Hydrocarbon Feedstock Patents (Class 429/425)
  • Patent number: 8790839
    Abstract: A fuel cell system for use with an endothermic fuel generator including a fuel cell stack having a primary fuel cell stack having a first thermal mass and a secondary fuel cell stack having a second thermal mass smaller than the first, the fuel cell system further including a first thermal coupling mechanism configured to thermally couple waste heat from the secondary fuel cell stack to the primary fuel cell stack, and a second thermal coupling mechanism configured to thermally couple waste heat from the fuel cell stack to the endothermic fuel generator.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: July 29, 2014
    Assignee: Ardica Technologies, Inc.
    Inventors: Daniel Braithwaite, Tibor Fabian, Friedrich B. Prince
  • Patent number: 8771888
    Abstract: Provided is a fuel-cell system and a method of operating the fuel-cell system, wherein functions F=f(P) and P=f?1(F) of electrical output P and fuel flow-rate F required to output P are beforehand obtained, and a reformable fuel flow-rate FR is calculated from the temperature of reforming catalyst layer. When FR?Fmin, if the output demand PD?maximum output PM, and when f(PD)?FR, F is set to f(PD); and when f(PD)>FR, the P is set to the maximum value within a range of less than PD amongst P calculated from P=f1(FR), and F is set to FR. When PD>PM, and when f(PM)?FR, the cell output is set to PM, and F is set to f(PM). When f(PM)>FR, the cell output is set to the maximum value amongst P calculated from P=f1(FR), and F is set to FR.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: July 8, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventor: Susumu Hatada
  • Publication number: 20140178782
    Abstract: A system for gasifying a carbonaceous feedstock, such as municipal waste, to generate power includes a devolatilization reactor that creates char from the feedstock and a gasifier that creates a product gas from both the char and from volatiles released when devolatilizing the feedstock. The product gas is reacted in a fuel cell to create electrical energy and process heat. The process heat is used to heat the devolatilization reactor and the gasifier. The gasifier comprises a plurality of configurable circuits that can each be tuned to meet the individual needs of the char material being gasified.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: SUSTAINABLE WASTE POWER SYSTEMS, LLC
    Inventors: Michael J. Gillespie, Christopher P. Gillespie
  • Patent number: 8758951
    Abstract: A continuous coal electrolytic cell for the production of pure hydrogen without the need of separated purification units Electrodes comprising electrocatalysts comprising noble metals electrodeposited on carbon substrates are also provided. Also provided are methods of using the electrocatalysts provided herein for the electrolysis of coal in acidic medium, as well as electrolytic cells for the production of hydrogen from coal slurries in acidic media employing the electrodes described herein. Further provided are catalytic additives for the electro-oxidation of coal. Additionally provided is an electrochemical treatment process where iron-contaminated effluents are purified in the presence of coal slurries using the developed catalyst.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: June 24, 2014
    Assignee: Ohio University
    Inventor: Gerardine Botte
  • Publication number: 20140162155
    Abstract: A method of operating a fuel cell system includes characterizing the fuel or fuels being provided into the fuel cell system, characterizing the oxidizing gas or gases being provided into the fuel cell system, and calculating at least one of the steam:carbon ratio, fuel utilization and oxidizing gas utilization based on the step of characterization.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Bloom Energy Corporation
    Inventors: David Weingaertner, Arne Ballantine, Swaminathan Venkataraman
  • Patent number: 8747498
    Abstract: A hydrogen generator of the present invention includes a reformer (16) for generating a hydrogen-containing gas through a reforming reaction using a raw material; a combustor (102a) for heating the reformer (16); a combustion air supplier (117) for supplying combustion air to the combustor (102a); and an abnormality detector (110a) for detecting an abnormality; and a controller (110) configured to control the combustion air supplier (117) such that the reformer (16) is cooled with a higher rate in an abnormal shut-down process executed after the abnormality detector (110a) detects the abnormality, than in a normal shut-down process.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 10, 2014
    Assignee: Panasonic Corporation
    Inventors: Kiyoshi Taguchi, Takanori Shimada, Yoshikazu Tanaka, Yoshio Tamura, Shigeki Yasuda
  • Publication number: 20140154598
    Abstract: The present invention relates to a power device and, more particularly, to a non-propulsive thermal transpiration based micro single-chamber solid oxide fuel cell (SCSOFC) power device.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 5, 2014
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Jeongmin Ahn, Paul D. Ronney
  • Publication number: 20140120437
    Abstract: A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 1, 2014
    Applicant: ACUMENTRICS CORPORATION
    Inventors: Neil Edward Fernandes, Michael S. Brown, Praveen Cheekatamaria, Thomas Deng, James Dimitrakopoulos, Anthony F. Litka
  • Publication number: 20140106250
    Abstract: A fuel cell system may include a reformer having a reforming catalyst layer; a high temperature fuel cell for generating electric power; a reforming catalyst layer temperature measuring means; a reforming catalyst layer temperature increasing means; and a control means for calculating a flow rate of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer, based on the measured temperature of the reforming catalyst layer, and for controlling the hydrocarbon-based fuel supplied to the reforming catalyst layer to flow at the calculated flow rate, and being able to increase a feed rate of the hydrocarbon-based fuel to the reforming catalyst layer, while repeatedly operating the fuel flow rate calculating function and the fuel flow rate controlling function, until the feed rate of the hydrocarbon-based fuel to the reforming catalyst layer becomes a flow rate at completion of start-up.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 17, 2014
    Applicant: NIPPON OIL CORPORATION
    Inventor: Susumu HATADA
  • Publication number: 20140106246
    Abstract: A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
    Type: Application
    Filed: November 19, 2013
    Publication date: April 17, 2014
    Applicant: Protonex Technology Corporation
    Inventors: Joseph C. Poshusta, Charles W. Booten, Jerry L. Martin
  • Patent number: 8697451
    Abstract: A sulfur breakthrough monitoring assembly for use in a fuel utilization system for detecting sulfur-containing compounds in desulfurized fuel, said monitoring assembly comprising: a heater for heating desulfurized fuel to a predetermined temperature, the predetermined temperature being between 450° C. and 600° C., a sulfur breakthrough detector adapted to receive heated fuel from the heater and including at least a reforming catalyst bed for reforming the heated fuel and a plurality of temperature sensors including a first temperature sensor for sensing temperature of the heated fuel before the fuel is conveyed through the reforming catalyst bed and a second temperature sensor for sensing temperature in the reforming catalyst bed, and a controller for determining whether concentration of the sulfur-containing compounds in the fuel exceeds a first predetermined concentration based on temperature outputs from the first and second temperature sensors.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 15, 2014
    Assignee: FuelCell Energy, Inc.
    Inventor: Joseph M. Daly
  • Publication number: 20140093800
    Abstract: The present invention is a solid oxide fuel cell 1 including a reforming section 94, disposed inside a fuel gas supply flow path 20 above a vaporizing section 86 to surround the upper portion of a fuel cell stack 14, for steam reforming raw fuel gas F introduced from a fuel gas introducing portion 90a using steam S produced in a vaporizing section; and a circulating flow path portion 156 disposed in a fuel gas supply flow path between the vaporizing section and the reforming section for circulating rising raw fuel gas introduced from a fuel gas introducing section into a fuel gas supply flow path and rising steam produced in the vaporizing section along the circumferential direction of the fuel gas supply flow path so as to form a flow supplying mixed raw fuel gas and steam uniformly over the entire circumference of the reforming section.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: TOTO LTD.
    Inventors: Masaki SATO, Naoki WATANABE, Nobuo ISAKA, Shigeru ANDO, Yutaka MOMIYAMA, Kiyoshi HAYAMA, Seiki FURUYA, Osamu OKAMOTO
  • Publication number: 20140087281
    Abstract: One embodiment of the present invention is a unique method for operating a fuel cell system. Another embodiment is a unique system for reforming a hydrocarbon fuel. Another embodiment is a unique fuel cell system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for fuel cell systems and steam reforming systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 27, 2014
    Applicant: LG Fuel Cell Systems Inc.
    Inventor: John R. Budge
  • Publication number: 20140080021
    Abstract: A fuel cell module includes a fuel cell stack, a partial oxidation reformer for reforming a mixed gas of a raw fuel and an oxygen-containing gas, an exhaust gas combustor for combusting a fuel exhaust gas and an oxygen-containing exhaust gas discharged from the fuel cell stack thereby to produce a combustion gas, and a heat exchanger for raising the temperature of the oxygen-containing gas by heat exchange with the combustion gas. The heat exchanger is provided on one side of the fuel cell stack, and the partial oxidation reformer and the exhaust gas combustor are provided on the other side of the fuel cell stack. The partial oxidation reformer is provided so as to surround the exhaust gas combustor.
    Type: Application
    Filed: April 12, 2012
    Publication date: March 20, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Tetsuya Ogawa, Keiji Tsukamoto
  • Patent number: 8673512
    Abstract: When terminating power generation by a fuel cell 3 in a fuel cell system 1, an amount of a raw fuel material introduced to a reforming catalyst 2a of a reformer 2 is reduced. Here, before the temperature of the reforming catalyst 2a is lowered to the un-reformed gas generation temperature, an amount of water supplied to the reforming catalyst 2a is controlled to increase the temperature of the reforming catalyst 2a. Thus, upon termination of power generation in the fuel cell 3, no un-reformed gas is generated and the reformed gas is supplied to the fuel cell 3.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: March 18, 2014
    Assignee: Nippon Oil Corporation
    Inventor: Tomotaka Ishida
  • Publication number: 20140065501
    Abstract: A non-catalytic hydrogen generation process is provided that supplies hydrogen to a hydrodesulfurization unit and a solid oxide fuel cell system combination, suitable for auxiliary power unit application. The non-catalytic nature of the process enables use of sulfur containing feedstock for generating hydrogen which is needed to process the sulfur containing feed to specifications suitable for the solid oxide fuel cell. Also, the non-catalytic nature of the process with fast dynamic characteristics is specifically applicable for startup and shutdown purposes that are typically needed for mobile applications.
    Type: Application
    Filed: October 12, 2012
    Publication date: March 6, 2014
    Applicant: Saudi Arabian Oil Company
    Inventor: Saudi Arabian Oil Company
  • Publication number: 20140057188
    Abstract: A fuel cell system includes at least one fuel cell stack, a fuel inlet conduit, and a fuel heat exchanger containing a fuel reformation catalyst. The fuel heat exchanger is connected to the fuel inlet conduit and to at least one fuel cell system exhaust conduit which in operation provides a high temperature exhaust stream to the fuel heat exchanger. The fuel heat exchanger is thermally integrated with an anode tail gas oxidizer (ATO) exhaust conduit such that in operation an ATO exhaust stream in the ATO exhaust conduit heats a fuel inlet stream passing through the heat exchanger.
    Type: Application
    Filed: September 5, 2013
    Publication date: February 27, 2014
    Applicant: Bloom Energy Corporation
    Inventors: Martin Perry, Swaminathan Venkataraman
  • Patent number: 8658323
    Abstract: The invention provides a solid oxide fuel cell generation system and a start up method thereof which heat up a reformer and a cell main body without any water and nitrogen gas, and start up for a short time until a power generation and without deteriorating a reliability of the cell. In a solid oxide fuel cell generation system having a power generation cell including an anode, a cathode and a solid electrolyte membrane, a mixing portion for obtaining a mixed gas by mixing a used fuel gas discharged from the anode with a raw fuel, a reducing combustion gas generating apparatus, and a reforming portion, the reducing combustion gas generating apparatus has a starting burner generating a reducing combustion gas, and the mixing portion, the reducing combustion gas generating apparatus, the reforming portion and the anode are coupled alphabetically from an upstream side.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: February 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hidekazu Fujimura, Hiromi Tokoi, Shin Takahashi
  • Publication number: 20140051000
    Abstract: A fuel cell system control device includes a carbon amount determination unit for determining the carbon amount in fuel gas supplied to a fuel cell stack depending on required output of the stack, a temperature detector unit for detecting temperature of a steam reformer and temperature of an evaporator, an S/C determination unit for determining a range of steam/carbon ratio based on the temperature of the steam reformer, a water supply amount determination unit for determining a range of the water supply amount to the evaporator based on the carbon amount and the steam/carbon ratio, an evaporator operating state determination unit for determining whether the temperature of the evaporator is a temperature determined based on the range of the water supply amount, and a reformer control unit for controlling the steam reformer and a partial oxidation reformer based on the result of the evaporator operating state determination unit.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 20, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Tetsuya Ogawa, Ayatoshi Yokokawa
  • Patent number: 8652693
    Abstract: A reformer including a vaporization part provided with a supply port through which raw fuel is supplied, the supply port being provided at a central section of a tubular container; and reforming parts provided at both sides of the container, each reforming part containing reforming catalyst that reforms the raw fuel that flows into the reforming part from the vaporization part into fuel gas and provided with a fuel-gas supply port through which the fuel gas is discharged.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: February 18, 2014
    Assignee: KYOCERA Corporation
    Inventors: Mitsuhiro Nakamura, Takashi Ono
  • Patent number: 8652696
    Abstract: The present invention relates to processes and apparatuses for generating electrical power from certain non-gaseous carbonaceous feedstocks through the integration of catalytic hydromethanation technology with fuel cell technology.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: February 18, 2014
    Assignee: Greatpoint Energy, Inc.
    Inventor: Avinash Sirdeshpande
  • Publication number: 20140045085
    Abstract: A fuel cell module includes a fuel cell stack, a partial oxidation reformer for reforming a mixed gas of a raw fuel and an oxygen-containing gas, a steam reformer for reforming a mixed gas of the raw fuel and water vapor, an evaporator for supplying water vapor to the steam reformer, a heat exchanger for raising the temperature of the oxygen-containing gas by heat exchange with a combustion gas, and an exhaust gas combustor for producing the combustion gas. A fuel gas discharge chamber of the steam reformer is connected to a fuel gas supply passage of the fuel cell stack through a fuel gas channel, a fuel gas outlet of the partial oxidation reformer is connected to a mixed gas supply chamber of the steam reformer through a fuel gas pipe, and a water vapor pipe extending from the evaporator is merged to the fuel gas pipe.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 13, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Tetsuya Ogawa, Keiji Tsukamoto
  • Publication number: 20140038071
    Abstract: A fuel cell module includes an oxygen-containing gas regulator valve for distributing and supplying the oxygen-containing gas to the heat exchanger and to the start-up combustor, a raw fuel regulator valve for distributing and supplying the raw fuel to the reformer and to the start-up combustor, and a control device. The control device includes an oxygen-containing gas distribution controller for controlling the oxygen-containing gas regulator valve and a raw fuel distribution controller for controlling the raw fuel regulator valve, each control thereof being performed at least based on any of the temperature of the fuel cell stack, the temperature of the reformer, and the temperature of the evaporator.
    Type: Application
    Filed: February 9, 2012
    Publication date: February 6, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Tetsuya Ogawa
  • Publication number: 20140030620
    Abstract: A fuel cell module includes a fuel cell stack formed by stacking a plurality of fuel cells for generating electricity by electrochemical reactions of a fuel gas and an oxygen-containing gas, a reformer for reforming a mixed gas of a raw fuel and water vapor, an evaporator for supplying water vapor to the reformer, a heat exchanger for raising the temperature of the oxygen-containing gas by heat exchange with a combustion gas, an exhaust gas combustor for producing the combustion gas, and a start-up combustor for producing the combustion gas. The exhaust gas combustor is provided integrally in the heat exchanger. The start-up combustor is provided adjacent to one end of the heat exchanger.
    Type: Application
    Filed: February 9, 2012
    Publication date: January 30, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Tetsuya Ogawa, Keiji Tsukamoto, Go Muto
  • Publication number: 20140023946
    Abstract: To provide a fuel cell device capable of extending the years of service life of a reformer by suppressing thermal runaways. The present invention is a solid oxide fuel cell device, including a fuel cell module having fuel cell units; a reformer disposed above the fuel cell units, for producing hydrogen by a partial oxidation reforming reaction and a steam reforming reaction; a vaporizing chamber disposed adjacent to the reformer; a combustion chamber for heating the vaporization chamber; a water supply device; an electrical generation oxidant gas supply device; and a controller for raising the fuel cell units to a temperature at which electrical generation is possible; whereby over the entire period of the startup step, the reforming oxidant gas supply device and water supply device are controlled so that partial oxidation reforming reactions do not occur independently in the reformer.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 23, 2014
    Inventors: Yousuke AKAGI, Toshiya ABE, Toshiharu OTSUKA, Katsuhisa TSUCHIYA, Takuya MATSUO, Naoki WATANABE, Hajime OMURA, Shuhei TANAKA, Takuya HOSHIKO
  • Publication number: 20140023947
    Abstract: To provide a fuel cell device capable of extending the years of service life of a reformer by suppressing thermal runaways. The present invention is a solid oxide fuel cell device, including a fuel cell module having multiple fuel cell units; a reformer disposed above the fuel cell units, for producing hydrogen by a partial oxidation reforming reaction and a steam reforming reaction; a vaporizing chamber disposed adjacent to the reformer; a combustion chamber for heating the vaporization chamber; a water supply device; a supply device for oxidant gas for electrical generation; and a controller for raising the fuel cell unit to a temperature at which electrical generation is possible; wherein fuel electrodes in each individual fuel cell unit are constituted to act as catalysts for a shift reaction, and the controller executes only the ATR step and SR step in the reformer.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 23, 2014
    Inventors: Yousuke AKAGI, Toshiya ABE, Toshiharu OTSUKA, Katsuhisa TSUCHIYA, Takuya MATSUO, Naoki WATANABE
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8632922
    Abstract: The present invention is directed to systems and processes of operating molten carbonate fuel cell systems.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: January 21, 2014
    Assignee: Shell Oil Company
    Inventors: Jingyu Cui, Erik Edwin Engwall, John William Johnston, Mahendra Ladharam Joshi, Scott Lee Wellington
  • Publication number: 20140017583
    Abstract: A process of reforming a liquid fuel comprising from greater than 50 ppmw sulfur to less than 400 ppmw sulfur, the process comprising contacting a liquid hydrocarbon fuel comprising one or more organosulfur compounds in a concentration from greater than 50 ppmw to less than 400 ppmw sulfur with an oxidant and steam or water, the contacting occurring in a catalyst bed comprising a reforming catalyst deposited on an ultra-short-channel-length metal substrate, such that the process is conducted at a peak catalyst temperature greater than 950° C. so as to produce a reformate mixture comprising hydrogen and carbon monoxide.
    Type: Application
    Filed: March 31, 2012
    Publication date: January 16, 2014
    Applicant: Precision Combustion, Inc.
    Inventors: Subir Roychoudhury, Christian Junaedi, Dennis E. Walsh
  • Patent number: 8623563
    Abstract: An SOFC system is started-up efficiently in a short time while letting a hydrogen concentration in a reformed gas high.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: January 7, 2014
    Assignee: Nippon Oil Corporation
    Inventor: Iwao Anzai
  • Patent number: 8617477
    Abstract: An apparatus for removing sulfur from a hydrocarbon feed includes a cell having two compartments and a membrane separating the compartments, wherein one compartment is communicated with a hydrogen source and the other compartment is communicated with the hydrocarbon feed to be treated, wherein the membrane comprises a palladium membrane which is modified to have an additional amount of a mix of palladium and other metals (Ni, Ag, Co and Au) between about 4.62*10?3 and 1.62*10?2 g/cm2; and a power source connected across the hydrogen source compartment to generate a current across same, whereby atomic hydrogen is formed from the hydrogen source at a surface of the membrane and diffuses across the membrane to react with the hydrocarbon feed. A process using this apparatus is also provided.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: December 31, 2013
    Assignee: Intevap, S.A.
    Inventors: Victor Báez, Luiz Felipe D'Elia, Gaudy Rodriguez, Yolimar Gandica
  • Publication number: 20130344409
    Abstract: A combustor for generating and supplying hot combustion gases to a fuel reformer includes an annular passage defined by a swirler having a central hub and an outer wall. One or more vanes are disposed in the annular passage to impart angular momentum to a gas flowing axially through the annular passage. At least one opening is defined in the central hub for introducing a first fuel into the annular passage, and at least one opening is defined in the outer wall in for introducing a second fuel into the annular passage. In a further aspect of the invention, the fuel introduced into the annular passage through the outer wall is a gaseous fuel, for example effluent gas from a fuel cell, and the fuel introduced into the annular passage through the central hub is a vaporized liquid fuel, for example vaporized diesel fuel.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventor: BERNHARD A. FISCHER
  • Patent number: 8614023
    Abstract: A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: December 24, 2013
    Assignee: Protonex Technology Corporation
    Inventors: Joseph C. Poshusta, Charles W. Booten, Jerry L. Martin
  • Patent number: 8586252
    Abstract: A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 19, 2013
    Assignee: Acumentrics Corporation
    Inventors: Neil Edward Fernandes, Michael S. Brown, Praveen Cheekatamarla, Thomas Deng, James Dimitrakopoulos, Anthony F. Litka
  • Publication number: 20130302709
    Abstract: A method is provided for adding sulfur to a solid oxide fuel cell (SOFC) stack having a Ni—YSZ anode to prolong the life of the SOFC stack. The method includes the steps of providing a reformate stream essentially free of sulfur compounds, feeding the reformate stream to the SOFC stack, and adding a predetermined amount of a sulfur compound into the reformate stream upstream of the SOFC stack. The predetermined amount of the sulfur compound is effective to prolong the life of the Ni—YSZ anode by retarding the formation of carbon onto the Ni—YSZ anode and the coarsening of the granular microstructure of the Ni—YSZ anode, while minimizing the degradation of power output of the SOFC stack within a predetermined limit.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 14, 2013
    Inventors: SUBHASISH MUKERJEE, KARL JACOB HALTINER,, JR., JEFFREY G. WIESSMAN
  • Patent number: 8563186
    Abstract: The present invention is directed to systems and processes for operating molten carbonate fuel cell systems. A process for operating the molten carbonate fuel cell includes providing a hydrogen-containing stream comprising molecular hydrogen to a molten carbonate fuel cell anode; heating a hydrocarbon stream, at least a majority of which is comprised of hydrocarbons that are liquid at 20° C. and atmospheric pressure, with a heat source comprising an anode exhaust from the molten carbonate fuel cell anode; contacting at least a portion of the heated hydrocarbon stream with a catalyst to produce a steam reforming feed comprising gaseous hydrocarbons, hydrogen, and at least one carbon oxide; separating at least a portion of the molecular hydrogen from the steam reforming feed; and providing at least a portion of the separated molecular hydrogen to the molten carbonate fuel cell anode as at least a portion of the stream comprising molecular hydrogen.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 22, 2013
    Assignee: Shell Oil Company
    Inventors: Jingyu Cui, Erik Edwin Engwall, John William Johnston, Mahendra Ladharam Joshi, Scott Lee Wellington
  • Patent number: 8563185
    Abstract: The invention relates to a process for the production of hydrogen and carbon dioxide from a hydrocarbonaceous feedstock, comprising: a) supplying a gaseous hydrocarbonaceous feedstock and steam to a reaction zone comprising a steam reforming catalyst and catalytically reforming the hydrocarbonaceous feedstock to produce a reformed gas comprising hydrogen and carbon dioxide; b) supplying a molecular oxygen-comprising gas to the permeate side of a first hydrogen separation membrane; c) contacting a part of the hydrogen with a first hydrogen separation membrane, allowing the hydrogen to permeate through the first hydrogen separation membrane and combusting the hydrogen with the molecular oxygen at a permeate side of the first hydrogen separation membrane to produce all heat necessary for catalytic reforming the hydrocarbonaceous feedstock; d) contacting the remainder of the hydrogen with a second hydrogen separation membrane, which is separate from the first hydrogen separation membrane, and allowing the hydroge
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: October 22, 2013
    Assignee: Shell Oil Company
    Inventors: Gerrit Jan Barend Assink, Gert Jan Kramer, Arian Nijmeijer, Martin Van Sint Annaland
  • Patent number: 8557463
    Abstract: A method of load following operation of a fuel cell system may include measuring a temperature of the reforming catalyst layer, obtaining a reformable flow rate of the hydrocarbon-based fuel capable of being reformed in the reforming catalyst layer at the temperature, and controlling electric power generation based on the relationship between the reformable flow rate and a minimum value.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: October 15, 2013
    Assignee: JX Nippon Oil Energy Corporation
    Inventor: Susumu Hatada
  • Patent number: 8557457
    Abstract: A method of operating a fuel cell system includes the steps of detecting whether supply of a raw fuel to a fuel cell module is stopped or not, starting supply of water vapor to an electrode surface of an anode based on the temperature of a fuel cell stack when stop of the supply of the raw fuel is detected, starting supply of reverse electrical current to an electrolyte electrode assembly in a direction opposite to electrical current flowing at the time of power generation based on the temperature of the fuel cell stack, stopping the supply of the reverse electrical current at least based on any of the temperature of the fuel cell stack and the temperature of an evaporator, and stopping the supply of the water vapor at least based on any of the temperature of the fuel cell stack and the temperature of the evaporator.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: October 15, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Koji Dan
  • Patent number: 8551444
    Abstract: Embodiments of a compact pressure swing reformer are disclosed. Certain embodiments have a construction comprising multiple rotating reformer beds, high temperature rotary valves at the bed ends, and E-seals to seal the beds to the valves. Several possible designs for introducing reactants into the beds also are disclosed. The multiple reformer beds are configured to provide for pressure equalization and ‘steam push’. The compact pressure swing reformer is suitable for use in fuel cell vehicle applications.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rajeev Agnihotri, Soheil Alizadeh-Khiavi, Paul Berlowitz, Brooke Cox, Bruce Derites, Jeffrey Frederick, Jeffrey Grenda, Kamal Hatami, Frank Hershkowitz, Zhiguo Hou, Daryl Musselman, Novica Rados, John Siller, Richard Socha, George Walchuk
  • Publication number: 20130252122
    Abstract: A power generator according to the present invention includes a fuel cell system (101), a combustion system (102), and a controller (103). The fuel cell system (101) includes: a fuel cell (11); a reformer (10) configured to generate a fuel through a reforming reaction between a first raw material containing a hydrocarbon and a second raw material which is water or an oxidant; a first raw material supply device (12); a second raw material supply device (13); and an oxidant supply device (14). The combustion system (102) includes: a first combustor (21); a third raw material supply device (22); a first air supply device (23); and a frame rod (24).
    Type: Application
    Filed: April 26, 2012
    Publication date: September 26, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Junji Morita, Hiroshi Tatsui, Akinori Yukimasa, Atsutaka Inoue, Hidetoshi Wakamatsu
  • Patent number: 8530103
    Abstract: A fuel cell system includes: a power generation stack (1) composed by stacking a plurality of fuel cells (10); and a hydrocarbon-oxidizing device (2) disposed on an upstream side of the power generation stack (1) in a fuel supply passage (8). The hydrocarbon-oxidizing device (2) directly and electrochemically oxidizes hydrocarbons with a carbon number of 2 or more, which are contained in fuel gas, or decomposes the hydrocarbons and electrochemically oxidizes carbon obtained by decomposing the hydrocarbons.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: September 10, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Dong Song, Masaharu Hatano, Keiko Kushibiki, Kazufumi Takeuchi
  • Patent number: 8507131
    Abstract: A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: August 13, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Subhasish Mukerjee, Karl J Haltiner, Jr., Jeffrey G. Weissman
  • Publication number: 20130200216
    Abstract: The invention relates to a device for producing an inert gas that comprises a fuel tank for a fuel, at least one fuel cell with a cathode, an anode, a reactor for reforming fuel from the fuel tank into a hydrogenous fuel gas and an inert gas outlet. The reactor comprises a fuel gas outlet that is connected to a fuel gas inlet arranged on the anode of the fuel cell. The inert gas outlet is arranged downstream of the reactor and forms a fluid sink for non-hydrogenous reaction products of the reactor.
    Type: Application
    Filed: January 29, 2013
    Publication date: August 8, 2013
    Applicant: AIRBUS OPERATIONS GMBH
    Inventor: Airbus Operations GmbH
  • Publication number: 20130189599
    Abstract: A power generation system includes: a fuel cell (11); a casing (12) accommodating the fuel cell (11); a controller (102); a supply and exhaust mechanism (104) including an exhaust passage (70) and an air supply passage (78); and a damage detector, provided in at least one of the supply and exhaust mechanism (104) and the casing (12), configured to detect damage to the exhaust passage (70). The controller (102) performs control to stop operation of the power generation system when the damage detector detects damage to the exhaust passage (70).
    Type: Application
    Filed: December 12, 2011
    Publication date: July 25, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroshi Tatsui, Junji Morita, Shigeki Yasuda, Akinori Yukimasa, Atsutaka Inoue
  • Publication number: 20130130134
    Abstract: The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated; instead the device operates at a higher temperature. This allows efficiencies higher than 65%.
    Type: Application
    Filed: January 16, 2013
    Publication date: May 23, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventor: Battelle Memorial Institute
  • Publication number: 20130130139
    Abstract: A fuel cell stack comprising multiple arrays of one or more fuel cells, each comprising an electrolyte layer, an anode layer and a cathode layer; gas separator plates between adjacent fuel cells; and oxidant gas distribution passages and fuel gas distribution passages between adjacent fuel cells; and gas separators opening to the cathode layers and the anode layers, respectively, of the fuel cells. The fuel cell arrays comprise at least first stage fuel cell arrays having associated first fuel gas distribution passages to receive fuel gas from one or more fuel gas supply manifolds and second stage fuel cell arrays having associated second fuel gas distribution passages which receive fuel exhaust from the fuel cells of the first stage fuel cell arrays. The second stage fuel cell arrays are interleaved in the stack between first stage fuel cell arrays to improve thermal gradients. Other interleaving arrangements are possible.
    Type: Application
    Filed: April 15, 2011
    Publication date: May 23, 2013
    Applicant: CERAMIC FUEL CELLS LIMITED
    Inventors: Michael Kah, Roger Bolden
  • Publication number: 20130118735
    Abstract: A method for producing a purified carbon dioxide product suitable for EOR and surplus electricity uses a vaporous hydrocarbon feed and a SOFC system. A SOFC system includes a condensate removal system, an acid gas removal system, a hydrodesulfurization system, a sorption bed system, a pre-reformer, a solid oxide fuel cell, a CO2 separations system and a CO2 dehydration system operable to form the purified carbon dioxide product, where the SOFC system is operable to produce surplus electricity from the electricity produced by the solid oxide fuel cell. A method of operating the pre-reformer to maximize the internal reforming capacity of a downstream solid oxide fuel cell uses a pre-reformer fluidly coupled on the upstream side of a solid oxide fuel cell. A method of enhancing hydrocarbon fluid recovery from a hydrocarbon-bearing formation using a SOFC system.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 16, 2013
    Applicant: Saudi Arabian Oil Company
    Inventor: Saudi Arabian Oil Company
  • Publication number: 20130101873
    Abstract: A power generation systems with solid oxide fuel cell (SOFC) and heat recovery unit (HRU) and method are provided. In accordance with one embodiment of the disclosure, a power generation system includes a partial oxidation (POX) reactor, an array of one or more fuel cell stacks and an HRU. The POX reactor is operable to generate a hydrogen rich gas from a fuel. The array of one or more fuel cell stacks includes at least one SOFC and is coupled to the POX reactor. The fuel cell stacks are operable to generate electrical power and heat from an electro-chemical reaction of the hydrogen rich gas and oxygen from an oxygen source. The HRU is coupled to the array of fuel cell stacks and operable to generate electrical power from the heat.
    Type: Application
    Filed: November 17, 2010
    Publication date: April 25, 2013
    Inventors: Marc Dionne, Leslie Frank Juhasz
  • Publication number: 20130078541
    Abstract: A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Hamilton Sundstrand Corporation