Abstract: A clock and data recovery device of a memory system receives a multiplexed data signal obtained by multiplexing a plurality of data units, each of which is to be transmitted to one of a plurality of memories for storage therein, in an area corresponding to each memory in an amplitude direction and a time direction. The clock and data recovery device includes a clock generation circuit configured to generate a clock, and a data recovery circuit configured to execute phase synchronization with respect to a synchronization signal included in the multiplexed data signal using the generated clock and to recover one of the data units from the area corresponding to one of the memories, from the multiplexed data signal.
Abstract: Magnetic tunneling devices are formed from a first body centered cubic (bcc) magnetic layer and a second bcc magnetic layer. At least one spacer layer of bcc material between these magnetic layers exchange couples the first and second bcc magnetic layers. A tunnel barrier in proximity with the second magnetic layer permits spin-polarized current to pass between the tunnel barrier and the second layer; the tunnel barrier may be either MgO and Mg—ZnO. The first magnetic layer, the spacer layer, the second magnetic layer, and the tunnel barrier are all preferably (100) oriented. The MgO and Mg—ZnO tunnel barriers are prepared by first depositing a metallic layer on the second magnetic layer (e.g., a Mg layer), thereby substantially reducing the oxygen content in this magnetic layer, which improves the performance of the tunnel barriers.
Type:
Grant
Filed:
October 31, 2007
Date of Patent:
March 15, 2011
Assignee:
International Business Machines Corporation
Abstract: An anisotropic thin-film rare-earth permanent magnet endowed with high magnetic characteristics by rendering a vapor-phase-grown thin film anisotropic in the layering direction. The atomic laminate units are formed by laminating a monoatomic layer of a rare earth element on a substrate of a non-magnetic material having, a flat smoothness and then by laminating an atomic laminate of a transition metal element having a plurality of monoatomic layers of a transition metal element, so that the atomic laminate units of a characteristic construction are laminated in a plurality of layers. As a result, each atomic laminate of the transition metal element has an easy magnetizable axis in the laminate direction of the monoatomic layers and which are sandwiched between a monoatomic layer of a rare-earth element so that an inverse magnetic domain is suppressed to establish a strong coercive force.