Specified Supporting Layer Patents (Class 429/481)
  • Publication number: 20130302714
    Abstract: Provided is a porous electrode substrate having excellent thickness precision, gas permeability and conductivity, handling efficiency, low production costs and a high carbonization rate during carbonization. Also provided are a method for manufacturing such a substrate, a precursor sheet and fibrillar fiber used for forming such a substrate, along with a membrane electrode assembly and a polymer electrolyte fuel cell that contain such a substrate. The method for manufacturing a porous electrode substrate includes step (1) for manufacturing a precursor sheet in which short carbon fibers (A) and carbon fiber precursor (b) are dispersed, and step (2) for carbonizing the precursor sheet, and the volume contraction rate of carbon fiber precursor (b) in step (2) is 83% or lower.
    Type: Application
    Filed: January 16, 2012
    Publication date: November 14, 2013
    Applicant: MITSUBISHI RAYON CO., LTD
    Inventors: Kazuhiro Sumioka, Shigeru Tanoue, Yoshihiro Sako
  • Publication number: 20130295483
    Abstract: A method for producing a fuel cell electrode catalyst including a metal element selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium and having high catalytic activity through heat treatment at comparatively low temperature. The method including: a step (1) of mixing at least a certain metal compound (1), a nitrogen-containing organic compound (2), and a solvent to obtain a catalyst precursor solution, a step (2) of removing the solvent from the catalyst precursor solution, and a step (3) of heat-treating a solid residue, obtained in the step (2), at a temperature of 500 to 1100° C. to obtain an electrode catalyst; a portion or the entirety of the metal compound (1) being a compound containing, as the metal element, a metal element M1 selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium.
    Type: Application
    Filed: August 9, 2011
    Publication date: November 7, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Yasuaki Wakizaka, Kunchan Lee, Takashi Sato
  • Patent number: 8546041
    Abstract: There is provided a fuel cell element including a substrate and one or more fuel cells thereon, the one or more fuel cells not entirely covering the substrate. The one or more fuel cells each include a solid state, non-polymeric first electrode layer, a solid state, non-polymeric second electrode layer, and a solid state, non-polymeric electrolyte layer between the first and second electrode layers. The substrate includes one or more porous regions, or being entirely porous, the one or more fuel cells each being supported by one or more porous regions of the substrate. At least one, or part of one, of the porous regions of the substrate are not sealed by electrolyte. Arrays of fuel cell elements of the invention are also provided, as are stacks of fuel cell elements or arrays of the invention.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: October 1, 2013
    Assignee: Omnagen Limited
    Inventor: Kenneth Edward Anthony Omersa
  • Patent number: 8546040
    Abstract: In forming a fuel cell stack by stacking a plurality of fuel cell units, in order to provide a fuel cell in which the fuel cell stack can be stably bound, the supply of fuel and conduction of respective cells can be surely performed, and stable power generation is possible, the fuel cell includes a fuel cell stack 2 formed by stacking a plurality of fuel cell units 3 having a fuel electrode 33 and an oxidizer electrode 43. The oxidizer electrode has, in a plane orthogonal to a stacking direction of the fuel cell units, an elastic member (an oxidizer electrode diffusion layer) 41 that is arranged in parallel to a rigid supporting member 14 and has electrical conductivity.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: October 1, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Akiyoshi Yokoi
  • Patent number: 8535847
    Abstract: A membrane electrode assembly less susceptible to flooding or shortcircuiting caused by piercing of carbon fibers of a gas diffusion layer to a polymer electrolyte membrane is provided, containing a cathode having a catalyst layer and a gas diffusion layer, an anode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte membrane interposed between the catalyst layer of the cathode and the catalyst layer of the anode, wherein each of the cathode and the anode further has a protective layer containing carbon fibers having an average fiber diameter of from 1 to 30 ?m and a fluorinated ion exchange resin, between the catalyst layer and the gas diffusion layer, and the mass ratio (F/C) of the fluorinated ion exchange resin (F) to the carbon fibers (C) contained in the protective layer is from 0.05 to 0.30.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: September 17, 2013
    Assignee: Asahi Glass Company, Limited
    Inventor: Toshihiro Tanuma
  • Patent number: 8530110
    Abstract: A lithium-ion secondary battery separator has a porous structure formed by laminating a second polymer layer, a first polymer layer, and a second polymer layer in sequence. The second polymer layer has a melting point lower than that of the first polymer layer. The second polymer layer has a higher molecular part formed on a side in contact with the first polymer layer and a lower molecular part formed on a side farther from the first polymer layer than is the higher molecular part. The higher and lower molecular parts have a weight-average molecular weight ratio (higher molecular part/lower molecular part) of 4 to 19 therebetween.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: September 10, 2013
    Assignee: TDK Corporation
    Inventors: Katsuo Naoi, Kenji Nishizawa, Mitsuo Kougo, Yoshihiko Ohashi, Hidetake Itoh
  • Patent number: 8524414
    Abstract: A UEA for a fuel cell having an active region and a feed region is provided. The UEA includes an electrolyte membrane disposed between a pair of electrodes. The electrolyte membrane and the pair of electrodes is further disposed between a pair of DM. The electrolyte membrane, the pair of electrodes, and the DM are configured to be disposed at the active region of the fuel cell. A barrier film coupled to the electrolyte membrane is configured to be disposed at the feed region of the fuel cell. The dimensions of the electrolyte membrane are thereby optimized. A fuel cell having the UEA, and a fuel cell stack formed from a plurality of the fuel cells, is also provided.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 3, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew J. Beutel, Saurabh Vyas, Ronald L. James, Steven G. Goebel
  • Publication number: 20130216932
    Abstract: A first transport system moves a web comprising a subgasketed CCM layer and an application system applies a crosslinkable resin to at least a subgasketed portion of the subgasketed CCM layer. The crosslinkable resin preferably comprises a photocurable cationic crosslinkable resin. A first curing apparatus subjects an exposed surface of the crosslinkable resin to a photo curing process to initiate curing of the crosslinkable resin. A second transport system moves a GDL into adhering contact with a partially cured exposed surface of the crosslinkable resin of the CCM layer so as to form an MEA layer. A second curing apparatus subjects the GDL, partially cured crosslinkable resin, and CCM layer structure to a thermal curing process to substantially complete curing of the crosslinkable resin. A converting system is configured to receive the MEA layer and produce a plurality of discrete MEAs from the MEA layer.
    Type: Application
    Filed: March 21, 2013
    Publication date: August 22, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: 3M Innovative Properties Company
  • Patent number: 8497047
    Abstract: A solid oxide fuel cell stack obtainable by a process comprising the use of a glass sealant with composition 50-70 wt % SiO2, 0-20 wt % Al2O3, 10-50 wt % CaO, 0-10 wt % MgO, 0-6 wt % (Na2O+K2O), 0-10 wt % B2O3, and 0-5 wt % of functional elements selected from TiO2, ZrO2, F, P2O5, MoO3, Fe2O3, MnO2, La. Sr—Mn—O perovskite (LSM) and combinations thereof.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 30, 2013
    Assignee: Topsoe Fuel Cell A/S
    Inventors: Jørgen Gutzon Larsen, Christian Olsen, Marie Drejer Jensen
  • Publication number: 20130183605
    Abstract: A resin frame equipped membrane electrode assembly includes a membrane electrode assembly and a resin frame member. The membrane electrode assembly includes a solid polymer electrolyte membrane and an anode, and a cathode sandwiching the solid polymer electrolyte membrane. The resin frame member is formed around the solid polymer electrolyte membrane. The outer end of an electrode catalyst layer of the cathode protrudes beyond the outer end of a gas diffusion layer, and the resin frame member includes an inner extension protruding toward the outer periphery of the cathode to contact the outer end of the solid polymer electrolyte membrane. The inner extension of the resin frame member has an overlapped portion overlapped with the outer end of the electrode catalyst layer.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 18, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: HONDA MOTOR CO., LTD.
  • Patent number: 8486578
    Abstract: An electrolyte membrane/electrode structure constituting a fuel cell comprises a solid polymer electrolyte membrane, an anode side electrode and a cathode side electrode sandwiching the solid polymer electrolyte membrane. The anode side electrode is provided with an electrode catalyst layer and a gas diffusion layer abutting on one side of the solid polymer electrolyte membrane and exposing the outer circumference thereof in the shape of a frame, and the cathode side electrode is provided with an electrode catalyst layer and a gas diffusion layer abutting on the other side of the solid polymer electrolyte membrane. A reinforcing sheet member is arranged on the frame-shaped surface of the solid polymer electrolyte membrane projecting from the outer circumference of the gas diffusion layer.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: July 16, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kentaro Ishida, Takeaki Isobe, Masaaki Nanaumi, Takeshi Matsubara
  • Patent number: 8475967
    Abstract: To provide a membrane/electrode assembly for polymer electrolyte fuel cells, capable of achieving high power generation performance under low or no humidity operation conditions, and a process for producing a cathode for polymer electrolyte fuel cells. A membrane/electrode assembly 10, comprising: an anode 20 having a catalyst layer 22 and a gas diffusion layer 28, a cathode 30 having a catalyst layer 32 and a gas diffusion layer 38, and a polymer electrolyte membrane 40 interposed between the catalyst layer 22 of the anode 20 and the catalyst layer 32 of the cathode, wherein the cathode 30 has, between the catalyst layer 32 and the gas diffusion layer 38, a first interlayer 36 comprising carbon fibers (C1) and a fluorinated ion exchange resin (F1), and a second interlayer 34 comprising carbon fibers (C2) and a fluorinated ion exchange resin (F2), in this order from the gas diffusion layer 38 side.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 2, 2013
    Assignee: Asahi Glass Company, Limited
    Inventor: Toshihiro Tanuma
  • Patent number: 8470493
    Abstract: Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness with the length direction being the dominant direction of thermal expansion. A reaction zone having at least one active layer therein is spaced from the first end and includes first and second opposing electrodes, associated active first and second gas passages, and electrolyte. The active first gas passage includes sub-passages extending in the y direction and spaced apart in the x direction. An artery flow passage extends from the first end along the length and into the reaction zone and is fluidicly coupled to the sub-passages of the active first gas passage. The thickness of the artery flow passage is greater than the thickness of the sub-passages.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 25, 2013
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20130157166
    Abstract: A bipolar plate and a fuel cell are provided. The bipolar plate for the fuel cell has a plurality of flow channels, and a rib is defined between neighboring two flow channels. A top surface of the rib may be a roughened surface or have a porous structure in order to improve performance of the fuel cell.
    Type: Application
    Filed: August 2, 2012
    Publication date: June 20, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Li-Duan Tsai, Jiunn-Nan Lin, Chien-Ming Lai, Cheng-Hong Wang
  • Patent number: 8455151
    Abstract: A fuel cell 100 is characterized by including an electrolyte 30, and an electrolyte-strengthening member 10 that has a penetration portion 11 and strengthens the electrolyte. The electrolyte 30 has a high-electrical-current-density region of which electrical current density is higher than an average electrical current density of the electrolyte 30 and has a low-electrical-current-density region of which electrical current density is lower than the average electrical current density, at a face thereof on an opposite side of the electrolyte-strengthening substrate 100. An area where the penetration portion 11 faces with the high-electrical-current-density region is larger than that where the penetration portion 11 faces with the low-electrical-current-density region.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: June 4, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Naoki Ito
  • Patent number: 8450023
    Abstract: This disclosure related to polymer electrolyte member fuel cells and components thereof.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: May 28, 2013
    Assignee: Nuvera Fuel Cells, Inc.
    Inventors: Amedeo Conti, Scott C. Blanchet, Filippo Gambini
  • Publication number: 20130130149
    Abstract: Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness. A reaction zone positioned along a portion of the length is configured to be heated to an operating reaction temperature, and has at least one active layer therein comprising an electrolyte separating first and second opposing electrodes, and active first and second gas passages adjacent the respective first and second electrodes. At least one cold zone positioned from the first end along another portion of the length is configured to remain below the operating reaction temperature. An artery flow passage extends from the first end along the length through the cold zone and into the reaction zone and is fluidicly coupled to the active first gas passage, which extends from the artery flow passage toward at least one side. The thickness of the artery flow passage is greater than the thickness of the active first gas passage.
    Type: Application
    Filed: December 26, 2012
    Publication date: May 23, 2013
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20130122394
    Abstract: A method of fabricating a membrane electrode assembly, comprising: obtaining a mixture by mixing and kneading electrically conductive particles, a polymer resin, a surfactant, and a dispersion solvent (S1); obtaining a sheet-like mixture by rolling out and shaping the mixture (S2); obtaining a carbon sheet by heat-treating the sheet-like mixture at a first heat treatment temperature such that the surfactant and the dispersion solvent are removed from the sheet-like mixture (S3); obtaining a dispersion liquid by mixing electrically conductive particles, a polymer resin, a surfactant, and a dispersion solvent (S4); forming, on the carbon sheet, a dispersion liquid layer thinner than the carbon sheet by forming and drying a coating of the dispersion liquid on the carbon sheet (S5); obtaining a gas diffusion layer in which a carbon layer is formed on the carbon sheet, by heat-treating the carbon sheet on which the dispersion liquid layer is formed at a second heat treatment temperature lower than the first heat t
    Type: Application
    Filed: July 17, 2012
    Publication date: May 16, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Haruhiko Shintani, Toshifumi Ueda, Masaki Yamauchi
  • Patent number: 8440363
    Abstract: The present invention relates to an electrode for a fuel cell containing a catalyst layer, a gas diffusion layer including a conductive substrate, and a micro-porous layer interposed between the catalyst layer and the gas diffusion layer and including a conductive material and a dispersant.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: May 14, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jan-Dee Kim, Yeong-Chan Eun, Seong-Jin An, Sung-Yong Cho, Ho-Jin Kweon
  • Patent number: 8435695
    Abstract: The present invention provides a gas diffusion electrode in which flooding therein is suppressed. The gas diffusion electrode includes: a membrane formed of conductive fibers; a layer formed of conductive fine particles existing while coming into contact with one of surfaces of the membrane; and a catalyst, in which the membrane formed of the conductive fibers includes a region carrying the catalyst and a region free from carrying the catalyst, the region carrying the catalyst including a surface of the membrane formed of the conductive fibers on an opposite side of a surface of the membrane formed of the conductive fibers, which is brought into contact with the layer formed of the conductive fine particles. The catalyst can be formed by a reactive sputtering method.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 7, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuhiro Yamada
  • Publication number: 20130108942
    Abstract: A membrane electrode assembly with protective film includes a MEA and protective films. The MEA includes a cathode, an anode, and a solid polymer electrolyte membrane interposed between the cathode and the anode. The protective films are joined on the outer end of the solid polymer electrolyte membrane. The membrane electrode assembly has a power generation area and an edge-vicinity area. Recesses for receiving the edge-vicinity area including outer ends of the cathode and the anode are formed in outer portions of a cathode-side separator and an anode-side separator which contact the MEA.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: HONDA MOTOR CO., LTD.
  • Patent number: 8431285
    Abstract: Edge designs, especially for ePTFE-reinforced membranes for proton exchange membrane (PEM) fuel cells, wherein the designs provide a proton barrier at the electrode edge of the PEM fuel cell membrane electrode assembly (MEA) to provide, among other things, resistance to membrane chemical degradation. A portion of the ePTFE layer is imbibed with a proton-impermeable polymer at the electrode edge. The polymer can include, without limitation, B-staged epoxides, B-staged phenolics, hot melt thermoplastics, and/or thermosets or thermoplastics cast from liquid dispersions.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: April 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: William H. Pettit, Michael K. Budinski, Wenbin Gu
  • Patent number: 8409769
    Abstract: A gas diffusion layer for a fuel cell is described. The gas diffusion layer includes a carbon fiber mat having a substantially open structure. Bloomed fibrillated acrylic pulp is added into a microporous layer ink. Alternatively, the bloomed fibrillated acrylic pulp can first be disposed on the carbon fiber mat, with the microporous layer ink added thereafter. When the microporous layer ink/bloomed fibrillated acrylic pulp mixture is coated on the carbon fiber mat, the ink penetrates through the open substrate, and is locked into place by the bloomed acrylic pulp fibers. This allows for a buildup of microporous layer ink on top of the substrate for added thickness when the bloomed fibrillated acrylic pulp sits on top of the mat.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Jeanette E. Owejan
  • Patent number: 8409764
    Abstract: The present invention relates to a fuel cell system. A hot zone chamber has a wall thickness T and a heat source coupled thereto. An elongate fuel cell device is positioned with a first lengthwise portion within the hot zone chamber, a second lengthwise portion outside the hot zone chamber, and a third lengthwise portion of length T within the chamber wall. The third portion has a maximum dimension L in a plane transverse to the length where T?½L.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: April 2, 2013
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 8404401
    Abstract: The invention provides a fuel cell comprising one or more cells (102) stacked therein, each of the cells (102) including: an MEA (4) having a polymer electrolyte membrane (7) and a pair of gas diffusion layers (5) sandwiching the polymer electrolyte membrane (7) except a peripheral region of the polymer electrolyte membrane (7); and a pair of self-sealing separators (1) disposed so as to sandwich the MEA (4), each of the self-sealing separators (1) being formed in a plate-like shape as a whole and composed of a separating part (41) having electrical conductivity and a sealing part (40) having more elasticity than the separating part (41), at least the separating part (41) being in contact with an associated one of the gas diffusion layers (5), the sealing part (40) being in contact with the peripheral region of the polymer electrolyte membrane (7) so as to enclose the associated one of the gas diffusion layers (5), wherein each self-sealing separator (1) has a lower area (11) for accommodating a raised por
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: March 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Soichi Shibata, Hiroki Kusakabe, Kazuhito Hatoh
  • Patent number: 8389165
    Abstract: A method of manufacturing a fuel cell includes applying a sacrificial material periodically to a surface of an anode substrate, wherein at least some areas of the anode substrate have no sacrificial material. A first gas diffusion layer is applied to the sacrificial material, and a first catalyst material is applied to the first gas diffusion layer. An electrolyte material is applied to the anode substrate and the first gas diffusion layer, with the catalyst material, wherein a first surface of the electrolyte material is in operative association with the anode substrate, and the first gas diffusion layer. A second catalyst material is applied to the second surface of the electrolyte material. A second gas diffusion layer is applied to the electrolyte material on a second surface of the electrolyte material, with the catalyst material, wherein a first surface of the second gas diffusion layer is in contact with the second surface of the electrolyte material with the catalyst material.
    Type: Grant
    Filed: November 29, 2008
    Date of Patent: March 5, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Karl A. Littau
  • Patent number: 8383285
    Abstract: A gas diffusion unit for a fuel cell, having at least two planar gas diffusion layers on whose edges seals are configured, at least two gas diffusion layers being joined together in an articulated manner.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: February 26, 2013
    Assignee: Carl Freudenberg KG
    Inventor: Lars Gerding
  • Patent number: 8372556
    Abstract: A fuel cell having a pair of bipolar plates is provided. Each of the bipolar plates has a nested active area and a non-nested feed area which also may serve as active area. An electrolyte membrane is disposed between a pair of electrodes and a pair of diffusion medium layers. Each of the diffusion medium layers is disposed adjacent the nested active areas and non-nested feed areas of the bipolar plates. A porous, electrically conductive spacer is disposed between one of the diffusion medium layers and one of the bipolar plates. A fuel cell stack having the fuel cell is also provided.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Steven G. Goebel
  • Patent number: 8372557
    Abstract: A carbon-fiber-based gas diffusion layer (GDL) for use in polymer electrolyte membrane (PEM) fuel cells (FC) having structured hydrophilic properties, wherein materials with hydrophilic properties and selected from the group of metal oxides in an average domain size of 0.5 to 80 ?m are present as hydrophilic wicks in the gas diffusion layer.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 12, 2013
    Assignee: SGL Carbon SE
    Inventors: Peter Wilde, Rüdiger-Bernd Schweiss
  • Patent number: 8367272
    Abstract: A method for producing a gold fine particle-supported carrier catalyst for a fuel cell, which reduces a gold ion in a liquid phase reaction system containing a carbon carrier by means of an action of a reducing agent, to reduce the gold ion, deposit, and support a gold fine particle on the carbon carrier, wherein a reduction rate of the gold ion is set within the range of 330 to 550 mV/h, and pH is set within the range of 4.0 to 6.0 to perform the reduction of the gold ion, deposition, and support of the gold fine particle.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuaki Mizutani, Hiroaki Takahashi, Yousuke Horiuchi
  • Patent number: 8361671
    Abstract: The present invention relates to a solid electrolyte fuel-cell device wherein a plurality of fuel cells are formed on a single plate. A plurality of cathode layers are formed on one surface of the flat plate-like solid electrolyte substrate, and a plurality of anode layers on the opposite surface thereof, and each fuel cell is formed from a pair of the cathode layer and the anode layer. An electromotive force extracting lead wire is attached to the cathode layer, and a lead wire is attached to the anode layer. The plurality of fuel cells are connected in series by electrically connecting the cathode layer of one fuel cell to the anode layer of an adjacent fuel cell. Flames formed by combustion of a fuel such as a methane gas are supplied to the entire surface of each anode layer, and air is supplied to each cathode layer.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: January 29, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Michio Horiuchi, Shigeaki Suganuma, Misa Watanabe
  • Publication number: 20130022891
    Abstract: Use of noble metal alloy catalysts, such as PtCo, as the cathode catalyst in solid polymer electrolyte fuel cells can provide enhanced performance at low current densities over that obtained from the noble metal itself. Unfortunately, the performance at high current densities has been relatively poor. However, using a specific bilayer cathode construction, in which a noble metal/non-noble metal alloy layer is located adjacent the cathode gas diffusion layer and a noble metal layer is located adjacent the membrane electrolyte, can provide superior performance at all current densities.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 24, 2013
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Carmen Chuy, Scott McDermid, Herwig Haas, Rajeev Vohra, Mike Davis
  • Patent number: 8354137
    Abstract: The present invention provides a method for manufacturing an electrode catalyst layer for a fuel cell which includes a polymer electrolyte, a catalyst material and carbon particles, wherein the electrode catalyst layer employs a non-precious metal catalyst and has a high level of power generation performance. The electrode catalyst layer is used as a pair of electrode catalyst layers in a fuel cell in which a polymer electrolyte membrane is interposed between the pair of the electrode catalyst layers which are further interposed between a pair of gas diffusion layers. The method of the present invention has such a feature that the catalyst material or the carbon particles are preliminarily embedded in the polymer electrolyte.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 15, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Hiroyuki Morioka, Haruna Kurata, Saori Okada, Kenichiro Oota
  • Patent number: 8354199
    Abstract: A multi-layer diffusion medium substrate having improved mechanical properties is disclosed. The diffusion medium substrate includes at least one stiff layer and at least one compressible layer. The at least one stiff layer has a greater stiffness in the x-y direction as compared to the at least one compressible layer. The at least one compressible layer has a greater compressibility in the z direction. A method of fabricating a multi-layer diffusion medium substrate is also disclosed.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: January 15, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Mark Mathias, Jeanette E. O'Hara, Yeh-Hung Lai
  • Patent number: 8343321
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: January 1, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Holger Dziallas, Peter Seipel, Pia Braun, Lutz Rohland
  • Patent number: 8343684
    Abstract: Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness. A reaction zone positioned along a portion of the length is configured to be heated to an operating reaction temperature, and has at least one active layer therein comprising an electrolyte separating first and second opposing electrodes, and active first and second gas passages adjacent the respective first and second electrodes. At least one cold zone positioned from the first end along another portion of the length is configured to remain below the operating reaction temperature. An artery flow passage extends from the first end along the length through the cold zone and into the reaction zone and is fluidicly coupled to the active first gas passage, which extends from the artery flow passage toward at least one side. The thickness of the artery flow passage is greater than the thickness of the active first gas passage.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: January 1, 2013
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 8338052
    Abstract: A method for manufacturing a composite electrolyte membrane including: a first folding process of folding a laminate (10A) obtained by laminating and integrating an electrolyte sheet (11) having an electrolyte as an electrolyte layer and a reinforcing sheet (12) having a porous polymer material as a reinforcing layer, so that a part of a surface of the laminate (10A) lies on another part of the surface; an impregnation process of impregnating the electrolyte of the folded laminate (10B) into the reinforcing layer; and a hydrolysis process of hydrolyzing the electrolyte impregnated in the laminate (10C).
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: December 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Suzuki
  • Publication number: 20120321989
    Abstract: To provide a membrane/electrode assembly for polymer electrolyte fuel cells, capable of achieving high-power generation performance under low or no humidity operation conditions, and a process for producing a cathode for polymer electrolyte fuel cells. A membrane/electrode assembly 10, comprising: an anode 20 having a catalyst layer 22 and a gas diffusion layer 28, a cathode 30 having a catalyst layer 32 and a gas diffusion layer 38, and a polymer electrolyte membrane 40 interposed between the catalyst layer 22 of the anode 20 and the catalyst layer 32 of the cathode, wherein the cathode 30 has, between the catalyst layer 32 and the gas diffusion layer 38, a first interlayer 36 comprising carbon fibers (C1) and a fluorinated ion exchange resin (F1), and a second interlayer 34 comprising carbon fibers (C2) and a fluorinated ion exchange resin (F2), in this order from the gas diffusion layer 38 side.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 20, 2012
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventor: Toshihiro TANUMA
  • Publication number: 20120315567
    Abstract: Disclosed is a membrane electrode assembly for a fuel cell including an anode, a cathode, and an electrolyte membrane disposed therebetween. The anode includes an anode catalyst layer laminated on one principal surface of the electrolyte membrane, and an anode diffusion layer laminated on the anode catalyst layer. The cathode includes a cathode catalyst layer laminated on the other principal surface of the electrolyte membrane, and a cathode diffusion layer laminated on the cathode catalyst layer. At least one of the anode and cathode diffusion layers includes a conductive porous substrate, a porous composite layer laminated on the conductive porous substrate at the catalyst layer side, and a modified layer disposed on the porous composite layer at the catalyst layer side. The porous composite layer includes a conductive carbon material, and a first water-repellent resin material. The modified layer includes a second water-repellent resin material having a needle-like shape.
    Type: Application
    Filed: November 14, 2011
    Publication date: December 13, 2012
    Inventor: Hideyuki Ueda
  • Patent number: 8323463
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 4, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Gervase Maxwell Christie, Jamie Robyn Wilson, Bart Antonie van Hassel
  • Publication number: 20120301809
    Abstract: Provided is a membrane electrode assembly for a polymer electrolyte fuel cell which is hard to be unstable in electric power generation even though a change in power generation surroundings, or a change in the humidity conditions in the vicinity of the electrodes occurs, has high initial performance, and suppresses the performance deterioration in a long-term use. The membrane electrode assembly for a polymer electrolyte fuel cell (1) comprises: a proton conductive membrane (2) for conducting protons; electrode catalyst layers (3) arranged at both sides of the proton conductive membrane (2) containing catalyst particles and an electrode electrolyte; and gas diffusion layers (4) arranged on the respective electrode catalyst layers (3), having a porous basic material. Further, intermediate layers (5) each having a thickness of 2-6 ?m are included, with noble metallic nanoparticles (51), an electrode electrolyte (52) and carbon powder.
    Type: Application
    Filed: January 31, 2011
    Publication date: November 29, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Naoki Mitsuta, Shintaro Tanaka, Taku Eguchi
  • Patent number: 8318375
    Abstract: A cathode for an electrochemical reactor including a diffusion layer and a catalyst layer. The cathode has bimetallic or multimetallic nanoparticles, dispersed in direct contact with the diffusion layer, at least one of the metals being chromium (Cr) wholly or partly in oxidized form. The cathode is fabricated by depositing the bimetallic or multimetallic nanoparticles on the diffusion layer by DLI-MOCVD in the presence of O2.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Sophie Mailley, Frédéric Sanchette, Stéphanie Thollon, Fabrice Emieux
  • Patent number: 8309267
    Abstract: A polymer electrolyte fuel cell (10) includes: a polymer electrolyte membrane (20); an electrode catalyst layer (90c) provided on one surface of the polymer electrolyte membrane (20); a separator (80c) having electrical conductivity, and shielding gas; and an electrode member (50c) interposed between the electrode catalyst layer (90c) and the separator (80c) and constituting an electrode together with the electrode catalyst layer (90c). The electrode member (50c) includes: first contact portions (111) in direct contact with the electrode catalyst layer (90c); second contact portions (112) in direct contact with the separator (80c); and gas diffusion paths (121) through which the gas flows. The electrode member (50c) is provided with a large number of pores (131) formed therein, and constituted by a plate member (100) having electrical conductivity and bent into a wave shape.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Shiro Tanaka
  • Patent number: 8304145
    Abstract: A diffusion medium for use in a PEM fuel cell including a porous spacer layer disposed between a plurality of perforated layers having variable size and frequency of perforation patterns, each perforated layer having a microporous layer formed thereon, wherein the diffusion medium is adapted to optimize water management in and performance of the fuel cell.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: November 6, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Christian Wieser, Paul D. Nicotera
  • Patent number: 8304135
    Abstract: A method of manufacturing a proton-conductive polymer electrolyte membrane using polyvinyl alcohol (PVA) as a base material and having excellent proton conductivity and methanol blocking properties is provided. The method includes: heat-treating a precursor membrane including PVA and a water-soluble polymer electrolyte having a proton conductive group to proceed crystallization of the PVA; and chemically crosslinking the heat-treated precursor membrane with a crosslinking agent reactive with the PVA, to form a polymer electrolyte membrane in which a crosslinked PVA is a base material and protons are conducted through the electrolyte retained in the base material. The content of a water-soluble polymer except the PVA and the water-soluble polymer electrolyte in the precursor membrane is in a weight ratio of less than 0.1 with respect to the PVA.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Tooru Sugitani, Hiroyuki Nishii, Otoo Yamada, Sakura Toshikawa
  • Patent number: 8304132
    Abstract: According to one embodiment, a fuel cell includes a membrane electrode assembly including a plurality of unit cells which are composed of an electrolyte membrane, an anode including anode catalyst layers arranged at intervals on one of surfaces of the electrolyte membrane, and anode gas diffusion layers stacked on the anode catalyst layers, and a cathode including cathode catalyst layers arranged at intervals on the other surface of the electrolyte membrane and opposed to the anode catalyst layers, respectively, and cathode gas diffusion layers stacked on the cathode catalyst layers, wherein a thickness of at least one of the anode catalyst layer and the cathode catalyst layer of one of the unit cells, which neighbor each other, gradually decreases toward the other of the unit cells.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hisashi Chigusa, Katsumi Ichikawa, Hitoshi Koda, Akiko Fujisawa, Shinichi Onodera, Hiroaki Wakamatsu, Shinichi Kanbayashi, Naoyuki Takazawa
  • Patent number: 8298719
    Abstract: Passive recovery of liquid water from the cathode side of a polymer electrolyte membrane through the design of layers on the cathode side of an MEA and through the design of the PEM, may be used to supply water to support chemical or electrochemical reactions, either internal or external to the fuel cell, to support the humidification or hydration of the anode reactants, or to support the hydration of the polymer electrolyte membrane over its major surface or some combination thereof. Such passive recovery of liquid water can simplify fuel cell power generators through the reduction or elimination of cathode liquid water recovery devices.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 30, 2012
    Assignee: University of North Florida Board of Trustees
    Inventors: Alex Mossman, Brian Wells, Russell Barton, Henry Voss
  • Patent number: 8283081
    Abstract: The invention relates to a membrane-electrode assembly for a fuel cell with a proton-conducting membrane two catalyst layers adjoining both sides of the membrane, wherein the catalyst layers have an electrically conductive base material and at least one catalytic material deposited on the base material, and two gas diffusion layers adjoining the catalyst layers. The membrane and/or at least one of the catalyst layers and/or at least one of the gas diffusion layers includes at least one hydrogenatable material capable of binding hydrogen in a reversible exothermic hydrogenation operation by forming a hydride, depending on the temperature and/or pressure. The hydrogenatable material can be distributed in the gas diffusion layer and/or in the catalyst layer or can be present as a separate layer on at least one side of the gas diffusion electrode or the membrane.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: October 9, 2012
    Assignee: Volkswagen Aktiengesellschaft
    Inventors: Andreas Huth, Christiane Jacksch, Martin Thomas
  • Patent number: 8278002
    Abstract: A fuel cell includes: cells (11), each of which includes an electrolyte layer-electrode stack assembly (5) having a electrolyte layer (1) and a pair of gas diffusion electrodes (4a, 4b) sandwiching a portion of the electrolyte layer (1) which portion is located on an inner side of a peripheral portion of the electrolyte layer (1), an annular peripheral member disposed at the peripheral portion of the electrolyte layer (1), a pair of electrically conductive separators (6A, 6B) which sandwich the electrolyte layer-electrode stack assembly (5) and the peripheral member, and damage detecting wires (31); and a fuel cell stack (100) formed by stacking the cells (11), wherein: the damage detecting wires (31) are formed on components constituting the cell (11) other than the electrolyte layer-electrode stack assembly (5); and the damage detecting wires (31) are connected to one another to form an open circuit by stacking the cells (11).
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: October 2, 2012
    Assignee: Panasonic Corporation
    Inventors: Yasushi Sugawara, Takayuki Urata, Junji Morita, Soichi Shibata, Takahiro Umeda
  • Patent number: 8278003
    Abstract: According to one embodiment, a direct methanol fuel cell includes an anode to which an aqueous methanol solution is supplied as the fuel, a cathode to which oxidizing gas is supplied, an electrolyte membrane interposed between the anode and the cathode, a first separator disposed on the surface of the anode on the side opposite to the electrolyte membrane side and a second separator disposed on the surface of the cathode on the side opposite to the electrolyte membrane side, wherein the first and second separators are respectively made of a membrane containing a copolymer of a first vinyl monomer having a cyclic functional group bonded with a carbonyl group, a second vinyl monomer having a carboxyl group and a third vinyl monomer having an aromatic group, and a carbon powder dispersed in the copolymer.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: October 2, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomoaki Arimura