Abstract: A venting device for insertion into a sealing part of a pouch of a secondary battery includes: a housing configured to be inserted between two surfaces of the sealing part so as to be sealed together with the sealing part; a sheet disposed in the housing and defining a passage through which an inside and an outside of the pouch are configured to communicate with each other; a plate spring configured to open and close the passage according to an internal pressure of the pouch and made of a metal having elasticity; and a ball disposed between the sheet and the plate spring so as to contact or be spaced apart from the sheet at an outlet-side of the passage, thereby opening and closing the passage, wherein the ball has a hemispherical shape to be attached to an inner surface of the plate spring.
Type:
Grant
Filed:
December 6, 2019
Date of Patent:
February 14, 2023
Inventors:
Jae Ho Lee, Yong Su Choi, Sang Hun Kim, Hyung Kyun Yu, Na Yoon Kim
Abstract: A system for managing water content in one or more electrochemical cells, each comprising a plurality of electrodes and a liquid ionically conductive medium, includes a first gas-phase conduit for receiving humid gas-phase associated with the electrochemical cell. The system also includes a desiccator unit communicated to the first air conduit and configured for extracting water from the humid gas-phase. The system additionally includes a heater for selectively heating the desiccant to selectively release extracted water from the desiccator unit. The system further includes a return conduit communicating the desiccator unit to the ionically conductive medium for receiving extracted water from the desiccator unit, and directing the extracted water to the ionically conductive medium. Other associated systems and methods are also disclosed.
Abstract: A vent cap includes a main body configured to be received within an opening in a cover of a battery cell, the main body including a fluid flow path formed therethrough to facilitate a flow of a fluid to be added to the battery cell, a valve moveably disposed within the flow path to selectively open and close the fluid flow path, and a float coupled to the valve and positioned to float adjacent a surface of a fluid disposed within the battery cell, the float causing the valve to open the fluid flow path at a pre-determined fluid level within the battery cell to permit the fluid to be added to the battery cell to flow through the fluid flow path, wherein the fluid flow path is configured to minimize an impinging on the float by the fluid to be added to the battery cell.
Abstract: A positive electrode for a lithium-ion secondary battery includes a positive-electrode mixture layer, which includes a positive-electrode active material containing lithium composite oxide, a conductive material, and a binder, and a current collector. The positive-electrode mixture layer contains a compound including sulfur and/or phosphorous, a first polymer serving as a main binder, and a second polymer different from the first polymer.
Abstract: A liquid retaining pressure relief valve for electrochemical battery cells is provided including a pressure regulator and a membrane vent that are mounted to the top and bottom ends of a threaded valve housing or plug. The valve housing or plug screws into the cell cover from the outside of the cell such that the membrane vent is internal to the cell. The membrane vent includes a thin gas permeable liquid repellant membrane that is molded into the body of the vent. The membrane is preferably composed of an expanded polytetraflouroethylene (ePTFE) polymer.
Type:
Grant
Filed:
March 18, 2005
Date of Patent:
August 23, 2011
Assignee:
Yardney Technical Products, Inc.
Inventors:
Alben F. Puhlick, Susan J. Russell, James R. Dick, Hartwell L. Gauthier, Jr., Alexander P. Karpinski
Abstract: For carrying out a heterogeneously catalyzed reaction, such as the generation of hydrogen from hydrocarbons or alcohol, a reaction mixture comprising a hydrocarbon and water is supplied to a catalyst, which is produced by pressing at least one catalyst powder into a layer. Instead of a metallic housing, stacked layers are sealed by an edge seal, introduced into the layer or applied on the layer.
Abstract: A lid for accumulator batteries has one or more holes to receive a device to ensure the circulation of electrolyte during the first charge and a second device to ensure the re-fill of electrolyte during the other charges. The lid is equipped with one or more channels each having one end facing the surface of the one or more holes and the opposite end coupled with at least one duct on the inner vertical wall of the container.
Abstract: An automatic re-fill device includes a body portion adapted to be secured in the accumulator lid and a tubular element having a lower float portion and being slidable within the body. The tubular element has a closure device within the body and a membrane at an upper portion thereof for increasing upward pushing force to close the closure when the float is lifted by the liquid in the accumulator.
Abstract: A metal-air battery has a base for containing the active battery materials and a lid located on top of and fitted with the base. The flexible bottom surface of the base is curved to permit an expansion of the battery container during battery discharge. The air cathode is retained by a ledge in the base as well as by channels in the lid to prevent separation between the electrolyte and the air cathode membrane during battery discharge. An air chamber housing having inlet and outlet air ducts is located above the air cathode membrane for continuous air flow and optimal battery operation. The air ducts are sealed during storage to extend the shelf life of the battery.
Abstract: A method of making the cathode of a diode image intensifier tube by evaporating some alkali metals and antimony on to the inner surface of a cathode window which by means of a layer of frit is joined to a metallic cathode flange, and in which there is provided between the cathode and the cathode flange, or, as the case may be, the cathode housing, an electrical resistance of a pre-determined value such that at light levels at which there is a danger of the anode being burnt, the diode image intensifier tube is defocussed or cut off, and wherein prior to the evaporation of the metals an alkali-resistant and insulating layer is applied to the frit layer, and that the evaporation of the antimony is carried out so that there is formed between the cathode and the cathode flange an area extending around the cathode and where no antimony is present, and that at least one galvanic connection is passed vacuum-tight outside the diode image intensifier tube, and one end of said connection is arranged at the place of the
Type:
Grant
Filed:
December 19, 1979
Date of Patent:
December 22, 1981
Assignee:
NV Optische Industrie "De Oude Delft"
Inventors:
Lambertus K. van Geest, Johannes J. Houtkamp