Cell With Protective Layer On Electrolyte Patents (Class 429/126)
  • Publication number: 20130252064
    Abstract: Disclosed is a power storage element including a positive electrode current collector layer and a negative electrode current collector layer which are arranged on the same plane and can be formed through a simple process. The power storage element further includes a positive electrode active material layer on the positive electrode current collector layer; a negative electrode active material layer on the negative electrode current collector layer; and a solid electrolyte layer in contact with at least the positive electrode active material layer and the negative electrode active material layer. The positive electrode active material layer and the negative electrode active material layer are formed by oxidation treatment.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 26, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazutaka Kuriki, Ryota Tajima, Tamae Morikawa
  • Patent number: 8541128
    Abstract: Disclosed is a rechargeable lithium battery comprising a negative electrode and a positive electrode capable of intercalating and deintercalating lithium, and an electrolyte, wherein the electrolyte comprises a polyacrylate compound having three or more acrylic groups.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 24, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Takitaro Yamaguchi, Ryuichi Shimizu, Cheol-Soo Jung
  • Patent number: 8530108
    Abstract: A fuel cell includes membrane electrode assemblies disposed in a planar arrangement. Each membrane electrode assembly includes an electrolyte membrane, an anode catalyst layer, and a cathode catalyst layer disposed counter to the cathode catalyst via the electrolyte membrane. Interconnectors (conductive members) are provided on the lateral faces of the electrolyte membranes disposed counter to each another in the neighboring direction of the membrane electrode assemblies. Each interconnector includes a support portion protruding toward the central region of the electrolyte member on the cathode side of the electrolyte membrane. The support portion is in contact with the cathode-side surface of an edge of the electrolyte membrane, and the electrolyte membrane is held by the support portion.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: September 10, 2013
    Assignee: Societe BIC
    Inventors: Hiroki Kabumoto, Takashi Yasuo, Gerard F McLean, Jeremy Schrooten
  • Patent number: 8501339
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 6, 2013
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 8455131
    Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: June 4, 2013
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko
  • Patent number: 8389147
    Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 5, 2013
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko
  • Publication number: 20130052508
    Abstract: A lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte. The negative electrode includes a current collector, an active material layer on the current collector and including an amorphous silicon oxide represented by SiOx (0.95<x<1.7), and an SEI layer on the active material layer and including about 70 area % or more of protrusion parts having a size of about 5 nm to 300 nm during charging of the battery.
    Type: Application
    Filed: March 29, 2012
    Publication date: February 28, 2013
    Inventors: Tae-Gon Kim, Hee-Joon Chun, Joon-Sup Kim, Wan-Uk Choi, Hisaki Tarui, Jea-Woan Lee, Jae-Yul Ryu, Young-Chang Lim, Seung-Hee Park
  • Publication number: 20120308870
    Abstract: An electrode active material for an all solid state secondary battery, which is able to have the controlled orientation of a crystal face at the interface between an electrode layer and an electrolyte layer in order to enhance the battery performance, and an all solid state secondary battery including the electrode active material. The electrode active material includes a carbon material having an intensity ratio (P002/P100) of 600 or less between the X-ray diffraction peak intensity P002 in the (002) plane and the X-ray diffraction peak intensity P100 in the (100) plane, which are obtained when a surface of a compact prepared by compression molding of a powder of the carbon material at a pressure of 110 MPa is irradiated with X-ray. The all solid state secondary battery includes a positive electrode, a negative electrode, and a solid electrolyte, and the negative electrode contains the electrode active material.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 6, 2012
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Sayaka Okuda, Kazuhiro Yamada, Masanori Endo
  • Patent number: 8323820
    Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: December 4, 2012
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko
  • Patent number: 8323815
    Abstract: An optimized electrochemical cell comprised of a housing divided into two chambers, a first chamber containing a protogenous, ion-conducting liquid and a positive high density electrode including a first active material and a porous binder, surrounded by a surface in which the porosity level increases towards the surface, a second chamber containing an aprotic, ion conducting liquid and a negative high density electrode including a second active material and a porous binder, surrounded by a surface in which the porosity level increases towards the surface. A symmetric, strong, highly porous, microporous polymer membrane divides the housing into the first and second chamber. The porosity level of the polymer membrane is 25% greater than the porosity level at the surface of the positive and negative high density electrodes.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: December 4, 2012
    Assignee: Porous Power Technology, LLC
    Inventor: Kirby Beard
  • Patent number: 8293398
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: October 23, 2012
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Publication number: 20120183834
    Abstract: A solid-electrolyte battery is provided that includes a LiNbO3 film serving as a buffer layer between a positive-electrode active material and a solid electrolyte and has a sufficiently low electrical resistance. The solid-electrolyte battery includes a positive-electrode layer, a negative-electrode layer, and a solid-electrolyte layer that conducts lithium ions between the electrode layers, wherein a buffer layer that is a LiNbO3 film is disposed between a positive-electrode active material and a solid electrolyte, and a composition ratio (Li/Nb) of Li to Nb in the LiNbO3 film satisfies 0.93?Li/Nb?0.98. The buffer layer may be disposed between the positive-electrode layer and the solid-electrolyte layer or on the surface of a particle of the positive-electrode active material. The buffer layer may have a thickness of 2 nm to 1 ?m.
    Type: Application
    Filed: August 5, 2010
    Publication date: July 19, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryoko Kanda, Kentaro Yoshida, Takashi Uemura, Nobuhiro Ota, Mitsuyasu Ogawa
  • Patent number: 8124267
    Abstract: A lithium secondary battery is provided. Electrolytes of the lithium secondary battery are divided between an anode and a cathode into a plurality of regions not to contact with each other, thereby limiting movement paths of lithium ions. In this way, the lithium secondary battery inhibits growth of dendrite and improves energy density. Also, the lithium secondary battery that has a partition wall structure reduces leakage even when liquid electrolytes are used and actively copes with pressure applied to the battery.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: February 28, 2012
    Inventors: Bong Sup Kang, Young Ju Kang
  • Patent number: 8124265
    Abstract: A power storage device includes: an electrolyte layer; and an electrode consisted of a current collecting portion and an electrode layer, wherein the thickness of the electrolyte layer is larger at a first position in a plane perpendicular to the stacking direction than at a second position where the heat radiation is higher than at the first position, and the thickness of the current collecting portion is smaller at a position corresponding to the first position than at a position corresponding to the second position.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshiyuki Nakamura
  • Patent number: 8034642
    Abstract: A negative electrode of an electrochemical capacitor includes an electrode layer using a material capable of reversibly absorbing and releasing a lithium ion. A method for pretreating the negative electrode includes forming a lithium layer on a substrate by a gas phase method or a liquid phase method, and transferring the lithium layer onto a surface of the electrode layer of the negative electrode.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventors: Keiichi Kondou, Susumu Nomoto, Hideki Shimamoto
  • Patent number: 8018233
    Abstract: The evaluation method of a separator for a nonaqueous electrolyte battery according to the present invention includes: placing opposite an upper jig 21 serving also as a conductive electrode and a lower jig 23 serving also as a conductive electrode in both sides of the separator sample 22; and measuring the relationship between an applied voltage and a passed current between the upper jig 21 and the lower jig 23 while applying a pressure to between the upper jig 21 and the lower jig 23 to evaluate the separator. At this time, by fitting a foreign material 28 in any shape between the separator sample 22 and one of the upper jig 21 and the lower jig 23, an evaluation of the separator simulating the presence of a foreign material affecting adversely the separator can be performed.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: September 13, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masato Iwanaga, Noriko Yamashita
  • Patent number: 8003243
    Abstract: A secondary battery capable of improving charge-discharge cycle characteristics in the case where an alloy material is used as an anode active material is provided. An exposed cathode region is disposed in an outer end portion of a cathode. The exposed cathode region includes an insulating protective member on at least one of an outer side and an inner side of the exposed cathode region in a position opposed to an outer end portion of an anode active material layer in one turn inside the outer end portion. In a cathode active material layer, a central angle between an outer end portion and a central end portion at the center of the spirally wound body is preferably within a range from 0° to ?90° inclusive from the central end portion in a winding direction.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: August 23, 2011
    Assignee: Sony Corporation
    Inventors: Fumiko Hashimoto, Yuzuru Fukushima, Hiroyuki Suzuki
  • Patent number: 7931989
    Abstract: A method and apparatus for making thin-film batteries having composite multi-layered electrolytes with soft electrolyte between hard electrolyte covering the negative and/or positive electrode, and the resulting batteries. In some embodiments, foil-core cathode sheets each having a cathode material (e.g., LiCoO2) covered by a hard electrolyte on both sides, and foil-core anode sheets having an anode material (e.g., lithium metal) covered by a hard electrolyte on both sides, are laminated using a soft (e.g., polymer gel) electrolyte sandwiched between alternating cathode and anode sheets. A hard glass-like electrolyte layer obtains a smooth hard positive-electrode lithium-metal layer upon charging, but when very thin, have randomly spaced pinholes/defects. When the hard layers are formed on both the positive and negative electrodes, one electrode's dendrite-short-causing defects on are not aligned with the other electrode's defects.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: April 26, 2011
    Assignee: CYMBET Corporation
    Inventor: Jody J. Klaassen
  • Patent number: 7883794
    Abstract: Disclosed is a cathode comprising a complex formed between the surface of a cathode active material and an aliphatic mono-nitrile compound, and an electrochemical device comprising the cathode. A non-aqueous electrolyte containing a lithium salt, a solvent and an aliphatic mono-nitrile compound, and an electrochemical device comprising the electrolyte are also disclosed. The electrochemical device shows excellent low-temperature characteristics, high-temperature life characteristics and safety.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: February 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn
  • Patent number: 7871721
    Abstract: Disclosed is a cathode comprising a complex formed between the surface of a cathode active material and an aliphatic mono-nitrile compound, and an electrochemical device comprising the cathode. A non-aqueous electrolyte containing a lithium salt, a solvent and an aliphatic mono-nitrile compound, and an electrochemical device comprising the electrolyte are also disclosed. The electrochemical device shows excellent low-temperature characteristics, high-temperature life characteristics and safety.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: January 18, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn
  • Patent number: 7842423
    Abstract: Lithium metal anode protection, and various semi-fuel cell constructions for use in deep, high pressure seawater or air media are provided. The described lithium semi-fuel cells achieve record high energy densities, due to the high energy density of lithium anode and the use of the cathode reactant from the surrounding media, which is not part of the cell weight, and the use of ultralight and flexible packaging materials. These features make the described semi-fuel cells the ideal choice for powering underwater and air vehicles.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: November 30, 2010
    Assignee: MaxPower, Inc.
    Inventors: Ian Kowalczyk, William Eppley, Mark Salomon, David Chua, Benjamin Meyer
  • Patent number: 7829212
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: November 9, 2010
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 7718309
    Abstract: The present teachings are directed toward electrocatalyst composition of an alloy of platinum and tungsten for use in fuel cells. The alloy consists essentially of platinum metal present in an atomic percentage ranging between about 20 percent and about 50 percent, and tungsten metal present in an atomic percentage ranging between about 50 percent and about 80 percent.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: May 18, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Ting He, Eric Rolland Kreidler, Tadashi Nomura, Lara Minor
  • Patent number: 7709138
    Abstract: A battery enclosure that includes a bottom portion configured to house a battery array and a top portion that is configured to rest on the bottom portion and enclose the battery array. The top portion of the battery enclosure is configured to be at least partially supported by the battery array when a load is placed on the top portion.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: May 4, 2010
    Inventor: David J. Flaugher
  • Patent number: 7687202
    Abstract: A non-aqueous electrolyte secondary battery including: a positive electrode having a positive electrode material mixture containing a composite lithium oxide; a negative electrode; a polyolefin separator; a non-aqueous electrolyte; and a heat-resistant insulating layer interposed between the positive and negative electrodes. The positive electrode active material mixture has an estimated heat generation rate at 200° C. of not greater than 50 W/kg. The estimated heat generation rate is determined by obtaining a relation between absolute temperature T and heat generation rate V of the positive electrode material mixture using an accelerating rate calorimeter; plotting a relation between the inverse of absolute temperature T and the logarithm of heat generation rate V according to the Arrhenius law; obtaining a straight line fitted to the plotted points in a heat generation temperature range of T<200° C.; and extrapolating the straight line to the temperature of 200° C.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: March 30, 2010
    Assignee: Panasonic Corporation
    Inventors: Hajime Nishino, Shinji Kasamatsu, Hideharu Takezawa, Kazuhiro Okamura, Mikinari Shimada
  • Patent number: 7662424
    Abstract: The method of making a composite particle for an electrode in accordance with the present invention comprises a granulating step of integrating a conductive auxiliary agent and a binder adapted to bind the conductive auxiliary agent and an electrode active material together with a particle made of the electrode active material while in close contact with each other in an inert gas atmosphere so as to form a composite particle for an electrode containing the electrode active material, conductive auxiliary agent, and binder. When the composite particle obtained by this method is used as a constituent of an electrode, an electrode having an excellent electrode characteristic and an electrochemical device having excellent electrochemical characteristics can be formed easily and reliably.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: February 16, 2010
    Assignee: TDK Corporation
    Inventors: Masato Kurihara, Satoshi Maruyama, Tadashi Suzuki
  • Patent number: 7638236
    Abstract: A positive electrode for a lithium ion battery has a conductive collector, a positive electrode active material layer being contact with the collector, and a cover layer disposed on at least part of the surface of the positive electrode active material layer. The positive electrode active material layer has a compound containing at least one kind selected from a group of cobalt, nickel, and manganese as a component. The cover layer is made of a compound with lithium ion conductivity that is expressed by general formula LixPTyOz or LiaMObNc and has high moisture resistance.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: December 29, 2009
    Assignee: Panasonic Corporation
    Inventors: Masaya Ugaji, Shinji Mino, Yasuyuki Shibano, Shuji Ito
  • Patent number: 7629083
    Abstract: Provided is a method of preparing a lithium metal anodeincluding forming a current collector on a substrate that includes a release component; depositing a lithium metal on the current collector; and releasing the current collector with the deposited lithium metal from the substrate. The method may produce a lithium metal anode with a clean lithium surface and a current collector with a small thickness. The lithium metal anode may be used to increase the energy density of a battery.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: December 8, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chung-Kun Cho, Duck-Chul Hwang, Sang-Mock Lee, Seung-Sik Hwang
  • Patent number: 7622215
    Abstract: To provide a polymer electrolyte membrane having excellent size stability and excellent mechanical strength that can sufficiently prevent the size change due to the swelling condition, the displacement of the polymer electrolyte membrane and the formation of wrinkles during the production of the polymer electrolyte fuel cell, and can prevent damage during the production and operation of the polymer electrolyte fuel cell. In a composite electrolyte membrane including a porous reinforcement layer made of a resin and an electrolyte layer made of a polymer electrolyte and laminated at least one main surface of the reinforcement layer, the direction having a high tensile modulus of elasticity in the reinforcement layer is substantially corresponded with the direction having a high rate of size change in the electrolyte layer.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: November 24, 2009
    Assignees: Panasonic Corporation, Asahi Glass Co., Ltd.
    Inventors: Yoshihiro Hori, Akihiko Yoshida, Mikiko Yoshimura, Makoto Uchida, Shinji Kinoshita, Hirokazu Wakabayashi
  • Patent number: 7517616
    Abstract: A sulfide-based inorganic solid electrolyte that suppresses the reaction between silicon sulfide and metallic lithium even when the electrolyte is in contact with metallic lithium, a method of forming the electrolyte, and a lithium battery's member and lithium secondary battery both incorporating the electrolyte. The electrolyte comprises Li, P, and S without containing Si. It is desirable that the oxygen content vary gradually from the electrolyte to the lithium-containing material at the boundary zone between the two members when analyzed by using an XPS having an analyzing chamber capable of maintaining a super-high vacuum less than 1.33×10?9 hPa and that the oxygen-containing layer on the surface of the lithium-containing material be removed nearly completely. The electrolyte can be formed such that at least part of the forming step is performed concurrently with the step for etching the surface of the substrate by irradiating the surface with inert-gas ions.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: April 14, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hirokazu Kugai, Nobuhiro Ota
  • Patent number: 7491458
    Abstract: Active metal fuel cells are provided. An active metal fuel cell has a renewable active metal (e.g., lithium) anode and a cathode structure that includes an electronically conductive component (e.g., a porous metal or alloy), an ionically conductive component (e.g., an electrolyte), and a fluid oxidant (e.g., air, water or a peroxide or other aqueous solution). The pairing of an active metal anode with a cathode oxidant in a fuel cell is enabled by an ionically conductive protective membrane on the surface of the anode facing the cathode.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: February 17, 2009
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Lutgard C. De Jonghe
  • Publication number: 20080248380
    Abstract: According to one embodiment of the present invention, a method of manufacturing an integrated circuit including a memory device includes, generating a solid electrolyte layer including a first solid electrolyte layer area and a second solid electrolyte layer area, the height of the top surface of the solid electrolyte layer within the second solid electrolyte layer area being lower than the height of the top surface of the solid electrolyte layer within the first solid electrolyte layer area; generating a conductive layer above the top surfaces of the first solid electrolyte layer area and the second solid electrolyte layer area; planarizing the top surface of the conductive layer such that the solid electrolyte layer is exposed within the first solid electrolyte layer area, however is covered by the conductive layer within the second solid electrolyte layer area; patterning the exposed solid electrolyte layer within the first solid electrolyte layer area.
    Type: Application
    Filed: April 5, 2007
    Publication date: October 9, 2008
    Inventor: Philippe Blanchard
  • Patent number: 7389580
    Abstract: A method and system for fabricating solid-state energy-storage devices including fabrication films for devices without an anneal step. A film of an energy-storage device is fabricated by depositing a first material layer to a location on a substrate. Energy is supplied directly to the material forming the film. The energy can be in the form of energized ions of a second material. Supplying energy directly to the material and/or the film being deposited assists in controlling the growth and stoichiometry of the film. The method allows for the fabrication of ultrathin films such as electrolyte films and dielectric films.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 24, 2008
    Assignee: Cymbet Corporation
    Inventors: Mark L. Jenson, Victor H. Weiss
  • Patent number: 7390591
    Abstract: Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: June 24, 2008
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 7306879
    Abstract: A lithium ion secondary cell comprises a positive electrode, a negative electrode, a solid electrolyte and a fiber layer provided in an interface between the solid electrolyte and the positive electrode and/or in an interface between the solid electrolyte and the negative electrode.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: December 11, 2007
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Yasushi Inda, Kazuo Ohara, Tetsuo Uchiyama, Morinobu Endo
  • Patent number: 7282295
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: October 16, 2007
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Bruce D. Katz, Yevgeniy S. Nimon, Lutgard C. De Jonghe
  • Patent number: 7194801
    Abstract: A method and system for fabricating solid-state energy-storage devices including fabrication films for devices without an anneal step. A film of an energy-storage device is fabricated by depositing a first material layer to a location on a substrate. Energy is supplied directly to the material forming the film. The energy can be in the form of energized ions of a second material. Supplying energy directly to the material and/or the film being deposited assists in controlling the growth and stoichiometry of the film. The method allows for the fabrication of ultrathin films such as electrolyte films and dielectric films.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: March 27, 2007
    Assignee: Cymbet Corporation
    Inventors: Mark Lynn Jenson, Victor Henry Weiss
  • Patent number: 7175937
    Abstract: Provided are a separator having an inorganic protective film and a lithium battery using the separator. The separator has suppressed self discharge and reduced internal shorting.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: February 13, 2007
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chung-kun Cho, Jong-ki Lee, Jea-woan Lee, Sang-mock Lee
  • Patent number: 6964829
    Abstract: A lithium secondary cell has, on a conductive substrate (collector) a lithium layer containing metallic lithium or an alloy thereof, and further has a metal fluoride substance film containing at least one type metal fluoride substance.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: November 15, 2005
    Assignee: NEC Corporation
    Inventors: Koji Utsugi, Mitsuhiro Mori, Jiro Iriyama, Hironori Yamamoto
  • Patent number: 6924062
    Abstract: A nickel-metal hydride storage battery which includes a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen absorbing alloy and an alkaline electrolyte, wherein the positive electrode contains a hydroxide and/or an oxide of an element selected from the group consisting of calcium, strontium, scandium, yttrium, lanthanoid and bismuth, and the negative electrode contains a hydroxide and/or an oxide of at least one element selected from the group consisting of scandium, yttrium and lanthanoid.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: August 2, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yoshifumi Magari, Tadayoshi Tanaka, Hiroyuki Akita, Katsuhiko Shinyama, Atsuhiro Funahashi, Toshiyuki Nohma
  • Patent number: 6797428
    Abstract: Provided is an anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and crosslinked polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: September 28, 2004
    Assignee: Moltech Corporation
    Inventors: Terje A. Skotheim, Christopher J. Sheehan, Yuriy V. Mikhaylik, John Affinito
  • Patent number: 6770176
    Abstract: Methods of manufacturing an electrochemical device, are taught. The methods may be of particular use in the manufacture of thin-film, lightweight, flexible or conformable, electrochemical devices such as batteries, and arrays of such devices. The methods may provide many advantages including stunting fractures in a first electrochemical layer from propagating in a second electrochemical layer.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: August 3, 2004
    Assignee: ITN Energy Systems. Inc.
    Inventors: Martin H. Benson, Bernd J. Neudecker
  • Patent number: 6737189
    Abstract: A method of making electrochemical cells with high anode-to-cathode interfacial surface area and improved discharge efficiency at high rate discharge, without sacrificing total capacity involves the use of a separator coated electrode, and a flowable material comprising a second electrode. The first electrode and flowable material comprising the second electrode are disposed in a cell housing. The flowable material surrounds the coated surfaces of the first electrode. The invention also provides simplified methods for making electrochemical cells having a high anode-to-cathode interfacial surface area.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: May 18, 2004
    Assignee: Eveready Battery Company, Inc.
    Inventors: Mark D. Vandayburg, Paula J. Hughes, Mark A. Schubert, Nghia C. Tang, Katherine E. Ayers, Alan D. Ayers, John C. Bailey, Neal C. White
  • Publication number: 20040023106
    Abstract: An apparatus for use as a fracture absorption layer, an apparatus for use as a electrochemical device, and methods of manufacturing the same are taught. The apparatuses and methods of the present invention may be of particular use in the manufacture of thin-film, lightweight, flexible or conformable, electrochemical devices such as batteries, and arrays of such devices. The present invention may provide many advantages including stunting fractures in a first electrochemical layer from propagating in a second electrochemical layer.
    Type: Application
    Filed: August 2, 2002
    Publication date: February 5, 2004
    Inventors: Martin H. Benson, Bernd J. Neudecker
  • Publication number: 20030224244
    Abstract: A lithium ion secondary cell comprises a positive electrode, a negative electrode, a solid electrolyte and a fiber layer provided in an interface between the solid electrolyte and the positive electrode and/or in an interface between the solid electrolyte and the negative electrode.
    Type: Application
    Filed: May 27, 2003
    Publication date: December 4, 2003
    Inventors: Yasushi Inda, Kazuo Ohara, Tetsuo Uchiyama, Morinobu Endo
  • Patent number: 6645667
    Abstract: A lithium secondary cell comprising a safe aqueous-solution electrolyte free from danger of firing and explosion and capable of supplying a high voltage of more than 3 V. The cell includes a positive plate having an active material absorbing/desorbing lithium ions and exhibiting a high voltage, a negative plate having an active material exhibiting a low voltage, a polymer solid electrolyte having a lithium-ionic conductivity, and an aqueous-solution electrolyte. The positive and negative plates are coated with a polymer solid electrolyte having an ionic conductivity and therefore isolated from the aqueous-solution electrolyte by the plate coating layers.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: November 11, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuya Iwamoto, Takafumi Oura, Shinji Nakanishi, Atsushi Ueda, Hizuru Koshina
  • Publication number: 20030044666
    Abstract: An electrochemical device having an electrolyte having an anode side and a cathode side, at least one consumable carbonaceous material disposed on the anode side, and a chemical barrier disposed on the anode side of the electrolyte, which chemical barrier reduces crossover of the at least one consumable carbonaceous material through the electrolyte to the cathode side. In accordance with one preferred embodiment, the electrochemical device is a direct methanol fuel cell, the consumable carbonaceous material is methanol disposed in an aqueous solution, and the chemical barrier is produced by the presence of an additive disposed in the methanol solution which attaches to potential methanol crossover sites in the electrolyte, thereby precluding methanol crossover using such sites. One such suitable additive is iso-propanol.
    Type: Application
    Filed: October 17, 2001
    Publication date: March 6, 2003
    Inventors: Qinbai Fan, Joseph Herron
  • Patent number: 6420071
    Abstract: The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: July 16, 2002
    Assignee: Midwest Research Institute
    Inventors: Se-Hee Lee, C. Edwin Tracy, Hyeonsik M. Cheong
  • Patent number: 6391488
    Abstract: The present invention relates to an improved non-aqueous electrolyte cell comprising an anode, a cathode and a separator spirally wound so that the anode is disposed on the outer side of the cathode to form an electrode assembly. The outermost end of the cathode is wrapped with an electrically insulating material, the anode has a section provided with an anode current collector in the vicinity of the outermost end thereof, and the section is positioned beyond the wrapped outermost end of the cathode. A reaction suppressing layer is present between a cathode section in the vicinity of the outermost end and the anode positioned on the inner side thereof, thereby only the outer side of the cathode section substantially reacts with the anode. This cell ensures disconnection of remaining non-reacted anode component from the current collector when forcedly discharged at the last stage of discharge, causing little capacity loss.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: May 21, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshiyuki Shimizu, Hideki Fukuda, Toshiya Kuwamura, Takayuki Tanahashi
  • Publication number: 20020004165
    Abstract: There are provided a protective membrane-equipped composite electrolyte which is excellent in water resistance, heat resistance, and liquid electrolyte-holding ability and which is preferred as an electrolyte for a fuel cell, a method for producing the same, and a fuel cell provided with the same. A composite electrolyte is prepared by impregnating a matrix with a liquid electrolyte. A crosslinkable polymer is deposited onto a surface of the composite electrolyte together with a crosslinking agent. Subsequently, a protective membrane composed of crosslinked product is formed by reacting the polymer and the crosslinking agent with each other. Accordingly, a protective membrane-equipped composite electrolyte is obtained, in which the surface of the composite electrolyte is coated with the protective membrane composed of crosslinked product. Alternatively, when the matrix is composed of a polymer, the matrix itself may be crosslinked.
    Type: Application
    Filed: May 23, 2001
    Publication date: January 10, 2002
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Hiroshi Akita