Including Heat Exchange Means Patents (Class 429/434)
  • Patent number: 8445146
    Abstract: A fuel purification system includes a fuel cell stack and a fuel purification unit, such as a distillation unit. The fuel cell stack is adapted to provide heat to the fuel purification unit, and the fuel purification unit is adapted to provide a purified fuel to the fuel cell stack.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: May 21, 2013
    Assignee: Bloom Energy Corporation
    Inventor: Matthias Gottmann
  • Publication number: 20130115539
    Abstract: Fuel cells and related assemblies involving directionally independent channels are provided. In this regard, a representative fuel cell stack (100) includes: a first fuel cell (102) having channels (116, 216, 316; 156, 256, 356) associated with an anode; and a second fuel cell (101), located adjacent the first fuel cell, having channels (128, 228, 328; 158, 258, 358) associated with a cathode, the channels associated with the cathode exhibiting directional independence (344) with respect to the channels associated with the anode. A ribbed, three plate (111, 211, 311; 121, 221, 321; 150, 250, 350), assembly (152, 252) may provide fuel reactant and anode coolant flow channels having a first parallel orientation (342) and oxidant reactant and cathode coolant flow channels having a second parallel orientation independent of and different (344) than the first orientation.
    Type: Application
    Filed: January 5, 2009
    Publication date: May 9, 2013
    Inventor: Eric J. O'Brien
  • Patent number: 8435690
    Abstract: A fuel cell stack that includes: stacked cells that generate electricity; an exchange plate disposed at a first side of the stacked cells, having a channel in fluid communication with an injection flow path and a discharge flow path, which extend between the cells; and a pump that is disposed at an opposing second surface of the stacked cells, to force coolant (air) through the injection flow path, the exchange plate, and the discharge flow path.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Won Suh, Seong-Jin An, Chi-Seung Lee, Jun-Young Park, Jin-Hwa Lee
  • Patent number: 8435689
    Abstract: A fuel cell system includes a fuel cell stack and a heat exchanger. The heat exchanger vaporizes water which is provided to the fuel cell stack during start-up of the fuel cell system and heats a heat transfer medium which is provided to a facility associated with the fuel cell system during steady-state operation of the fuel cell system.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: May 7, 2013
    Assignee: Bloom Energy Corporation
    Inventor: Swaminathan Venkataraman
  • Patent number: 8435688
    Abstract: A fuel cell two-wheel vehicle is provided with: a fuel cell, fuel tanks, a supercharger, a pipe line, an in-wheel motor, and a motor driver. The fuel cell generates electric power using hydrogen and air as reaction sources. The fuel tanks supply hydrogen to the fuel cell through a hydrogen supply path. The supercharger supplies air from the outside air to the fuel cell. Through the pipe line, an exhaust from the fuel cell is discharged to the outside. The in-wheel motor serves as a driving source of the fuel cell two-wheel vehicle, and the motor driver drives the in-wheel motor. In an air system, a route and an outlet of the pipe line are arranged to be directed toward the motor driver. Thus, a heat sink is exposed to the discharged air having passed through the fuel cell, and thereby the motor driver is cooled.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: May 7, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masahiro Shimizu, Hiroyuki Kikuchi, Junya Watanabe, Tomoyuki Sahata, Jun Morimoto
  • Publication number: 20130108938
    Abstract: A power converter of the present invention is configured to convert DC power generated by a power generator (1) into AC power. The power converter includes: a boost converter circuit (3) configured to boost an output voltage of the power generator (1); an inverter circuit (5) configured to convert an output voltage of the boost converter circuit (3) into AC power and to interconnect the AC power with a power system (2); a buck converter circuit (8) configured to perform power conversion of output power of the boost converter circuit (3) and to supply resultant power to an internal load (60); and a controller (9). The controller (9) is configured to control the output voltage of the boost converter circuit (3) to be lower than or equal to a second voltage value which is less than the maximum value of AC voltage of the power system (2), in a case of supplying output power of the power generator (1) to the internal load (60) via the boost converter circuit (3) and the buck converter circuit (8).
    Type: Application
    Filed: February 9, 2011
    Publication date: May 2, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Nin Kake, Keiichi Sato, Hiroaki Kaku, Hiroshi Nagasato, Akihito Ootani, Toru Kushisaka
  • Patent number: 8431282
    Abstract: A fuel cell system that employs a closed coolant loop. The system includes an expansion device having a flexible membrane, where a cooling fluid side of the membrane is in fluid communication with the cooling fluid in the coolant loop and an air side of the membrane is in communication with an air pocket. The air side of the expansion device is in air communication with an air compressor so that the pressure of the cooling fluid within the coolant loop changes as the stack pressure changes. The fuel cell system also includes a coolant reservoir that is in fluid communication with the cooling fluid in the coolant loop. Air and hydrogen bubbles within the cooling fluid are vented to the coolant reservoir where they accumulate. The coolant reservoir includes a level sensor indicating the level of the cooling fluid therein.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: April 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Manfred Herrmann
  • Publication number: 20130095406
    Abstract: The disclosure is directed at a method and system for improving the efficiency of fuel cells by removing impediments within the fuel cell channel. The system includes at least one sensor and a processor for determining when a gas, such as carbon dioxide, concentration level has surpassed a maximum threshold. The processor then activates an impediment removing element to remove or release gas bubbles within the fuel cell channel which are blocking reaction sites or fuel flow.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Taha Shabbir Husain SUTARWALA, David Gerard RICH
  • Publication number: 20130089798
    Abstract: A fuel cell system 10 removes water retaining in a cathode catalyst layer 217 in a fuel cell 20, after a start-up of the fuel cell 20 and before feed of coolant to the fuel cell 20.
    Type: Application
    Filed: June 17, 2010
    Publication date: April 11, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Sho Usami, Yasushi Araki, Kazunori Shibata, Shuya Kawahara, Tomohiro Ogawa
  • Patent number: 8409758
    Abstract: A fuel cell system includes a plurality of solid oxide fuel cells arranged in a fuel cell stack, an integrated heat exchanger/reformer operable to partially reform an anode feed prior to entry into the fuel cell stack, an anode tailgas oxidizer, and an offgas flow path extending away from an anode side of the fuel cell stack and having a first branch to selectively combine offgas from the anode side of the fuel cell stack with fuel from a fuel source to comprise the anode feed to the fuel cell stack and a second branch to supply offgas from the anode side of the fuel cell stack to the anode tailgas oxidizer. The integrated heat exchanger/reformer transfers heat from the oxidized offgas from the anode tailgas oxidizer to the anode feed before the anode feed enters the anode side of the fuel cell stack. The offgas from the anode tailgas oxidizer provides the sole heat source for the anode feed traveling through the integrated heat exchanger/reformer.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 2, 2013
    Assignee: Modine Manufacturing Company
    Inventor: Jeroen Valensa
  • Patent number: 8404394
    Abstract: A fuel cell system includes a first heating mechanism and a second heating mechanism. The first heating mechanism supplies a reformer with some of an exhaust gas discharged from a fuel cell stack as a heat source for directly heating the reformer. The second heating mechanism supplies the remaining exhaust gas to the heat exchanger and utilizes the heat generated in the heat exchanger as a heat source for indirectly heating the reformer. Temperature sensors are attached to the reformer. An open/close valve is adjusted based on the temperatures detected by the temperature sensors to control the ratio between the amount of heat supplied from the first heating mechanism to the reformer and the amount of heat supplied from the second heating mechanism to the reformer.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: March 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yukihisa Kanao, Tomio Miyazaki
  • Patent number: 8389172
    Abstract: A fuel cell system includes a fuel cell stack, a heat exchanger, a reformer, and a combustor. A combustion gas path for supplying the combustion gas produced in the combustor to the heat exchanger as the heat medium is provided. The combustion gas path is provided between a space of dual walls comprising a first inner plate and a second inner plate and a first case unit and a second case unit accommodating a load applying mechanism and the fuel cell stack.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: March 5, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hiroki Homma
  • Publication number: 20130052548
    Abstract: Process for operating a high temperature fuel cell stack, the process comprising the following steps: b) connecting the fuel cell stack in parallel to a power supply unit at a predefined temperature and/or voltage of the fuel cell stack, h) applying a voltage from the power supply unit of between 700 to 1500 mV per fuel cell across the fuel cell stack irrespective of the electro-motive force of the fuel cell stack, i) heating up the fuel cell stack from the predefined temperature to operation temperature while maintaining the voltage per fuel cell the power supply unit, j) maintaining the fuel cell stack at or above a predetermined operation temperature and/or above a predetermined voltage until the fuel cell stack is to be put into operation, k) supplying fuel to the fuel cell stack, l) disconnecting the power supply unit followed by m) connecting a power-requiring load to the fuel cell stack.
    Type: Application
    Filed: May 5, 2010
    Publication date: February 28, 2013
    Applicants: TECHNICAL UNIVERSITY OF DENMARK, TOPSOE FUEL CELL A/S
    Inventors: Thomas Nedergaard Clausen, Thomas Rostrup-Nielsen, Rasmus Gottrup Barfod, Peter Vang Hendriksen, Johan Hjelm, Joachim Jacobsen, John Bøgild Hansen
  • Publication number: 20130052555
    Abstract: Provided is an alkaline fuel cell, including: a membrane electrode assembly including an anion conductive electrolyte membrane, an anode electrode stacked on a first surface of the anion conductive electrolyte membrane, and a cathode electrode stacked on a second surface opposite to the first surface of the anion conductive electrolyte membrane; a first separator stacked on the anode electrode, at least including a fuel receiving portion for receiving a fuel; a second separator stacked on the cathode electrode, at least including an oxidant receiving portion for receiving an oxidant; and an alkaline aqueous solution supply portion for bringing an alkaline aqueous solution into contact with only the anion conductive electrolyte membrane of the membrane electrode assembly.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Inventors: Hirotaka MIZUHATA, Akihito Yoshida, Shinobu Takenaka, Shunsuke Sata
  • Patent number: 8383280
    Abstract: A fuel cell separator plate having a planar substrate having a main body with first and second opposed major surfaces, a first open channel reactant flow field recessed in the first major surface, and a first segment extending from the main body, and a thermally and electrically conductive first current collector layer having a flow field portion on the first major surface of the main body and a heat exchange portion extending from the flow field portion onto the first segment such that heat in the flow field portion conducts to the heat exchange portion during fuel cell use.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: February 26, 2013
    Inventor: Amir Niroumand
  • Publication number: 20130045398
    Abstract: A fuel cell vehicle includes under a floor of the vehicle: a fuel cell generating electric power through an electrochemical reaction between reaction gases; a fluid supply/discharge unit for the fuel cell; and a converter converting electric power from the fuel cell, the converter being contained in a center tunnel provided, at a center in a vehicle width direction, so as to be curved toward a cabin along a vehicle axis in a front-back direction, the fuel cell and the unit being arranged on a rear side of the vehicle relative to the converter and arranged in the vehicle width direction, wherein the converter is provided to be offset toward the fuel cell with respect to a centerline of the center tunnel along the vehicle axis and to be offset toward the unit with respect to a centerline of the fuel cell along the vehicle axis.
    Type: Application
    Filed: September 14, 2012
    Publication date: February 21, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji KATANO, Hiroshi ARISAWA, Hiroyuki SEKINE, Ikuhiro NAKAMURA
  • Patent number: 8377603
    Abstract: An attachment for a fuel tank of a fuel cell powered system is described. The attachment thermally conducts heat generated from an electronic component to the fuel tank. The attachment further affixes to the electronic component by a securing portion. In one aspect, the attachment is comprised in a fuel cell powered electronic device. In another aspect, the attachment is integral to the fuel tank.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 19, 2013
    Assignee: Research In Motion Limited
    Inventors: Dave Rich, Chee-Ming Jimmy Wu
  • Patent number: 8377609
    Abstract: The present invention provides a fuel cell bipolar plate and a method for manufacturing the same, in which a carbon or metal fuel cell bipolar plate is surface-treated with a complex transition metal oxide, which is a main component of a variable resistance heating element having a negative temperature characteristic, so that the bipolar plate can ensure a sufficient amount of heat, required to prevent product water from freezing, by itself in a short time without any external energy, thus improving cold start performance of a fuel cell vehicle at a temperature below zero.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: February 19, 2013
    Assignees: Hyundai Motor Company, Industry-University Cooperation Foundation Hanyang University
    Inventors: Jong Hyun Lee, Yoo Chang Yang, Seung Chan Oh, Jae Jun Ko, Sang Mun Chin, Suk Kee Um, Hye Mi Jung, Won Gyu Choi
  • Patent number: 8377600
    Abstract: A temperature adjustment member is arranged to control temperature of a reformer independently of temperature of a fuel cell module. The reformer is structured as a three-fluid heat exchanger into which a fluid is introducible whose temperature is higher or lower than exhaust-gas temperature of the fuel cell module. Then, the temperature of the reformer is controlled independently of operation temperature of the fuel cell by introducing the higher-temperature or lower-temperature fluid into the reformer. Also, a high-temperature or low-temperature gas is mixed with the module's exhaust gas, thereby adjusting temperature of the exhaust gas itself. This also controls the temperature of the reformer independently of the operation temperature of the fuel cell.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: February 19, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Shin Takahashi, Hiromi Tokoi, Akira Gunji, Toshiya Abe, Takeshi Saito
  • Patent number: 8377602
    Abstract: The invention relates to a system for regulating the temperature of a fuel cell that is cooled by a cooling fluid traveling through the cell, the system including both first control means for measuring the temperature of the cooling fluid and for controlling the flow rate of the controlling fluid as a function of said measured temperature of said cooling fluid, comprising second control means for measuring the flow rate of the cooling fluid and for controlling the temperature of the cooling fluid as a function of a flow rate difference between the command flow rate specified by said first control means and said corresponding measured flow rate of the cooling fluid such that said command temperature specified by the second control means compensates for said flow rate difference.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: February 19, 2013
    Assignee: SNECMA
    Inventor: Serge Le Gonidec
  • Patent number: 8373099
    Abstract: A fuel cell is provided to furnish electrical power to an HVAC&R system, and the waste heat from the fuel cell is transferred to a secondary fluid directed to flow to the climate-controlled space of a building during periods of time in which heating is required. The heat rejected by the fuel cell may be a supplemental or primary source of heat as well used for precise temperature control within the climate-controlled space of the building. A channeling assembly is used to selectively direct the fuel cell heat either to and/or away from the climate-controlled space served by the HVAC&R system. Higher energy efficiencies of the HVAC&R equipment are achieved, and the “cold blow” phenomenon is reduced or eliminated.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: February 12, 2013
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 8372555
    Abstract: A fuel cell system that employs end cell heaters in the end cells of a fuel cell stack in the fuel cell system that consistently maintain the temperature of the end cells above the operating temperature of the stack so as to reduce water in the end cells. In one embodiment, the temperature of the end cells is maintained within the range of 80° C.-85° C. across the entire output power range of the fuel cell stack. In accordance with another embodiment of the invention, the end cells are electrically coupled in series, and the control signal for controlling the end cells heaters is selected to heat the warmest end cell to the desired temperature.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: David A. Arthur, Abdullah B. Alp, Joseph Mussro
  • Publication number: 20130034789
    Abstract: A bipolar plate assembly includes a first material and a second material. The second material has an in-plane thermal conductivity greater than the first material. The second material has a width and a thickness. A ratio of the width to the thickness of the second material is between 50 and 400.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 7, 2013
    Applicant: ENERFUEL, INC.
    Inventors: Thomas Pavlik, James Braun, Matthew Graham
  • Publication number: 20130034790
    Abstract: Disclosed are fuel cell stacks incorporating heat exchangers capable of also acting as members to compress the fuel cell stack. Heat exchange through conduction is enabled by placing the heat exchanger into contact with the edges of the bipolar plates. A compressive force within the fuel cell stack is achieved by placing the heat exchanger in tension between the endplates at the opposite ends of the fuel cell stack.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 7, 2013
    Applicant: ENERFUEL, INC.
    Inventors: Matthew Graham, James Braun, Thomas Pavlik
  • Patent number: 8367262
    Abstract: Provided is a visualization apparatus for a transparent PEMFC using a transparent window having conditions approximating a real PEMFC. More specifically, the present invention includes a heat-exchange passage heat exchanging a transparent plate of a visualization apparatus with a current collector plate in order to control heat. In order to achieve the above object, the present invention includes: current collector plates each provided at both surfaces of a membrane electrode assembly of a fuel cell and formed with a channel in which reaction gas and products flow; transparent plates provided at an outer surface of the current collector plates and provided with a heat-exchange passage having a fluid flowing therein to be heat-exchanged with the current collector plates; and fixing frames having a visualization window for observing the current collector plates and provided at the outer side of the transparent plates.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: February 5, 2013
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Joongmyeon Bae, Dong-ryul Lee, Kwang-Jin Park
  • Patent number: 8361668
    Abstract: Embodiments of the invention relate to a heat management system for a portable electronic device. The system includes at least one fuel cell, at least one electrical power consumer electrically connected to the at least one fuel cell, an endothermic fuel system configured to provide fuel to the at least one fuel cell and at least one thermal transmission path thermally coupling the at least one electrical power consumer and the endothermic fuel system. At least a portion of heat produced by the electrical power consumer is transferred to the endothermic fuel system.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 29, 2013
    Assignee: Societe BIC
    Inventors: Gerard F McLean, Joerg Zimmermann
  • Publication number: 20130022884
    Abstract: A three-way diverter assembly with a movable member is provided. The three-way diverter assembly includes a housing having a first inlet, a second inlet, a first outlet, and a second outlet. The first inlet and the second inlet are adapted to receive a fluid. The movable member, disposed in the housing adjacent the first inlet, is rotatable about an axis from a first positional limit to a second positional limit, and selectively positional therebetween. Fuel cell systems having the three-way diverter assembly for regulating temperature and humidity of a fuel cell stack are also provided.
    Type: Application
    Filed: October 2, 2012
    Publication date: January 24, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: GM Global Technology Operations LLC
  • Publication number: 20130022888
    Abstract: A cooling system (1) for a fuel cell system (11), in particular for a vehicle, which comprises a fuel cell cooling circuit (10) for cooling the fuel cell system (11), and a battery cooling circuit (20) for cooling a battery (21), with an exchange of thermal energy between the fuel cell cooling circuit (10) and the battery cooling circuit (20).
    Type: Application
    Filed: July 23, 2012
    Publication date: January 24, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Dirk Vollmer, Oliver Pfeil
  • Publication number: 20130017466
    Abstract: The invention provides tubular solid oxide fuel cell devices and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate tube having a reaction zone for heating to an operating reaction temperature, and at least one cold zone that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between anodes and cathodes in the reaction zone, and the anode and cathode each have an electrical pathway extending to an exterior surface in a cold zone for electrical connection at low temperature. In one embodiment, the tubular device is a spiral rolled structure, and in another embodiment, the tubular device is a concentrically arranged device. The system further includes the devices positioned with their reaction zones in a hot zone chamber and their cold zones extending outside the hot zone chamber.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 8354196
    Abstract: A fuel cell unit is provided having at least one fuel cell to which is connected a coolant circuit associated with a storage unit for storing and providing liquid water coolant at the fuel cell both under normal operating conditions and under frost conditions. The storage unit is set to provide a smaller amount of liquid water coolant under frost conditions than under normal operating conditions.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 15, 2013
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Reinhard Artmann
  • Patent number: 8349509
    Abstract: A fuel cell system is provided with a judgment unit which makes a gas leak judgment based on a pressure drop of fuel gas in a gas leak detection portion by consuming the fuel gas in the gas leak detection portion of the fuel gas supply system by electric power generation of a fuel cell and causing auxiliary devices to consume the electric power generated by the fuel cell, and comprises a control unit which increases consumption of the fuel gas in the gas leak detection portion by increasing the electric power consumption of the auxiliary devices. With this arrangement, where the electric power generation of the fuel cell and the electric power consumption of the auxiliary devices result in an insufficient consumption of the fuel gas, the consumption of the fuel gas can be accelerated by increasing the electric power consumption of the auxiliary devices. Thereby, a rapid gas leak judgment can be achieved.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: January 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Naohiro Yoshida
  • Publication number: 20130004875
    Abstract: A gas-liquid separator including a housing, a first absorbing member, a second absorbing member, and a liquid pump is disclosed. The housing may include an inflow port, a gas outlet port, and a liquid outlet port. The first absorbing member may be disposed contacting the liquid outlet port in an inner space of the housing. The first absorbing member may be configured to absorb liquid in a gas-liquid mixture received from the inlet port. The second absorbing member may be disposed apart from the first absorbing member in the inner space of the housing. The second absorbing member may have a smaller volume than the absorbing member.
    Type: Application
    Filed: October 12, 2011
    Publication date: January 3, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jung-Kurn PARK, Dong-Hyun KIM, Young-Seung NA
  • Publication number: 20130004876
    Abstract: A first end plate of a fuel cell stack has a coolant supply manifold and a coolant discharge manifold. The coolant supply manifold includes a pair of manifold sections and a supply coupling section coupling upper portions of the pair of supply manifold sections. The pair of supply manifold sections communicate with a pair of coolant supply passages of the first end plate. A coolant supply pipe is coupled to a lower end of one of the supply manifold sections with an inclination of a predetermined angle from a vertical direction toward a horizontal direction.
    Type: Application
    Filed: June 20, 2012
    Publication date: January 3, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Masaharu SUZUKI
  • Patent number: 8343677
    Abstract: A method of starting a polymer electrolyte membrane fuel cell (PEMFC) stack by rapidly increasing its temperature. The PEMFC stack includes: a first flow line connected to cooling plates; a second flow line connected to the cooling plates; a coolant reservoir; a heat exchanger; a by-pass line; a heating element; a first valve installed between the first flow line and the heat exchanger; and a second valve that selectively connects the coolant reservoir, the second flow line, and the by-pass line. The method of starting a PEMFC stack includes: closing the first valve and controlling the second valve so that the second flow line and the by-pass line are connected to each other, and the coolant in the coolant reservoir is not connected to the second flow line and the by-pass line; and heating the coolant in the by-pass line.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-won Song, Duk-jin Oh, Hyun-chul Lee, Dong-kwan Kim, Yong Wang
  • Patent number: 8343671
    Abstract: A fuel cell system comprises a fuel cell assembly, a carbon-dioxide-removal unit, an anode exhaust conduit connecting the fuel cell assembly and the carbon-dioxide-removal unit, a fuel source, an oxygen source, a fuel conduit connecting, at least in part, the fuel source with the fuel cell assembly, and a recycle conduit connecting the carbon-dioxide-removal unit with at least one of the fuel cell assembly, the fuel conduit and the fuel source. The fuel cell assembly includes at least one fuel cell, each fuel cell including an anode and a cathode. The carbon-dioxide-removal unit removes carbon dioxide that is in a gas phase. The carbon-dioxide-removal unit includes a carbon-dioxide-removing material. The fuel source and the oxygen source are each independently in fluid communication with the fuel cell assembly. The fuel conduit and the recycle conduit are optionally merged into a single recycle-fuel conduit that extends to the fuel cell assembly.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: January 1, 2013
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: Chunming Qi
  • Patent number: 8329353
    Abstract: A fuel cell system of the present invention includes a fuel cell (3); a water passage (8, 10, 12, 15, 17, 18); an electric heater (19) configured to heat the water passage; a water-related temperature detector (20); a first abnormality detector (22, etc.) configured to detect first abnormalities; a second abnormality detector (28, etc.) configured to detect second abnormalities; and a controller (21), and the controller is configured to stop an operation of the fuel cell system when the first abnormality is detected by the first abnormality detector or when the second abnormality is detected by the second abnormality detector. In a case where the fuel cell system stops since the second abnormality is detected by the second abnormality detector, the controller causes the electric heater (19) to carry out an operation as an antifreezing operation when the water-related temperature detector detects a temperature that is not more than a predetermined threshold.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Shigeki Yasuda, Takashi Nishikawa, Hideo Ohara, Masataka Ozeki
  • Patent number: 8329345
    Abstract: Combined power generation equipment combining a molten carbonate fuel cell (MCFC) and a gas turbine so as to construct a closed cycle system adapted to recover the total amount of carbon dioxide produced during power generation by feeding fuel and only O2 at an equivalent ratio, thereby obtaining CO2 as an oxidizing agent of a cathode gas, thus achieving high efficiency of a high order, the combined power generation equipment comprising a molten carbonate fuel cell (MCFC) 2 for performing power generation by the electrochemical reaction of an anode gas containing H2 and a cathode gas containing O2, a combustor 3 in which exhaust gas of the MCFC 2 is introduced and combusted, a gas turbine 4 for expanding a combustion gas from the combustor 3, and a circulatory line 15 for mixing CO2 of the exhaust of the gas turbine 4 into the cathode gas.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: December 11, 2012
    Assignee: Central Research Institute Of Electric Power Industry
    Inventors: Eiichi Koda, Fumihiko Yoshiba
  • Publication number: 20120301805
    Abstract: A fuel cell component is provided, including a substrate disposed adjacent at least one radiation-cured flow field layer. The flow field layer is one of disposed between the substrate and a diffusion medium layer, and disposed on the diffusion medium layer opposite the substrate. The flow field layer has at least one of a plurality of reactant flow channels and a plurality of coolant channels for the fuel cell. The fuel cell component may be assembled as part of a repeating unit for a fuel cell stack. A method for fabricating the fuel cell component and the associated repeating unit for the fuel cell is also provided.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jeffrey A. Rock, Yeh-Hung Lai, Keith E. Newman, Gerald W. Fly, Ping Liu, Alan J. Jacobsen, William B. Carter, Peter D. Brewer
  • Patent number: 8318368
    Abstract: Described herein are portable fuel cell systems for producing electrical energy. The portable fuel cell systems include a fuel processor including a reformer and a burner. The reformer receives fuel and outputs hydrogen using the fuel. The burner processes fuel to generate heat. The system also includes a fuel cell configured to produce electrical energy using hydrogen output by the reformer. The system also includes a heat exchanger configured to transfer heat generated in the fuel cell or generated in the fuel processor to a reactant fluid.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: November 27, 2012
    Assignee: UltraCell, L.L.C.
    Inventors: Ian W. Kaye, Kenneth J. Newell
  • Patent number: 8318369
    Abstract: A fuel cell cooling system includes a fuel cell having a liquid loop that produces water vapor. An antifreeze cooling loop includes an inductor that receives the water vapor and introduces the water vapor to an antifreeze. The water is separated from the antifreeze and returned to the liquid cooling loop as liquid water after the mixture of condensed water vapor and antifreeze has passed through a radiator. Water in the liquid cooling loop exits the fuel cell and passes through a restricting valve thereby lowering the pressure of the water. A flash cooler downstream from the restricting valve collects the water vapor and provides it to the inductor in the antifreeze cooling loop. The flash cooling in the first cooling loop provides a first cooling capacity that is low temperature and pressure compatible with fuel cell operation.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: November 27, 2012
    Assignee: UTC Power Corporation
    Inventor: Leslie L. VanDine
  • Publication number: 20120295177
    Abstract: A cell unit of a fuel cell includes a first membrane electrode assembly, a first metal separator, a second membrane electrode assembly, and a second metal separator. Resin frame members are provided at the outer ends of the first and second membrane electrode assemblies. Coolant connection channels including a plurality of grooves is formed in each of the resin frame members. The grooves of the coolant connection channels of the cell unit and grooves of coolant connection channels of a cell unit that is adjacent to the cell unit in the stacking direction are offset from each other, and are not overlapped with each other in the stacking direction.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kentaro ISHIDA, Shuhei GOTO, Narutoshi SUGITA, Tetsuya NAKAMURA
  • Publication number: 20120295176
    Abstract: A cell unit of a fuel cell includes a first membrane electrode assembly, a first metal separator, a second membrane electrode assembly, and a second metal separator. Resin frame members are provided at outer ends the first and second membrane electrode assemblies. A dual seal provided on the resin frame member includes an outer seal member and an inner seal member. A front end of the outer seal member contacts the resin frame member, and a front end of the inner seal member contacts the outer end of the first metal separator. The outer seal member and the outer seal member have the same height.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Narutoshi SUGITA, Tetsuya NAKAMURA, Daisuke OKONOGI, Keisuke ANDO, Yoshiro ICHIKAWA, Kentaro ISHIDA
  • Publication number: 20120288779
    Abstract: Fuel cell devices and fuel cell systems are provided. In certain embodiments, the fuel cell devices may include one or more active layers containing active cells that are connected electrically in series. In certain embodiments, the fuel cell devices include an elongate ceramic support structure the length of which is the greatest dimension such that the coefficient of thermal expansion has only one dominant axis coextensive with the length. In certain embodiments, a reaction zone is positioned along a first portion of the length for heating to a reaction temperature, and at least one cold zone is positioned along a second portion of the length for operating below the reaction temperature. There are one or more gas passages, each having an associated anode or cathode.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20120282534
    Abstract: The present invention relates to a reversible solid oxide electrochemical cell that may operate in two modes: a discharge mode (power generation) and a charge mode (electrolytic fuel production). A thermal system that utilizes a SOFB and is inclusive of selection of operating conditions that may enable roundtrip efficiencies exceeding about 80% to be realized is disclosed. Based on leverage of existing solid oxide fuel cell technology, the system concept is applicable to energy storage applications on the kW to MW scale.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 8, 2012
    Inventors: Robert J. Braun, Robert J. Kee, Scott Barnett
  • Patent number: 8298713
    Abstract: A fuel cell stack module that includes a fuel cell stack and an end unit that are part of a thermally integrated assembly. The module also includes a charge air cooler and a WVT unit integrated within the end unit. A cooling fluid is pumped through a line in the end unit and the fuel cell stack by a pump. The cooling fluid is pumped through the charge air cooler to reduce the temperature of the cathode inlet airflow sent to the fuel cell stack. The reduced temperature cathode inlet air from the charge air cooler is sent to the WVT unit where it is humidified. Cathode exhaust gas from the fuel cell stack can be sent to the WVT unit to provide the humidification to humidify the cathode inlet air. A by-pass valve provided within the end unit can be employed to by-pass the WVT unit during cold-starts.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 30, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Glenn W. Skala
  • Publication number: 20120270129
    Abstract: Disclosed herein is a heat transfer system comprising a circulation loop defining a flow path for a heat transfer fluid, and a heat transfer fluid comprising a liquid coolant, a siloxane corrosion inhibitor of formula R3-Si—[O—Si(R)2]x-OSiR3, wherein R is independently an alkyl group or a polyalkylene oxide copolymer of 1 to 200 carbons, x is from 0 to 100, and further wherein at least one alkyl group and at least one polyalkylene oxide copolymer are present, and a non-conductive polydiorganosiloxane antifoam agent, wherein the conductivity of the heat transfer fluid is less than about 100 ?S/cm, and wherein the heat transfer system comprises aluminum, magnesium, or a combination thereof, in intimate contact with the heat transfer fluid.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 25, 2012
    Applicant: PRESTONE PRODUCTS CORPORATION
    Inventors: Filipe J. Marinho, Bo Yang
  • Patent number: 8293415
    Abstract: The invention provides tubular solid oxide fuel cell devices and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate tube having a reaction zone for heating to an operating reaction temperature, and at least one cold zone that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between anodes and cathodes in the reaction zone, and the anode and cathode each have an electrical pathway extending to an exterior surface in a cold zone for electrical connection at low temperature. In one embodiment, the tubular device is a spiral rolled structure, and in another embodiment, the tubular device is a concentrically arranged device. The system further includes the devices positioned with their reaction zones in a hot zone chamber and their cold zones extending outside the hot zone chamber.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: October 23, 2012
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 8293416
    Abstract: A fuel cell system includes at least: a hydrogen generator (4) which is supplied with a raw material to generate a fuel gas containing hydrogen; a humidifier (5) which is supplied with the fuel gas, generated in the hydrogen generator, to humidify the fuel gas by utilizing heat energy and an off gas supplied thereto; and a fuel cell (8) which is supplied with the fuel gas humidified in the humidifier and an oxidizing gas to generate electric power while discharging the heat energy and the off gas, and further includes a condenser (6) which cools down steam of the off gas, discharged from the fuel cell, by heat exchange with a cooling medium to convert the steam into condensed water, and supplies the condensed water to the humidifier to humidify the fuel cell.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: October 23, 2012
    Assignee: Panasonic Corporation
    Inventors: Susumu Kobayashi, Susumu Hatano
  • Patent number: 8293413
    Abstract: A fuel cell system is provided with an air compressor for supplying a fuel cell stack with air; a temperature sensor for detecting the temperature of air in the gas downstream from an intercooler, at the middle of an oxidation gas supplying channel; and a control section. The control section is provided with a cooling section abnormality determining unit for determining presence or absence of an abnormality of a first cooling water pump, and an air compressor operation controlling unit for controlling the rotational speed of the air compressor in accordance with the air temperature detected by the temperature sensor when it is determined that an abnormality has occurred.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tetsuya Bono
  • Patent number: 8293417
    Abstract: A fuel cell device including an elongate ceramic substrate having an exterior surface defining an interior ceramic support structure having non-active end regions and an active zone therebetween that includes electrodes in opposing relation with an electrolyte therebetween for undergoing a fuel cell reaction when supplied with heat, fuel and oxidizer. The electrolyte is a ceramic co-fired with the interior ceramic support structure. The end regions lack opposing electrodes and extend away from the active zone to dissipate heat. Gas inlets are positioned in the end regions with respective outlets in either the active zone or opposite end region, and elongate passages are coupled therebetween at least partially extending in opposing relation through the active zone. The electrodes are positioned adjacent the gas passages in the active zone and are electrically connected to exterior contact surfaces on the exterior surface of the end regions for external connection to voltage nodes.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 23, 2012
    Inventors: Alan Devoe, Lambert Devoe