Silicon Compound Coating Patents (Class 428/846.3)
  • Patent number: 11527275
    Abstract: Some embodiments relate to a memory device. The memory device includes a magnetoresistive random-access memory (MRAM) cell comprising a magnetic tunnel junction (MTJ). The MTJ device comprises a stack of layers, comprising a bottom electrode disposed over a substrate. A seed layer disposed over the bottom electrode. A buffer layer is disposed between the bottom electrode and the seed layer. The buffer layer prevents diffusion of a diffusive species from the bottom electrode to the seed layer.
    Type: Grant
    Filed: July 5, 2019
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsann Lin, Ji-Feng Ying, Chih-Chung Lai
  • Patent number: 10189741
    Abstract: Glass and glass ceramic compositions having a combination of lithium silicate and petalite crystalline phases along with methods of making the glass and glass ceramic compositions are described. The compositions are compatible with conventional rolling and float processes, are transparent or translucent, and have high mechanical strength and fracture resistance. Further, the compositions are able to be chemically tempered to even higher strength glass ceramics that are useful as large substrates in multiple applications.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: January 29, 2019
    Assignee: CORNING INCORPORATED
    Inventors: George Halsey Beall, Qiang Fu, Charlene Marie Smith
  • Patent number: 8599652
    Abstract: A thermally-assisted magnetic recording (TAMR) medium of the present invention includes: a magnetization direction arrangement layer on a substrate; and a magnetic recording layer on the magnetization direction arrangement layer, wherein the magnetization direction arrangement layer is made of at least one selected from a group consisting of Co, Zr, CoZr, CoTaZr, CoFeTaZrCr, CoNbZr, CoNiZr, FeCoZrBCu, NiFe, FeCo, FeAlN, (FeCo)N, FeAlSi, and FeTaC so that a spreading of the heating spot applied from the magnetic head for thermally-assisted recording to the film surface of the magnetic recording medium is suppressed, and that an SN is improved by arranging the magnetization direction of the perpendicularly written recording magnetization to become identical to a perpendicular direction, and realizing the higher recording density.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 3, 2013
    Assignee: TDK Corporation
    Inventors: Satoshi Tomikawa, Tomohito Mizuno
  • Publication number: 20130016591
    Abstract: A thermally-assisted magnetic recording (TAMR) medium of the present invention includes: a magnetization direction arrangement layer on a substrate; and a magnetic recording layer on the magnetization direction arrangement layer, wherein the magnetization direction arrangement layer is made of at least one selected from a group consisting of Co, Zr, CoZr, CoTaZr, CoFeTaZrCr, CoNbZr, CoNiZr, FeCoZrBCu, NiFe, FeCo, FeAlN, (FeCo)N, FeAlSi, and FeTaC so that a spreading of the heating spot applied from the magnetic head for thermally-assisted recording to the film surface of the magnetic recording medium is suppressed, and that an SN is improved by arranging the magnetization direction of the perpendicularly written recording magnetization to become identical to a perpendicular direction, and realizing the higher recording density.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: TDK CORPORATION
    Inventors: Satoshi TOMIKAWA, Tomohito MIZUNO
  • Patent number: 8124257
    Abstract: A substrate for a recording medium suited for thermally assisted recording methods has a disc shape with a center hole and includes a silicon single-crystal supporting member; an SiO2 film formed on the silicon single-crystal supporting member; a main face having a film thickness of the SiO2 film thereon which is less than 10 nm; a substrate inner periphery end face adjacent to the center hole; a substrate inner periphery chamfer portion adjacent to the main face and to the substrate inner periphery end face; a substrate outer periphery end face positioned on the side of the main face opposite the substrate inner periphery end face; and a substrate outer periphery chamfer portion adjacent to the main face and to the substrate outer periphery end face. A magnetic recording medium includes at least the above substrate and a magnetic recording layer formed on the substrate.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: February 28, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Kouichi Tsuda
  • Patent number: 8119267
    Abstract: A glass substrate for a magnetic disk of the invention is a disk-shaped glass substrate for a magnetic disk where the substrate has a main surface and end face and is subjected to chemical reinforcement treatment, and is characterized in that the penetration length in the uppermost-portion stress layer on the main surface is 49.1 ?m or less, and that assuming that an angle between the main surface and compressive stress in the stress profile by a Babinet compensator method is ?, a value y of {12·t·ln(tan ?)+(49.1/t)} is the penetration length in the uppermost-portion stress layer or less.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 21, 2012
    Assignee: Hoya Corporation
    Inventors: Kinobu Osakabe, Hideki Isono, Katsuyuki Iwata, Shinji Eda, Kenichiro Terada
  • Publication number: 20110165439
    Abstract: Provided is a method of manufacturing a magnetic disk glass substrate, wherein, in a main surface polishing process, main surface polishing is applied to one of main surfaces of a glass substrate so that the one main surface has a predetermined arithmetic mean roughness, and main surface polishing is applied to the other main surface of the glass substrate so that the other main surface has a roughness which is higher than the arithmetic mean roughness (Ra) of the one main surface and which is low enough to prevent a component forming the magnetic disk glass substrate from being eluted from the other main surface.
    Type: Application
    Filed: September 2, 2009
    Publication date: July 7, 2011
    Applicants: HOYA CORPORATION, HOYA GLASS DISK (THAILAND) LTD.
    Inventors: Kenichi Nishimori, Tadashi Tomonaga
  • Publication number: 20110135963
    Abstract: The present invention relates to a method for manufacturing a glass substrate for data storage mediums, the method including a chemical strengthening treatment step of dipping a glass for a substrate including, in terms of mol % on the basis of oxides, from 58 to 66% of SiO2, from 9 to 15% of Al2O3, from 7 to 15% of Li2O and from 2 to 9% of Na2O, provided that Li2O+Na2O is from 13 to 21%, in a mixed molten salt to form a compressive layer on front and back surfaces of the glass for a substrate, in which the mixed molten salt includes, in terms of mass percent, from 1 to 7.5% of lithium nitrate, from 28 to 55% of sodium nitrate and from 40 to 69% of potassium nitrate.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 9, 2011
    Applicant: ASAHI GLASS COMPANY. LIMITED
    Inventors: Tatsuo NAGASHIMA, Tetsuya Nakashima
  • Publication number: 20110104427
    Abstract: A method for forming a glass substrate comprises the steps of forming a glass blank with opposing substantially planar surfaces and at least one edge, coating the glass blank in silica-alumina nanoparticles, the silica-alumina nanoparticles comprising an inner core of silica with an outer shell of alumina, annealing the coated glass blank to form a conformal coating of silica-alumina around the glass blank, and polishing the coated glass blank to remove the conformal coating of silica-alumina from the opposing substantially planar surfaces thereof.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicant: WD MEDIA, INC.
    Inventor: SHOJI SUZUKI
  • Publication number: 20110014500
    Abstract: A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation and containing an oxygen surfactant layer to form a more uniform MgO layer and lower breakdown distribution percent. A CoFeB/NCC/CoFeB composite free layer with a middle nanocurrent channel layer minimizes Jc0 while enabling thermal stability, write voltage, read voltage, and Hc values that satisfy 64 Mb design requirements. The NCC layer has RM grains in an insulator matrix where R is Co, Fe, or Ni, and M is a metal such as Si or Al. NCC thickness is maintained around the minimum RM grain size to avoid RM granules not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A second NCC layer and third CoFeB layer may be included in the free layer or a second NCC layer may be inserted below the Ru capping layer.
    Type: Application
    Filed: July 17, 2009
    Publication date: January 20, 2011
    Inventors: Cheng T. Horng, Ru-Ying Tong, Guangli Liu, Robert Beach, Witold Kula, Tai Min
  • Publication number: 20100247976
    Abstract: A glass substrate is for use in a magnetic disk. The glass substrate is formed by using a plate-like glass produced by a float method and having a pair of main surfaces. One surface of the main surfaces, which is formed with a tin layer when producing the plate-like glass by the float method, is caused to serve as a surface not for use in magnetic recording and the other surface formed with no tin layer is caused to serve as a surface for use in magnetic recording.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 30, 2010
    Applicant: HOYA CORPORATION
    Inventors: Takanori Mizuno, Junpei Fukada, Hiroshi Tsuchiya
  • Patent number: 7749559
    Abstract: Provided is a textured silicon substrate for a magnetic disk, comprising a magnetic film in which magnetic anisotropy can be attained and high recording density can be achieved, while ensuring the flying stability of a head by controlling the surface roughness of the substrate through texturing. Especially, provided is a surface-treated silicon substrate for a magnetic disk, comprising a texture formed on a surface of a silicon substrate comprising an oxide film of 0 to 2 nm thickness, and a magnetic recording medium comprising the surface-treated silicon substrate. Also provided is a method for manufacturing a surface-treated silicon substrate for a magnetic disk, comprising steps of: removing or reducing an oxide film on a surface of a silicon substrate; and forming a texture on the surface of the silicon substrate having the oxide film removed or reduced using a free abrasive-containing slurry and a tape; and a magnetic recording medium comprising the silicon substrate.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: July 6, 2010
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Naofumi Shinya
  • Publication number: 20100154622
    Abstract: The present invention describes a transparent plate of lithium aluminosilicate glass ceramic showing a high transmission, a process for producing same and transparent plate laminates comprising at least one plate of the lithium aluminosilicate glass ceramic of the invention and the use thereof as armored glass or bullet-proof vest.
    Type: Application
    Filed: November 12, 2009
    Publication date: June 24, 2010
    Inventors: Thilo Zachau, Friedrich Siebers, Ulrich Schiffner, Kurt Schaupert
  • Patent number: 7740947
    Abstract: Coatings containing particulate metal alloy are disclosed. The coatings provide corrosion protection to a substrate, such as a metal substrate. The coatings contain zinc-metal-containing alloy in flake form, most particularly an alloy flake of zinc and aluminum. The coating can be from compositions that are water-based or solvent-based. The compositions for providing the coating may also contain a substituent such as a water-reducible organofunctional silane, or a hexavalent-chromium-providing substance, or a titanate polymer, or a silica substance constituent. the coating may desirably be topcoated.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: June 22, 2010
    Assignee: Metal Coatings International Inc.
    Inventors: Etienne Georges Maze, Gilbert Louis Lelong, Terry E. Dorsett, Donald J. Guhde, Toshio Nishikawa
  • Publication number: 20100062287
    Abstract: A method of polishing to reduce surface roughness of at least one surface of a glass ceramic substrate that includes an amorphous glass portion and a crystalline portion. The method comprises at least one step of polishing the surface using a polishing pad and an abrasive polishing slurry. The polishing slurry comprises a first concentration of Ceria particulates and a second concentration of Silica particulates. The amorphous glass portion and the crystalline portion of the at least one surface are polished substantially equally.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 11, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Ian Beresford, Robert Lloyd Babcock
  • Publication number: 20090148723
    Abstract: A substrate for a recording medium suited for thermally assisted recording methods has a disc shape with a center hole and includes a silicon single-crystal supporting member; an SiO2 film formed on the silicon single-crystal supporting member; a main face having a film thickness of the SiO2 film thereon which is less than 10 nm; a substrate inner periphery end face adjacent to the center hole; a substrate inner periphery chamfer portion adjacent to the main face and to the substrate inner periphery end face; a substrate outer periphery end face positioned on the side of the main face opposite the substrate inner periphery end face; and a substrate outer periphery chamfer portion adjacent to the main face and to the substrate outer periphery end face. A magnetic recording medium includes at least the above substrate and a magnetic recording layer formed on the substrate.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 11, 2009
    Applicant: Fuji Electric Device Technology Co., Ltd.
    Inventor: Kouichi TSUDA
  • Publication number: 20080274381
    Abstract: A patterned perpendicular magnetic recording medium of the type that has spaced-apart pillars with magnetic material on their ends and with trenches between the pillars that are nonmagnetic regions is made with a method that allows use of a pre-etched substrate. A nonmagnetic capping layer is located in the trenches above the nonmagnetic regions. The substrate has diffusion material in the trenches that when heated will diffuse into the magnetic recording layer material and chemically react with it. The pillars are formed of material that will not diffuse into the recording layer. The recording layer is formed over the entire substrate and a nonmagnetic capping layer that is not chemically reactive with the diffusion material is formed over the recording layer in the trenches. The substrate is annealed to cause the recording layer material in the trenches and the material in the substrate to diffuse into one another and chemically react to render the trenches nonmagnetic.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Eric E. Fullerton, Olav Hellwig
  • Publication number: 20070231607
    Abstract: A soft magnetic under layer (SUL) is formed on a non-magnetic substrate by an electroless plating method. The SUL formed by plating is subjected to magnetic field heat treatment on conditions that the heat treatment temperature is 150° C. to 350° C., a magnetic field applied to the substrate has a strength of 50 oersteds (Oe) or more, and the treatment time is selected within a range of five minutes to ten hours. Through the magnetic field heat treatment, magnetic anisotropy is obtained with a difference (?H=Hd?Hc) of 5 oersteds (Oe) or more in terms of absolute value between a magnetization saturation magnetic field strength (Hd) in the in-plane radial direction of a soft magnetic film and a magnetization saturation magnetic field strength (Hc) in the in-plane circumferential direction of the soft magnetic film, and the magnetic anisotropy is symmetric with respect to the axis of the substrate.
    Type: Application
    Filed: March 19, 2007
    Publication date: October 4, 2007
    Inventors: Masaru Ito, Ken Ohashi