Abstract: A fuel cell stack system is configured to uniformly supply a fuel or an electrolytic solution to each of fuel cell elements, and an electronic device using the fuel cell stack system are provided. An electrolytic solution channel allowing an electrolytic solution to flow therethrough is arranged between a fuel electrode and an oxygen electrode, and a fuel channel allowing a fuel to flow therethrough is arranged outside of the fuel electrode. The electrolytic solution channels and the fuel channels of all fuel cell elements are connected in series to one another. That is, the fuel or the electrolytic solution emitted from an outlet of the fuel channel or the electrolytic solution channel of one fuel cell element enters into an inlet of the fuel channel or the electrolytic solution channel of the next fuel cell element through a connection channel.
Abstract: A process for producing a polymer electrolyte emulsion having the following steps (1) and (2) is provided. Step (1): a step of dissolving a polymer electrolyte in a solvent comprising a good solvent for the polymer electrolyte to prepare a polymer electrolyte solution having a polymer electrolyte concentration of 0.1 to 10% by weight. Step (2): a step of mixing the polymer electrolyte solution 10 obtained in the step (1), and a poor solvent for the polymer electrolyte at a ratio of 4 to 99 parts by weight of the poor solvent based on 1 part by weight of the polymer electrolyte solution. In addition, a process for producing a polymer 15 electrolyte emulsion comprising separating a polymer electrolyte dispersion in which a polymer electrolyte particle is dispersed in a dispersing medium, with a membrane is provided.
Abstract: A fuel cell housing comprising at least one surface configured to condense fluid from exhaust air passing over or through the surface and configured to return the condensed fluid to electrolyte of a fuel cell or fuel cell stack within the fuel cell housing is disclosed. Fuel cell assemblies comprising the fuel cell housing are also disclosed.
Type:
Grant
Filed:
July 28, 2004
Date of Patent:
June 7, 2011
Assignee:
American Power Conversion Corporation
Inventors:
Peter Nielsen, Klaus Moth, Ulrik Karlsson
Abstract: A polymer electrolyte membrane includes a cross-linking reaction product between a hydrophilic polymer and a cross-linking agent represented by Formula 1 below wherein R1 is substituted or unsubstituted C1-C20 alkyl group, substituted or unsubstituted C6-C20 aryl group, or substituted or unsubstituted C2-C20 heteroaryl group; and n is an integer in the range of 1 to 5. The polymer electrolyte membrane may be prepared by preparing a composition for forming a polymer electrolyte membrane including the hydrophilic polymer, the cross-linking agent represented by Formula 1 and a solvent, applying the composition for forming a polymer electrolyte membrane to a supporting substrate; and heat treating the composition for forming the polymer electrolyte membrane to form the polymer electrolyte membrane. A fuel cell or other device includes the polymer electrolyte membrane. The polymer electrolyte membrane has low solubility to a strong acid and excellent ionic conductivity.
Abstract: A cell for use in an electrolysis unit includes a back wall, a side wall extending upwardly from and around a periphery of the back wall to define an inner region of the cell, an electrode disposed on the back wall within the inner region to divide at least a portion of the inner region into first and second regions is disclosed.
Abstract: The present invention can provide a polymer electrolyte membrane having power generation characteristics with a high output and long life and a polymer electrolyte fuel cell using the same. The present invention provides a polymer electrolyte membrane having a porous polymer film and a proton conducting component present in a hole of the porous polymer film, characterized in that the proton conducting component has a compound having a proton conducting group and a bicyclo ring structure.
Abstract: According to the invention, a fuel cell system features a fuel cell (14) having a solid polymer electrolyte membrane (4), and an antioxidant residing in or contacting the solid polymer electrolyte membrane (4), for inactivating active oxygen.
Abstract: According to one embodiment of the present invention, a fuel cell life counter is configured to determine membrane degradation using fuel cell cycling data and S-N curve data for the membrane. According to another embodiment of the present invention, a method of managing remaining fuel cell life is provided where variables like membrane dehydration rate, water content, temperature, and heating/cooling rate are controlled as a function of the remaining life of the fuel cell. Additional embodiments are provided where fuel cell life counters and methods of managing remaining life are independent of S-N curve data and the use of fatigue life contour plots.
Abstract: A nonaqueous electrolytic cell manufacturing method is characterized in that a nonaqueous electrolyte containing vinylene carbonate is used, a coating on the surface of the negative electrode is formed at the initial charging/discharging in such a way by lowering the negative electrode potential to less than 0.4 V with relative to the lithium potential, wherein the nonaqueous electrolytic cell comprises a nonaqueous electrolyte containing an electrolytic salt and a nonaqueous solvent, a positive electrode, and a negative electrode containing a negative electrode material into/from which lithium ions are inserted/desorbed at a potential higher than the lithium potential by 1.2 V. The nonaqueous electrolytic cell is used in a range of negative electrode potential nobler than the lithium potential by 0.8 V.
Abstract: Electrochemical cells (10), such as fuel cells (12) and fuel reformers (14), with rotating elements or electrodes (34, 24) that generate Taylor Vortex Flows (28, 50) and Circular Couette Flows (58) in fluids such as electrolytes and fuels are disclosed.
Abstract: An electrochemical cell, and a method of producing an electrochemical cell are provided. The method includes a step in which a counter electrode film and a mold film are crimped. A sol-gel precursor is inserted into a pore in the mold film provided on the counter electrode film. The sol-gel precursor is cooled to form a semi-hardened gel. The mold film is peeled off from the counter electrode film. The semi-hardened gel is cooled to form a gel electrolyte film. The sealing film is provided on the counter film, with the gel electrolyte film being fitted in the pore of the sealing film. A working electrode film is crimped on the sealing film. The stacked films are thermocompression bonded, and a single electrochemical cell is produced by cutting.
Type:
Grant
Filed:
April 21, 2006
Date of Patent:
December 7, 2010
Assignee:
Sony Chemical & Information Device Corporation
Abstract: A proton conductor includes a main constituent element. A part of the main constituent element is substituted by a transition metal. Valence of the transition metal is variable between valence of the main constituent element and valence lower than the valence of the main constituent element.
Abstract: In one embodiment, the present invention relates generally to a method and system for providing a flow through battery cell and uses thereof. In one embodiment, the flow through battery cell includes an inlet for receiving a flow of water, a solid oxidizer coupled to said inlet for reacting with said flow of water to generate a catholyte, wherein the solid oxidizer comprises at least one of: an organic halamine, a succinimide or a hypochlorite salt, a galvanic module coupled to the solid oxidizer for receiving the catholyte and generating one or more effluents and an outlet for releasing the one or more effluents.
Type:
Application
Filed:
October 3, 2008
Publication date:
August 26, 2010
Inventors:
Andres M. Cardenas-Valencia, Lori Adornato, Robert T. Short, Larry C. Langebrake, Steven Crouch-Baker