium, titanium, vanadium, hafnium, niobium, or tantalum. The phase is present in the cermet at a level of at least about 5 volume %.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Leonardo Ajdelsztajn, James Anthony Ruud, Dalong Zhong, Molly Maureen Gentleman
  • Patent number: 7733263
    Abstract: A camouflage coating system for application to the surfaces of jet engine components in order to reduce their level of emitted energy there by rendering them undetectable by infrared detection systems. The camouflage coating comprises a multilayer system having a first diffusion barrier of nickel aluminide applied to the substrate surface. A second silver reflective layer superimposed on the diffusion barrier layer and a glass-ceramic protective overlay superimposed on the silver reflective layer.
    Type: Grant
    Filed: July 11, 1978
    Date of Patent: June 8, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Hyman Kirtchik
  • Publication number: 20100044114
    Abstract: An article of manufacture includes a cemented carbide piece, and a joining phase that binds the cemented carbide piece into the article. The joining phase includes inorganic particles and a matrix material. The matrix material is a metal and a metallic alloy. The melting temperature of the inorganic particles is higher than the melting temperature of the matrix material. A method includes infiltrating the space between the inorganic particles and the cemented carbide piece with a molten metal or metal alloy followed by solidification of the metal or metal alloy to form an article of manufacture.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Applicant: TDY Industries, Inc.
    Inventors: Prakash K. Mirchandani, Morris E. Chandler, Michale E. Waller, Heath C. Coleman
  • Patent number: 7661491
    Abstract: A new composition for forming a matrix body which includes spherical sintered tungsten carbide and an infiltration binder including one or more metals or alloys is disclosed. In some embodiments, the composition may include a Group VIIIB metal selected from one of Ni, Co, Fe, and alloys thereof. Moreover, the composition may also include cast tungsten carbide. In addition, the composition may also include carburized tungsten carbide.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: February 16, 2010
    Assignee: Smith International, Inc.
    Inventors: Kumar T. Kembaiyan, Thomas W. Oldham
  • Patent number: 7658781
    Abstract: Composite bodies made by a silicon metal infiltration process that feature a metal phase in addition to any residual silicon phase. Not only does this give the composite material engineer greater flexibility in designing or tailoring the physical properties of the resulting composite material, but the infiltrant also can be engineered compositionally to have much diminished amounts of expansion upon solidification, thereby enhancing net-shape-making capabilities. These and other consequences of engineering the metal component of composite bodies made by silicon infiltration permit the fabrication of large structures of complex shape. Certain liquid-based preforming techniques are particularly well suited to the task, particularly where a high volumetric loading of the reinforcement component is desired.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: February 9, 2010
    Inventors: W. Michael Waggoner, Barry R Rossing, Marlene Rossing, legal representative, Michael A Richmond, Michael K Aghajanian, Allyn L McCormick
  • Patent number: 7641709
    Abstract: Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: January 5, 2010
    Assignee: Materials and Electrochemical Research (MER) Corporation
    Inventors: Sion M. Pickard, James C. Withers, Raouf O. Loutfy
  • Patent number: 7553563
    Abstract: The invention concerns a composite material consisting of intermetallic phases and ceramic, in particular in the form of a coating on metallic substrates, as well as an arc wire spraying process for production of the composite material in which the intermetallic phases and the ceramics to be deposited are newly formed during the deposit process from the components of the supplied wires by chemical reaction. The invention further concerns wear resistant layers formed by the composites, tribologic layers and plating or hard-facing materials.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: June 30, 2009
    Assignee: Daimler AG
    Inventors: Stefan Grau, Michael Scheydecker, Karl Weisskopf
  • Patent number: 7528413
    Abstract: This invention relates to a high thermal conductivity composite material which comprises diamond particles and a copper matrix useful as electronic heat sinks for electronics parts, particularly for semiconductor lasers, high performance MPUs (micro-processing units), etc., also to a process for the production of the same and a heat sink using the same. According to the high thermal conductivity diamond sintered compact of the present invention, in particular, there can be provided a heat sink having a high thermal conductivity as well as matching of thermal expansions, most suitable for mounting a large sized and high thermal load semiconductor chip, for example, high output semiconductor lasers, high performance MPU, etc. Furthermore, the properties such as thermal conductivity and thermal expansion can freely be controlled, so it is possible to select the most suitable heat sink depending upon the features and designs of elements to be mounted.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: May 5, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuhito Yoshida, Hideaki Morigami, Takahiro Awaji, Tetsuo Nakai