Abstract: There are disclosed a fuel cell manufacturing device in which a time of an assembling operation of a fuel cell can be reduced, and the fuel cell. A fuel cell manufacturing device is for use in manufacturing a fuel cell having a cell component including a plurality of stacked cells, and a pressurizing component which pressurizes the cell component in a stacking direction, and the device includes a first displacement measurement section which measures a displacement in a case where a defined load is applied to the cell component, and a second displacement measurement section which measures a displacement in a case where a defined load is applied to the pressurizing component. During the assembling operation, a shim for length adjustment having a thickness corresponding to the displacements is selected, and this shim is arranged between the cell component and the pressurizing component.
Abstract: A nitrogen concentration of fuel gas is estimated, and an amount of discharged fuel off-gas that is discharged from a fuel off-gas passage to outside by a discharging mechanism is controlled depending on the estimated nitrogen concentration. The nitrogen concentration, for example, can be estimated from a rate of pressure drop in the fuel off-gas passage during the discharge of fuel off-gas.
Abstract: The present invention is directed to a high voltage, highly conductive electrolyte for use in electrolytic capacitors and to an electrolytic capacitor impregnated with the electrolyte of the present invention for use in an implantable cardioverter defibrillator (ICD). The electrolyte according to the present invention is composed of a two solvent mixture of ethylene glycol and N-methylformamide; a combination of hypophosphorous acid, boric acid and an aliphatic dicarboxylic acid of carbon chain length from eight to twelve, such as azelaic, sebacic, or brassylic acid; an amine including ammonia, ammonium hydroxide, diethylamine, dimethylamine, triethylamine, or triethanolamine; and a nitro-substituted aromatic compound as a degassing agent, such as 3′-nitroacetophenone. Anhydrous ammonia may also be added to neutralize the solution.
Abstract: A method of evaluating an electrochemical cell for a metallic contaminant-caused defect. The electrochemical cell is configured for use with an implantable medical device and includes an anode, a solid cathode and a liquid electrolyte. The method includes storing the cell at an elevated temperature following assembly for accelerating corrosion of possible metallic contaminants. A parameter of the cell related to cell voltage is then measured. An evaluation is made as to whether the cell is defective based upon this measured parameter.
Type:
Grant
Filed:
July 21, 1999
Date of Patent:
August 14, 2001
Assignee:
Medtronic, Inc.
Inventors:
Robert E. Kraska, Donald R. Merritt, Craig L. Schmidt, Paul M. Skarstad