During Startup Or Shutdown Patents (Class 429/429)
  • Patent number: 10381668
    Abstract: The operation control method of a fuel cell includes acquiring a startup temperature of the fuel cell; acquiring a present temperature of the fuel cell; setting a present target operation point of the fuel cell that is identified by an output voltage value and an output current value based on the startup temperature, or based on the startup temperature and the present temperature; controlling at least one of the flow of the reaction gas supplied to the fuel cell, and an output voltage of the fuel cell so that the operation point of the fuel cell becomes the target operation point, and setting the target operation point includes a process of setting an operation point having a low output voltage value as the target operation point when the startup temperature is low as compared to the case when the startup temperature is high, if the present temperature is the same.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: August 13, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiaki Naganuma, Masashi Toida, Tomohiro Ogawa, Tsuyoshi Maruo
  • Patent number: 10374436
    Abstract: A charging device is configured to deliver power to a portable, power-consuming device, having a profile sensor which can detect information relating to the identity of power-consuming device to which the charging device is connected and may also have a communication channel configured to transmit said information to a remote server. In use, data can be collected or aggregated relating to power-consuming devices by connecting the charging device to the portable power-consuming device; sensing, by a profile sensor in the charging device, information relating to the identity of the power-consuming device; and transmitting the information to a remote server over a communication channel. Collected data may, for example, be used to identify when fuel for a charging device may need replenishment.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 6, 2019
    Assignee: Intelligent Energy Limited
    Inventors: Henri Winand, John Joseph Murray, III, Christopher William Bishop, Graham Kirsopp, Marco Mathar, Andrew Kelly, Zachary Elliot, Christopher James Kirk
  • Patent number: 10355290
    Abstract: A power generator and method include passing ambient air via an ambient air path past a cathode side of the fuel cell to a water exchanger, picking up water from the cathode side of the fuel cell and exhausting air and nitrogen to ambient, passing hydrogen via a recirculating hydrogen path past an anode side the fuel cell to the water exchanger, where the water exchanger transfers water from the ambient air path comprising a cathode stream to the recirculating hydrogen path comprising an anode stream, and passing the water to a hydrogen generator to add hydrogen to the recirculating hydrogen path and passing the hydrogen via the recirculating hydrogen path past the anode side of the fuel cell.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: July 16, 2019
    Assignee: Honeywell International Inc.
    Inventors: Steven J. Eickhoff, Jeffrey Michael Klein
  • Patent number: 10347928
    Abstract: An airflow control method of an air control system for a fuel cell stack (FCS) includes opening a recirculation valve by a controller to recirculate air through a compressor to increase a temperature of the air prior to entering the FCS to offset a FCS temperature below a predetermined threshold in response to identification to a cold-start event. The recirculation valve may be arranged with the compressor to recirculate air therethrough. The FCS may be arranged with the compressor and recirculation valve to selectively receive air therefrom. A sensor may measure thermal conditions of the FCS. The controller may be programmed to receive signals from the sensor indicating thermal conditions of the FCS, and to operate the recirculation valve based on the signals to recirculate air through the compressor to increase a temperature of the air prior to entering the FCS.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: July 9, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Martin Pryor
  • Patent number: 10340540
    Abstract: A fuel cell system comprising: a supply valve for supplying the anode gas into an anode system of the fuel cell system; a purge valve for discharging an off-gas from the anode system; a pressure detecting portion that estimates or measures a pressure inside the anode system; and a hydrogen concentration estimating portion that estimates a hydrogen concentration inside the anode system based on a pressure decrease during a purge valve open duration in a supply valve close state.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: July 2, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Yoshitomo Asai
  • Patent number: 10312534
    Abstract: A method for recovering performance of a degraded polymer electrolyte fuel cell stack through electrode reversal. In detail, oxide films formed on the surface of platinum of a cathode is removed through an electrode reversal process that creates a potential difference between an anode and the cathode by supplying air to the anode instead of hydrogen and supplying a fuel to the cathode instead of air, thus rapidly recovering the performance of a degraded polymer electrolyte fuel cell stack.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: June 4, 2019
    Assignee: Hyundai Motor Company
    Inventors: Hyun Suk Choo, Dae Keun Chun, Hwan Soo Shin, Sung Keun Lee, Jae Hyuk Lee
  • Patent number: 10312537
    Abstract: A control method for fuel cell system capable of executing an idle stop operation is provided, in which operation power generation of a fuel cell is selectively stopped according to a required output of a load and cathode gas is intermittently supplied to the fuel cell during an operation stop. An upper limit value and a lower limit value of an output voltage of the fuel cell during the idle stop operation is set, the cathode gas is intermittently supplied with the output voltage of the fuel cell set at a value between the upper limit value and the lower limit value, a wet/dry state of the fuel cell is detected, a wet/dry appropriate range in which the wet/dry state of the fuel cell during the idle stop operation is appropriate is set, and it is determined whether or not the detected wet/dry state of the fuel cell is within the set wet/dry appropriate range.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: June 4, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Masashi Sato
  • Patent number: 10297854
    Abstract: A fuel cell of a fuel cell stack includes a power generation reaction area, a marginal area around the power generation reaction area, and a first reactant gas flow area and a second reactant gas flow area. The first reactant gas flow area and the second reactant gas flow area are provided outside the power generation reaction area and inside the marginal area. The fuel cell stack includes a first load applying unit configured to apply a first load to the marginal area in the stacking direction and a second load applying area configured to apply a second load to the power generation reaction area in the stacking direction.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: May 21, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Keiji Tsukamoto, Hiroki Homma
  • Patent number: 10283791
    Abstract: A fuel cell system includes a control unit configured to perform air-conditioning-system preparation control, wherein, under the air-conditioning-system preparation control, when an air conditioning system is not requested to heat air, it is determined whether or not a coolant within a coolant circulation passage is capable of being supplied to an air conditioning circuit, when the coolant within the coolant circulation passage is not capable of being supplied to the air conditioning circuit, the heater is operated to maintain a first predetermined temperature or higher of the coolant within the air conditioning circuit, and when the coolant within the coolant circulation passage is capable of being supplied to the air conditioning circuit, the air-conditioning water pump is operated to draw the coolant from the coolant circulation passage into the air conditioning circuit and to maintain the first predetermined temperature or higher of the coolant within the air conditioning circuit.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: May 7, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takashi Yamada, Hiroyuki Imanishi, Mitsuhiro Nada
  • Patent number: 10272799
    Abstract: A flow control valve 26 can adjust the percentage of the flow rate of cooling water to a radiator 23 to a predetermined value (50%) or smaller. When the temperature of the cooling water in a fuel cell 11 is determined to be a predetermined temperature (0° C.) or higher after the cooling water is supplied to the fuel cell 11 with the percentage of the flow rate of the cooling water to the radiator 23 set to the predetermined value (50%) or larger, a controller 41 performs a predetermined percentage supply operation for controlling the flow control valve 26 and a pump 22 to supply the cooling water to the fuel cell 11 with the percentage of the flow rate of the cooling water to the radiator 23 set to the predetermined value (50%) or larger.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: April 30, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Bono, Takashi Yamada
  • Patent number: 10249890
    Abstract: Methods and systems are provided for cold-start of fuel cell stack in fuel cell vehicles. In one example, a method may include in response to cold-start of fuel cell vehicle, limiting the load drawn from the fuel cell stack. In addition, a coolant pump may be operated at a higher rate through a bypass loop to get heat quickly to the fuel cell stack to increase the solubility of water in the fuel cell stack to prevent ice formation. The net effect is that the fuel cell stack is then operated within the ice capacity of the membrane, and start-up at lower temperatures is possible without experiencing an intermittent performance drop due to active area freezing. Once the fuel cell stack is sufficiently warmed up, the coolant pump rate and fuel cell stack may be adjusted according to the demand.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 2, 2019
    Assignees: Daimler AG, Ford Motor Company, Nissan Motor Co., Ltd.
    Inventors: Michael Procter, Richard G. Fellows, Yosuke Fukuyama, Shiomi Takeshi
  • Patent number: 10236523
    Abstract: A fuel cell system. The fuel cell system includes at least one fuel cell having an anode chamber and a cathode chamber separated from the anode chamber, and a cathode gas source, a gas supply line connected to the cathode gas source, for feeding cathode gas into the cathode chamber, and an exhaust air line connected to the cathode chamber for the conducting exhaust air out of the cathode chamber. The gas supply line and the exhaust air line are connected by at least one gas flow regulation element, which opens the gas supply line in the direction of the exhaust air line and/or the exhaust air line in the direction of the gas supply line in dependence on an operating status of the fuel cell.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: March 19, 2019
    Assignee: Robert Bosch GmbH
    Inventor: Helerson Kemmer
  • Patent number: 10218013
    Abstract: A flat plate type solid oxide fuel cell stack module is obtained by stacking a plurality of flat plate type solid oxide fuel cell stack units. Each of the cell stack unit comprises an anode plate, a cell unit and a cathode plate. The anode plate has a first flow channel, four corner first fuel input holes and a central first fuel output hole. The cathode plate has a second flow channel, a plurality of lateral second air input grooves and a plurality of lateral second air output grooves. The cell unit includes an anode layer, a cathode plate, four corner third fuel input holes and a central third fuel output hole. An anode mental net and an anode sealing material are disposed between the anode plate and the cell unit, a cathode mental net and a cathode sealing material are disposed between the cathode plate and the cell unit.
    Type: Grant
    Filed: January 2, 2015
    Date of Patent: February 26, 2019
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Hung-Hsiang Lin, Shih-Wei Cheng, Wen-Hsiu Chung, Szu-Han Wu, Yung-Neng Cheng, Ruey-Yi Lee
  • Patent number: 10218014
    Abstract: An anode-cathode supply device for a fuel cell of a fuel cell system, including an anode supply system and a cathode supply system, which may be brought into a fluid communication with each other with the aid of an overflow line situated therebetween and through an overflow valve, the overflow valve being designed as an NC overflow valve, the NC overflow valve being closed in a de-energized state of the NC overflow valve and at a balanced pressure ratio at the NC overflow valve is provided. A method for supplying an operating medium or a device for supplying an operating medium, in particular hydrogen, from an anode to a cathode of a fuel cell of a fuel cell system, preferably a vehicle, in particular an electric vehicle, chronologically during and/or after the fuel cell is deactivated is also provided. A fuel cell system for a vehicle, in particular an electric vehicle, or to a vehicle, in particular an electric vehicle is also provided.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: February 26, 2019
    Assignees: Volkswagen AG, Audi AG
    Inventor: Christian Lucas
  • Patent number: 10205184
    Abstract: A system and method of controlling a performance of a fuel cell stack is provided. In particular, the output performance of the fuel cell stack is determined by comparing the difference between an initial voltage and a voltage after a predetermined time lapses with the difference between the initial voltage and a preset minimum voltage.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: February 12, 2019
    Assignee: Hyundai Motor Company
    Inventors: Ik Jae Son, Yei Sik Jeon
  • Patent number: 10179513
    Abstract: A power net system of a fuel cell vehicle is provided. The power net system includes a fuel cell and a high-voltage battery unit connected in parallel via a main bus and a first switching unit that is configured to form and block an electrical connection between an output terminal of the fuel cell and the main bus. A load device diverges and is connected between the output terminal of the fuel cell and the first switching unit. A reverse current blocking unit is connected between the first switching unit and a node from which the load device diverges. A second switching unit is configured to form and block an electrical connection between the output terminal of the fuel cell and the load device. A controller operates the first and second switching units and adjusts the electrical connection state between the main bus and the high-voltage battery unit.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: January 15, 2019
    Assignee: Hyundai Motor Company
    Inventor: Sang Uk Kwon
  • Patent number: 10170781
    Abstract: Improved methods are disclosed for shutting down and storing a fuel cell system, particularly for below freezing temperature conditions. The methods comprise stopping power production from the fuel cell stack, monitoring the amount of energy remaining in an energy supply, monitoring the stack temperature, and repeatedly performing a predetermined warming operation if the stack temperature falls to a normal threshold temperature and if the amount of energy remaining exceeds a certain minimum amount. In the improved methods, when the amount of remaining energy is less than or equal to the minimum amount, a final warming operation is performed that differs from the predetermined warming operation.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: January 1, 2019
    Assignees: Daimler AG, Ford Motor Company, Nissan Motor Co., Ltd.
    Inventors: Michael Procter, Yosuke Fukuyama, Richard Fellows, Takeshi Shiomi
  • Patent number: 10164273
    Abstract: An apparatus for heating a fuel cell stack in a cold start mode is provided. The apparatus comprises a fuel cell stack, a boost converter, and a controller. The fuel cell stack powers a vehicle. The boost converter includes a power switch that is thermally coupled to the fuel cell stack. The controller is configured to receive a signal indicative of a temperature during a vehicle startup and to compare the temperature to a predetermined temperature value. The controller is further configured to activate the power switch if the temperature is below the predetermined temperature value such that the power switch generates heat to apply to the fuel cell stack and generates a voltage for powering a power circuit to enable the vehicle to driveaway while the fuel cell stack receives the heat.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: December 25, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Hasdi R. Hashim, Craig Winfield Peterson, Raymond Anthony Spiteri
  • Patent number: 10135081
    Abstract: A system and method for warming a fuel cell on an aircraft, the system includes at least one fuel cell. The fuel cell includes an anode and a cathode for creating thermal and electrical energy. A temperature sensor measures a first temperature of the fuel cell. A control unit is coupled to the temperature sensor. The control unit increases the first temperature to a second temperature in response to the first temperature being at least equal to a selected temperature threshold. Increasing of the first temperature is indicative of the control unit operating in a warming mode. The second temperature is higher than the selected temperature threshold.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 20, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Conor Riordan, Dustin L. Kaap, Mallika Gummalla
  • Patent number: 10122035
    Abstract: A fuel cell system, comprising: a fuel cell stack configured to include a plurality of cells; a number “n” of injectors arranged in parallel to supply an anode gas to the fuel cell stack, where the number “n” represents an integral number of not less than 2; a cell voltage meter configured to measure a voltage of at least one cell among the plurality of cells; a pressure gauge configured to measure a supply pressure that is a pressure of the anode gas supplied to the fuel cell stack; and a controller configured to respectively input control signals into the number “n” of injectors by using the voltage measured by the cell voltage meter and the supply pressure measured by the pressure gauge and to control a driving number that denotes a number of injectors to be driven among the number “n” of injectors, wherein when the measured voltage is equal to or higher than a predetermined voltage value, the controller is configured to set a target value of the supply pressure and the driving number according to a requir
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 6, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Masashi Toida
  • Patent number: 10090546
    Abstract: A method for activating a fuel cell stack without using an electric load includes chemically adsorbing hydrogen into a catalyst of a cathode. Oxygen remaining in the stack is removed to seal and store the fuel cell stack while maintaining a negative pressure in the fuel cell stack. The method for activating a fuel cell stack does not require an electric load device, and therefore does not increase the number of activation equipment, thereby preventing the total production speed of the fuel cell stack from reducing in response to the stack activation.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: October 2, 2018
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Hyun Suk Choo, Sung Keun Lee, Dae Keun Chun, Hwan Soo Shin, Jae Hyuk Lee
  • Patent number: 10090537
    Abstract: A fuel cell stack includes at least two cell modules adjacent to each other, the at least two cell modules each being formed by stacking a plurality of fuel cells into an integrated unit and a seal plate interposed in a cooling flow channel defined between separators of the at least two cell modules, the cooling flow channel configured to allow a cooling fluid to flow therethrough. The seal plate includes a manifold portion in which a plurality of manifold holes are formed to allow two power-generation gases to flow separately through the plurality of manifold holes and through the plurality of fuel cells and a seal member provided along a peripheral portion of each of the plurality of manifold holes to provide sealing for a corresponding one of the two power-generation gases flowing through the manifold hole.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: October 2, 2018
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiro Numao, Kazuhiro Kageyama, Shigetaka Uehara
  • Patent number: 10056628
    Abstract: A method for controlling startup of a fuel cell vehicle is provided. The method includes starting to adjust supply of hydrogen and air to a fuel cell and setting a control voltage of a side of a main bus end of a converter disposed between the main bus end and a high-voltage battery to a predetermined lowest control voltage. An output voltage of the side of the main bus end of the fuel cell and the control voltage of the side of the main bus end of the converter are then compared to adjust an amount of air supply to the fuel cell based on the comparison.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: August 21, 2018
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Dae Jong Kim, Jung Jae Lee, Ki Chang Kim
  • Patent number: 10056624
    Abstract: A sealing arrangement of solid oxide cell stacks is disclosed. The sealing arrangement includes a gasket structure between a flow field plate and an electrolyte element, and between flow field plates of repetitious structures, with first sealing layers being in contact with the flow field plate and the gasket structure, the first sealing layers being overlaid over a selected area of the flow field plate and over a selected area of the gasket structure according to corrosion minimization criteria and on the basis of sealing function criteria.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: August 21, 2018
    Assignee: ELCOGEN OY
    Inventors: Matti Noponen, Pauli Torri
  • Patent number: 10056633
    Abstract: A method for recovering the performance of a fuel cell stack mounted within a vehicle is provided. A method includes a recovery process of continuously applying a predetermined load using a load device when an air supply is stopped and hydrogen is supplied to a fuel cell stack to output current from the fuel cell stack. Further, protons and electrons generated by hydrogen oxidation reaction at an anode are moved to a cathode, to produce hydrogen at the cathode and simultaneously remove oxide on the catalyst surface of the cathode.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: August 21, 2018
    Assignee: Hyundai Motor Company
    Inventors: Hyun Suk Choo, Dae Keun Chun, Hwan Soo Shin, Sung Keun Lee, Jae Hyuk Lee
  • Patent number: 10026980
    Abstract: A method and system for maintaining stability of a system of a fuel cell vehicle are provided to prevent malfunction of sensors of a low voltage DC-DC converter and the respective controllers. A start timing of a fault diagnosis for the low voltage DC-DC converter and the respective controllers is determined and a deviation between voltages of the sensors of the low voltage DC-DC converter and the respective controllers is detected to determine whether the low voltage DC-DC converter and the respective controllers fail.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: July 17, 2018
    Assignee: Hyundai Motor Company
    Inventors: Seong Pil Ryu, Sung Suk Ok, Ji Tae Kim, Kyu Il Lee
  • Patent number: 10020522
    Abstract: An energy system having a fuel cell arrangement, wherein the fuel cell arrangement has at least one fuel cell and the fuel cell arrangement has at least one first electrical contact and at least one second electrical contact for tapping off electrically generated energy of the fuel cell arrangement. An electrical component for warming up the fuel cell arrangement is electrically connectable between the first electrical contact and the second electrical contact. At least some of the electrical energy flow which is necessary to release the thermal energy can be fed back to the energy system by the electrical component.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: July 10, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Schoenbauer, Nils Kaiser
  • Patent number: 10014535
    Abstract: An object is to provide a technique of reducing a potential failure to start a fuel cell system due to a temperature decrease in a vehicle with the fuel cell system mounted thereon. There is provided a vehicle that comprises a fuel cell system, a battery, a motor, and a determiner configured to determine that the fuel cell system has a frozen part when temperature measured by a temperature measurement unit is equal to or lower than a predetermined first temperature and at least one of conditions (1) to (3) is satisfied: (1) no purging process is performed after a change from an on state of the vehicle to an off state of the vehicle; (2) ambient temperature decreases to or below a predetermined second temperature in the off state of the vehicle and no purging process is performed; and (3) an inclination of the vehicle is equal to or greater than a predetermined inclination at a time of change from the off state of the vehicle to the on state of the vehicle.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: July 3, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiko Kaneko, Yohei Okamoto, Kazuo Yamamoto, Tomohiro Ogawa, Masashi Toida, Mitsuhiro Nada, Tomio Yamanaka
  • Patent number: 10000126
    Abstract: A power inverter includes a plurality of power modules that each have a frame defining a cavity, and a power stage disposed within the cavity. Each of the frames have a pair of engaging surfaces. The frames are arranged in a stack such that the engaging surfaces adjacent to each other abut. A plurality of seals are interleaved with the modules such that each of the seals is disposed between engaging surfaces of the frames abutting each other.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: June 19, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Guangyin Lei, Michael W. Degner, Edward Chan-Jiun Jih, Andreas R. Schamel
  • Patent number: 9985303
    Abstract: A system and method for determining whether a concentration estimation value of hydrogen gas in an anode sub-system of a fuel cell system is within a predetermined threshold of a valid hydrogen gas concentration, and if not, correcting the estimation value. The method includes providing a hydrogen gas concentration sensor value from a virtual sensor and calculating the hydrogen gas concentration estimation value using a gas concentration estimation model. The method also includes determining if a difference between the estimation value and the sensor value is greater than at least one threshold, and if so, causing an extended bleed event to occur that bleeds an anode exhaust gas to force the estimation value to be closer to the sensor value. The method also includes setting a diagnostic if multiple extended bleeds do not cause the estimation value and the sensor value to converge.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 29, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun Cai, Stephen D. Pace, Sergio E. Garcia, Elizabeth Dicocco
  • Patent number: 9985304
    Abstract: The invention relates to a method for stopping a polymer electrolyte membrane fuel-cell stack and to a system containing a fuel-cell stack implementing such a method. The system comprises a gas circuit and a stack of electrochemical cells forming a fuel-cell stack comprising a polymer ion exchange membrane, said circuit comprising: a fuel-gas supply circuit (11) connecting a fuel-gas tank to the anode of the fuel-cell stack; and an oxidant-gas supply circuit (12b) connecting an oxidant-gas tank, or atmospheric air, to the cathode of the fuel-cell stack; characterized in that the system furthermore comprises means able to completely eliminate hydrogen present at the anode of the fuel-cell stack.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: May 29, 2018
    Assignee: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: Vincent Braillard, Gino Paganelli, Antonio Delfino
  • Patent number: 9966616
    Abstract: An apparatus and method for controlling a purge valve of a fuel cell vehicle are provided to reduce a consumption amount of hydrogen and improve fuel efficiency. In particular, whether oxygen concentration in a channel of an anode of a fuel cell stack exceeds a reference value is estimated while restarting the vehicle after the vehicle is parked. Then, an open time of a purge valve is adjusted based on a parking time of a vehicle when the hydrogen concentration is greater than the reference value.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: May 8, 2018
    Assignee: Hyundai Motor Company
    Inventors: Hyun Jae Lee, Hyo Seop Kim, Yei Sik Jeon, Bu Kil Kwon
  • Patent number: 9956885
    Abstract: A fuel cell system includes: a power supply circuit including a fuel cell and a secondary battery; an oxidant gas supply flow passage; a pump; and a control unit configured to drive the pump and dilute hydrogen retained in an cathode. The control unit is configured to stop supplying an oxidant gas to the cathode by stopping an operation of the pump such that dilution of the hydrogen retained in the cathode is stopped, while the fuel cell vehicle remains stationary after a starter switch of the fuel cell vehicle is switched from an off state to an on state, or while a load required of the power supply circuit remains smaller than a predetermined value after the starter switch of the fuel cell vehicle is switched from the off state to the on state.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: May 1, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Imanishi, Kazuo Yamamoto, Masashi Toida
  • Patent number: 9923217
    Abstract: There is provided a method of controlling a fuel cell system comprising a fuel cell, a tank that is configured to store a fuel gas filled through a filler port of fuel gas provided in an outer plate of a vehicle, and a main stop valve that is configured to change over between opening and closing to open and close a fuel passage arranged from the tank to the fuel cell. The method comprises controlling the main stop valve to change over from opening to closing in response to detection of an operation for gas filling to fill the fuel gas into the tank, when a control accompanied with opening of the main stop valve is performed during a stop of the vehicle.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: March 20, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mitsuhiro Nada, Yutaka Tano
  • Patent number: 9905864
    Abstract: A fuel cell system includes a fuel cell, a fuel gas supply/exhaust portion, an oxidant gas supply/exhaust portion, a cooling portion, and a controller. The controller performs at least one of a transient increase control process and a transient decrease control process. In the transient increase control process, the controller determines whether a temperature of a coolant is in a transient increase state. In the transient increase state, the controller performs an oxidant gas pressure increase process. In the transient decrease control process, the controller determines whether the temperature of the coolant is in a transient decrease state. In the transient decrease state, the controller performs at least one of the oxidant gas pressure increase process and an output increase process. In the output increase process, the controller controls the fuel cell to generate an output higher than a target output corresponding to a request output.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: February 27, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaaki Matsusue
  • Patent number: 9876237
    Abstract: A fuel cell separator, a fuel cell stack having the fuel cell separator, and a reactant gas control method of the fuel cell stack are provided. That is, even when the fuel cell stack operates under the low load operation condition, a reactant gas is supplied to the reactant gas passages of the fuel cell separator, and thus, the length of the passage can be shortened by 50% as compared with the prior art having only one reactant gas passage. Therefore, the reactant gas can be effectively supplied without experiencing pressure loss. Further, in the high load operation of the fuel cell stack, the reactant gas is introduced into the first reactant gas passage of the fuel cell separator and utilized in half of the whole electrode area. Subsequently, the reactant gas is introduced into the second reactant gas passage and utilized in the remaining half of the electrode area.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: January 23, 2018
    Assignee: DOOSAN CORPORATION
    Inventors: Sung-Jin Oh, Kyoung-Hwang Lee, Seung-Ho Baek, Sung-Hoon Lee, Il-Tae Park, Byung-Sun Hong, Mee-Nam Shinn
  • Patent number: 9853309
    Abstract: A method of manufacturing a fuel cell which enables organic matter of both an anode thereof and a cathode thereof to be removed efficiently is provided. A method of manufacturing a fuel cell, comprising a preparation step of preparing a fuel cell comprising a stack of a plurality of unit cells, each including polymer electrolyte and a catalyst layer, and a removal step of removing organic matter from the fuel cell, is provided. This removal step comprises: a first step of maintaining a voltage of the fuel cell at 0 V so as to desorb organic matter from the catalyst layer; a second step of raising a temperature inside the fuel cell so as to evaporate the desorbed organic matter; and a third step of exhausting the evaporated organic matter from the fuel cell.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 26, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Sho Usami, Megumi Yaegashi
  • Patent number: 9843058
    Abstract: The fuel cell includes an anode chamber having a hydrogen inlet emerging into it. A wall separating the inside of the anode chamber from the outside thereof includes a main region having a first thermal conduction resistance between the outside and the inside of the anode chamber, and a region for promoting the condensation of water having a second thermal conduction resistance between the outside and the inside of the anode chamber strictly smaller than the first thermal conduction resistance so as to delimit a water condensation surface within the anode chamber. A channel for removing the condensed water connects the condensation area to the outside of the anode chamber.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 12, 2017
    Assignee: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Vincent Faucheux, Antoine Latour, Jessica Thery, Bruno Valon
  • Patent number: 9812721
    Abstract: A device and method for improving cathode catalytic heating by allowing independently for a draining of a liquid and a purging of a gas in a fuel cell at cold starts via a system including an anode drain and a cathode catalytic heating system connected by a purge tube, a sump external to the purge tube, and a pintle having a closed position, a first open position, and a second open position.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: November 7, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony G. Chinnici, Bruce J. Clingerman, Chad A. Dammar
  • Patent number: 9806357
    Abstract: A fuel cell system includes: a cathode pressure control unit configured to control a pressure of a cathode gas to be supplied to the fuel cell stack on the basis of a load of the fuel cell stack; and an anode pressure control unit configured to control a pressure of an anode gas to be supplied to the fuel cell stack to become higher than the pressure of the cathode gas so that a differential pressure between the pressure of the anode gas and the pressure of the cathode gas becomes a predetermined differential pressure or lower. The anode pressure control unit controls, at a time of recovery from idle stop, the pressure of the anode gas to be supplied to the fuel cell stack to a recovery-time pressure, the recovery-time pressure being obtained by adding the predetermined differential pressure to a predetermined pressure corresponding to an atmosphere pressure.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: October 31, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Nobuhisa Ikeda, Hayato Chikugo
  • Patent number: 9793557
    Abstract: A thermal management system and method for a fuel cell vehicle is provided. In particular, a radiator, a 3-way valve, a pump, a heater, and a stack are all connected in that order. The system is capable of selectively de-mineralizing and providing an increase in flow rate by connecting a de-mineralizer line to a port at a bypass line side of a 3-way valve.
    Type: Grant
    Filed: November 22, 2014
    Date of Patent: October 17, 2017
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sung Wook Na, Hun Woo Park
  • Patent number: 9786935
    Abstract: A controller (control portion) of a fuel cell system is provided with a flow path switching control device that switches a thermostat valve (flow path switching valve) so that, after a fuel cell has stopped generating electric power, coolant is supplied to a radiator circulation path until the coolant temperature becomes a second temperature threshold value that is lower than a first temperature threshold value.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: October 10, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Koichiro Furusawa, Nobutaka Nakajima, Kaoru Yamazaki, Kenichiro Ueda, Nobuki Koiwa, Kenji Taruya, Masakazu Hamachi
  • Patent number: 9768457
    Abstract: A driving control method and system of a fuel cell system are provided. The method includes determining, by a controller, a dry state of a fuel cell stack and stopping an air blower, which supplies air to the fuel cell stack, using different processes based on whether the fuel cell stack is in the dry state. Accordingly, the time for which an open circuit voltage (OCV) is maintained is reduced and durability of the fuel cell is improved by preventing dry-out of the fuel cell stack.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: September 19, 2017
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Sang Uk Kwon
  • Patent number: 9755254
    Abstract: An automated method or procedure for detecting a permeability state of a membrane of a fuel cell stack is provided. The procedure is sensitive enough to detect a defective membrane, and is accurate enough to enable correct maintenance of the fuel cell stack. The fuel cell stack is formed of a stack of electrochemical cells each having an anode and a cathode sandwiching a polymeric ion-exchange membrane therebetween. The fuel cell stack includes a fuel gas supply system on the anode side of the electrochemical cells, and includes an oxidant gas supply system on the cathode side of the electrochemical cells.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: September 5, 2017
    Assignee: CAMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: Gino Paganelli, Lionel Fragniere
  • Patent number: 9711813
    Abstract: A scavenging process is performed on the anode side by opening an air supply valve to remove liquid droplets in a fuel gas flow field using the compressed air from an air compressor. During the scavenging process, when a start up signal from an ignition switch is received, the start up of a fuel cell is prohibited until the gas in the fuel gas flow field is replaced completely by air.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: July 18, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Chihiro Wake, Koichiro Miyata
  • Patent number: 9680171
    Abstract: Purge valves that are manually turned ON but are automatically or electrically turned OFF as the fuel cell production of electricity reaches a predetermined level, e.g., steady state or thereabout are disclosed. The purge valve may be opened at system start-up, or may be opened at system shut-down so that the purge valve is armed and the fuel cell system is purged at the next start-up. Also disclosed is an integrated fluidic interface module that contains various fluidic components including one of these purge valves. The integrated fluidic interface module can operate passively or without being actively controlled by a processor. Methods of operating a fuel cell system, wherein the fuel cell system is purged at system start-up, are also disclosed. The purging automatically stops when the anode plenum is fully purged and replaced with fuel.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: June 13, 2017
    Assignee: Intelligent Energy Limited
    Inventor: Jean-Louis Iaconis
  • Patent number: 9666888
    Abstract: The system includes an exhaust fuel gas line, an exhaust-fuel-gas supplying line, a recirculating line that circulates the exhaust fuel gas to the SOFC, a shut-off valve in a vent line that splits off on the upstream side of the branching point, an orifice on the downstream side of the shut-off valve, a water supplying portion that supplies water to the recirculating line, and a DPX that measures the system pressure difference of the SOFC, and, when stopping power generation by the SOFC or when power generation by the SOFC comes to an abnormal stop, the shut-off valve is opened, while causing a predetermined amount of pressure loss in the vent line by using the orifice, and thus, the water flow volume of the water supplying portion is controlled so that the pressure difference measured by the DPX reaches a predetermined value.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 30, 2017
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Takuma Nagai, Hiroyuki Ozawa
  • Patent number: 9666887
    Abstract: A method for diagnosing a current sensor of a fuel cell system includes calculating an estimated duty value of a hydrogen pressure control valve, corresponding to a sensing value of the current sensor, while operating the fuel cell system. The estimated duty value is compared with an actual duty value where the hydrogen pressure control valve is controlled during the operation of the fuel cell system, thereby calculating an error value between the estimated duty value and the actual duty value. The error value is compared with a critical value in a normal range, thereby determining whether a failure occurs in the current sensor. The hydrogen pressure control valve controls a pressure of hydrogen supplied to a fuel cell stack of the fuel cell system.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: May 30, 2017
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Sung Gone Yoon, Kyung Won Suh
  • Patent number: 9666886
    Abstract: Disclosed are a method and an apparatus for removing condensed water in a gas diffusion layer and a catalyst layer of a fuel cell. The method comprises steps of: a step of determining whether the condensed water is generated in the gas diffusion layer and the catalyst layer of the fuel cell; a step of reducing and supplying an amount of air supplied to a cathode of the fuel cell at a predetermined level, when it is determined that the condensed water is generated in the gas diffusion layer and the catalyst layer in the step of determining; a step of measuring a temperature of a stack of the fuel cell; and a step of increasing the amount of air supplied to the cathode of the fuel cell to an amount of air prior to being reduced at the predetermined operation level, when the measured temperature of the stack of the fuel cell is elevated to a predetermined temperature.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: May 30, 2017
    Assignee: Hyundai Motor Company
    Inventors: Nam Woo Lee, Sang Uk Kwon
  • Patent number: 9656572
    Abstract: A method for starting a motor vehicle with a fuel cell system for providing electrical drive power in the vehicle is disclosed. A starting procedure can be started by a remote control unit independently of the presence of the user in the immediate vicinity of the vehicle. The starting procedure only takes place by the remote control unit if a start signal from the remote control unit exists, and if simultaneously a sensed temperature in the vehicle, the fuel cell system and/or the surroundings of the vehicle is below a predetermined temperature threshold value.
    Type: Grant
    Filed: November 9, 2013
    Date of Patent: May 23, 2017
    Assignee: Daimler AG
    Inventor: Hans-Joerg Heidrich