Virus Or Bacteriophage, Except For Viral Vector Or Bacteriophage Vector; Composition Thereof; Preparation Or Purification Thereof; Production Of Viral Subunits; Media For Propagating Patents (Class 435/235.1)
  • Publication number: 20150132286
    Abstract: The present invention provides a method for diagnosing and detecting diseases associated with pancreas. The present invention provides one or more proteins or fragments thereof, peptides or nucleic acid molecules differentially expressed in pancreatic diseases (PCAT) and antibodies binds to PCAT. The present invention provides that PCAT is used as targets for screening agents that modulates the PCAT activities. Further, the present invention provides methods for treating diseases associated with pancreas.
    Type: Application
    Filed: September 18, 2014
    Publication date: May 14, 2015
    Inventors: Bruno DOMON, Ian MCCAFFREY, Vaibhav NARAYAN, Scott PATTERSON
  • Patent number: 9028838
    Abstract: Polypeptides, polynucleotides, methods, compositions, and vaccines comprising (avian pandemic) influenza hemagglutinin and neuraminidase variants are provided.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: May 12, 2015
    Assignee: MedImmune, LLC
    Inventors: Chin-Fen Yang, George Kemble
  • Patent number: 9029133
    Abstract: The present invention provides a recombinant virus containing a nucleotide sequence encoding a tumor-therapeutic full-length antibody with human constant regions, and uses thereof. After a nucleotide sequence of a gene encoding a tumor-therapeutic full-length antibody with human constant regions of the light chain and the heavy chain is inserted into the genome of a recombinant virus, the tumor-therapeutic full-length antibody with human constant regions can be efficiently expressed in tumor cells, thereby inhibit the growth and metastasis of tumors.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 12, 2015
    Inventors: Qijun Qian, Qi Zhang, Qin Yang, Mengchao Wu
  • Patent number: 9029117
    Abstract: Described are (a) parvovirus variants capable of propagating and spreading through human tumor cells which is obtainable by serially passaging a rodent parvovirus as starting strain in semi-permissive human tumor cells, and (b) parvovirus variants capable of propagating and spreading through human tumor cells characterized by particular amino acid deletions and/or substitutions, e.g. a deletion of several amino acids in the C-terminus of NS1/middle exon of NS2. A pharmaceutical composition containing such parvoviruses as well as their use for the treatment of cancer, preferably a glioblastoma, is also described.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 12, 2015
    Assignee: Deutsches Krebsforschungzentrum
    Inventors: Jürg Nüesch, Nadja Thomas, Claudia Plotzky, Jean Rommelaere
  • Patent number: 9028834
    Abstract: Provided are newly identified pneumoviruses that can infect mammals, including dogs cats and potentially humans. Isolated polynucleotides and proteins of the viruses, as well as the isolated viruses themselves are provided. The invention includes compositions and methods for detecting the viruses, methods and compositions for prophylaxis and/or therapy of disease signs that are positively correlated with the presence of the viruses, and isolated cells comprising the viruses. Intact virions, viral proteins, and fragments thereof are also provided.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 12, 2015
    Assignee: Cornell University
    Inventors: Edward Dubovi, Randall W. Renshaw
  • Publication number: 20150125923
    Abstract: The present invention generally relates to compositions and methods of delivering substances in a dry mode, wherein the compositions include a surface layer disposed on the outer surface of the composition that is permeable to carbon dioxide and oxygen. The compositions may be used to deliver microorganisms to remove contaminates, such as oil, chemical, waste, or sewage, from soil, water, or air. In other embodiments, the compositions can also be used for delivering liquid food, liquid food additives, liquid biotech agricultural ingredients, conventional liquid agricultural ingredients, liquid human wellness and dietary supplements, and liquid fragrances and beauty products.
    Type: Application
    Filed: October 5, 2011
    Publication date: May 7, 2015
    Applicant: DryLet LLC
    Inventors: Ramiro Trevino, Steven R. Ellis
  • Publication number: 20150125456
    Abstract: The present invention provides a method for diagnosing and detecting diseases associated with colon. The present invention provides one or more proteins or fragments thereof, peptides or nucleic acid molecules differentially expressed in colon diseases (CCAT) and antibodies binds to CCAT. The present invention provides that CCAT is used as targets for screening agents that modulates the CCAT activities. Further the present invention provides methods for treating diseases associated with colon.
    Type: Application
    Filed: October 22, 2014
    Publication date: May 7, 2015
    Applicant: CELERA CORPORATION
    Inventors: Yeounjin KIM, Tao HE, Steve RUBEN
  • Publication number: 20150125424
    Abstract: The invention relates to the field of microbiology, specifically to a bacteriophage, polypeptide and a corresponding polynucleotide, a nucleic acid molecule and/or vector and/or cell comprising such polynucleotide, a composition comprising said bacteriophage, polypeptide, polynucleotide, construct, vector and/or cell, preferably for preventing, treating or diagnosing contamination with and/or a condition in an individual related to Salmonella. The invention further relates to an antimicrobial composition for medical use or for use as a food additive or as a disinfectant, or for detecting bacteria, preferably in a diagnostic application, wherein said antimicrobial composition comprises a bacteriophage, polypeptide, corresponding polynucleotide, construct and/or vector and/or cell comprising such polypeptide and/or composition according to the present invention.
    Type: Application
    Filed: May 7, 2013
    Publication date: May 7, 2015
    Applicant: Micreos B.V.
    Inventors: Martin Johannes Loessner, Steven Hagens, Albert Johannes Hendrikus Slijkhuis, Jochen Achim Klumpp, Roger Marti
  • Patent number: 9024001
    Abstract: Provided herein are modified, functional 5? amplification sequences that are defective packaging signals. Also provided are compositions and methods comprising these modified 5? amplification sequences.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: May 5, 2015
    Assignee: Novartis Vaccines and Diagnostics, Inc.
    Inventors: Zequn Tang, Silvia Perri, John Polo
  • Publication number: 20150118201
    Abstract: The present invention provides methods of achieving directed evolution of viruses by in vivo screening or “panning” to identify viruses comprising scrambled AAV capsids having characteristics of interest, e.g., tropism profile and/or neutralization profile (e.g., ability to evade neutralizing antibodies). The invention also provides scrambled AAV capsids and virus particles comprising the same.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: Xiao Xiao, Lin Yang
  • Publication number: 20150118250
    Abstract: The present invention relates to a recombinant avian herpes virus, which comprises at least two recombinant nucleotide sequences, each recombinant nucleotide sequence encoding a distinct antigenic peptide, wherein said at least two recombinant nucleotide sequences are inserted into distinct non-coding region of the viral genome chosen among the region located between UL44 and UL45, the region located between UL45 and UL46, the region located between US10 and SORF3, the region located between SORF3 and US2.
    Type: Application
    Filed: March 29, 2013
    Publication date: April 30, 2015
    Inventors: Ayumi Fujisawa, Mayumi Kubomura, Sakiko Saeki, Shuji Saito
  • Patent number: 9017694
    Abstract: The technology relates in part to modified influenza viruses useful for vaccine development. Polypeptides, polynucleotides, methods, compositions, and vaccines comprising influenza hemagglutinin and neuraminidase variants are provided.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: April 28, 2015
    Assignee: MedImmune, LLC
    Inventors: Hong Jin, Zhongying Chen
  • Publication number: 20150111814
    Abstract: The present invention includes compounds that are useful for treating or preventing a HIV-1 infection in a mammal. In certain embodiments, the compounds cause cell-free virolysis of an HIV-1 virus. The presented invention further includes a method of causing virolysis of a virus using the compounds described therein. The presented invention further includes a method of treating or preventing an HIV-1 infection in a mammal in need thereof using the compositions described therein.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 23, 2015
    Inventors: Cameron Frank Abrams, Irwin M. Chaiken, Mark R. Contarino, Bibek Parajuli, Adel Ahmed Rashad Ahmed
  • Publication number: 20150111282
    Abstract: Novel hexon isolated from simian adenovirus serotype 19 encoded in the polynucleotide defined as SEQ ID NO: 3, hepervariable region thereof, chimeric adenovirus comprising the same, and therapeutic use thereof provides a solution to the problem of safety and effective systemic treatment for developing gene therapeutic agents using adenovirus.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 23, 2015
    Applicant: MOGAM BIOTECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kyuhyun LEE, Seongtae YUN, Daekyung KOH, Hong-Kyu LEE, Eui-Cheol JO
  • Patent number: 9012224
    Abstract: The present invention is based, in part, on the discovery that parvovirus (including AAV) capsids can be engineered to incorporate small, selective regions from other parvoviruses that confer desirable properties. The inventors have discovered that in some cases as little as a single amino acid insertion or substitution from a first parvovirus (e.g., an AAV) into the capsid structure of another parvovirus (e.g., an AAV) to create a chimeric parvovirus is sufficient to confer one or more of the desirable properties of the first parvovirus to the resulting chimeric parvovirus and/or to confer a property that is not exhibited by the first parvovirus or is present to a lesser extent.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: April 21, 2015
    Assignees: The University of North Carolina at Chapel Hill, The University of Florida Research Foundation
    Inventors: Dawn E. Bowles, Chengwen Li, Joseph E. Rabinowitz, Josh Grieger, Mavis Agbandje-McKenna, Richard Jude Samulski
  • Patent number: 9011876
    Abstract: The present invention features live, attenuated respiratory syncytial viruses (RSV) useful as vaccines against RSV infection and/or the development of severe RSV-associated illnesses. The disclosed viruses are attenuated to the extent of being nonpathogenic when administered to a subject but substantially retain the antigenic and immunogenic properties of wild-type RSV.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: April 21, 2015
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Mary K. Yagodich, Michael P. Citron, Daniel J. Distefano, Daniel L. Krah, Xiaoping Liang
  • Publication number: 20150104831
    Abstract: The present invention provides antibodies which bind to an epitope in the extracellular domain of human CC chemokine receptor 4 (CCR4) and which are capable of inhibiting the binding of macrophage-derived chemokine (MDC) and/or thymus and activation regulated chemokine (TARC) to CCR4. Also provided are inter alia immunoconjugates and compositions comprising such antibodies and methods and uses involving such antibodies, particularly in the medical and diagnostic fields.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 16, 2015
    Applicant: AFFITECH RESEARCH AS
    Inventors: Urs Beat Hagemann, Remko Albert Griep, Herald Reiersen, Sergej Michailovic Kiprijanov
  • Publication number: 20150105290
    Abstract: The present invention relates to molecular approaches to the production of nucleic acid sequences, which comprises the genome of infectious hepatitis C virus. In particular, the invention provides nucleic acid sequences which comprise the genomes of infectious hepatitis C viruses of either genotype 3a (strain S52) or genotype 4a (strain ED43). The invention therefore relates to the use of the nucleic acid sequences and polypeptides encoded by all or part of the sequences in the development of vaccines and diagnostic assays for HCV and in the development of screening assays for the identification of antiviral agents for HCV. The invention therefore also relates to the use of viral particles derived from laboratory animals infected with S52 and ED43 viruses.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Judith M. Gottwein, Troels Kasper Hoyer Scheel, Robert Purcell, Jens Bukh
  • Publication number: 20150098990
    Abstract: The present invention concerns methods and compositions that employ peptides that target dorsal root ganglion (DRG) neurons. In particular, the peptides are used to target therapeutic agents, such as proteins, liposomes, or viral particles comprising therapeutic polynucleotides, to one or more peripheral neuropathies or neuropathic pain, for example. In particular cases, the peripheral neuropathies or neuropathic pain is caused directly or indirectly by DRG neuronopathy.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Lawrence Chan, Hideto Kojima, Tomoya Terashima
  • Patent number: 8999347
    Abstract: The present invention relates to a novel lipoprotein particle, methods for preparing and purifying the same, its use in medicine, particularly in the prevention of malarial infections, compositions/vaccines containing the particle or antibodies against the protein particle such as monoclonal or polyclonal antibodies and use of the same, particularly in therapy. Furthermore, particles with the specific ratio can be prepared by employing yeast, Saccharomyces cerevisiae or Pichia pastoris. In particular it relates to an immunogenic protein particle comprising the following monomers: a. a fusion protein comprising sequences derived from a CS protein of P. vivax and the S antigen of Hepatitis B (CSV-S), and b. S antigen derived from Hepatitis B virus, and characterized in that the ratio of S to CSV-S is in the range 0.1 to 1. Suitably, the ratio of S to CSV-S is in the range 0.19 to 0.30 or 0.68 to 0.80.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 7, 2015
    Assignee: GlaxoSmithKline Biologicals, SA
    Inventors: Joseph D Cohen, Martine Marchand
  • Publication number: 20150093404
    Abstract: Vaccination methods to control PCV2 infection with different PCV2 subtypes are disclosed. Specifically, a PCV2 subtype b (PCV2b) ORF2 proteins or immunogenic compositions comprising a PCV2b ORF2 protein are used in a method for the treatment or prevention of an infection with PCV2 of the same PCV2b and/or different subtype; the reduction, prevention or treatment of clinical signs caused by an infection with PCV2 of the same PCV2b or a different subtype; and/or the prevention or treatment of a disease caused by an infection with PCV2 of the same PCV2b and/or a different subtype. The present invention in particular relates to PCV2 subtype b (PCV2b) ORF2 proteins characterized in that they contain at least one mutation in the BC loop that such that the expressed protein is preferably expressed in a higher amount compared to a PCV2 ORF2 protein that does not contain such mutation.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Applicant: BOEHRINGER INGELHEIM VETMEDICA, INC.
    Inventors: Luis Alejandro HERNANDEZ, Christine Margaret MUEHLENTHALER, Eric Martin VAUGHN, Gregory HAIWICK
  • Publication number: 20150093403
    Abstract: The invention is directed to a isolated a canine circoviruses associated with canine respiratory and gastrointestinal disease, and isolated nucleic acids sequences and polypeptides thereof. The invention also relates to antibodies against antigens from canine circoviruses. The invention also relates to iRNAs which target nucleic acid sequences of the canine circovirus. The invention is related to methods for detecting the presence or absence of canine circoviruses in an animal. The invention is also related to immunogenic compositions for inducing an immune response against canine circoviruses in an animal.
    Type: Application
    Filed: April 3, 2013
    Publication date: April 2, 2015
    Inventors: W. Ian Lipkin, Amit Kapoor, Edward J. Dubovi
  • Patent number: 8992939
    Abstract: This invention discloses a method of increasing production of virus-like particles comprising expressing an avian influenza matrix protein. The invention also comprises methods of making and using said VLPs.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: March 31, 2015
    Assignee: Novavax, Inc.
    Inventors: Gale Smith, Yingyun Wu, Michael Massare, Peter Pushko, Margret Nathan, Thomas Kort, Robin Robinson
  • Publication number: 20150086636
    Abstract: The present invention relates to methods for inhibiting myostatin, a regulator of muscle mass, for muscle enhancement (including inducing hypertrophy and/or hyperplasia) as well as improving muscle function (including decreasing atrophy and/or increasing endurance, force and/or strength). Some of the methods involve delivering genes to cells using gene delivery or other delivery techniques known in the art in order to inhibit myostatin. Examples of genes to be delivered are genes encoding proteins such as Follistatin, Follistatin-related gene-1 (FLRG-1), growth differentiation factor associated protein-1 (GASP-1) and myostatin precursor propeptide. The genes can be delivered using, for example, a recombinant Adeno-associated virus (rAAV), lentivirus or equine-associated virus capable of infecting the cells. Following introduction, the genes are expressed in the cell body of the infected cell and the encoded proteins are secreted systemically.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 26, 2015
    Inventors: Brian K. Kaspar, Jerry R. Mendell
  • Publication number: 20150087022
    Abstract: Embodiments of the present invention relate to a spontaneously immortalized avian cell line, designated ZS-1. Immortalized avian cell line, ZS-1 is derived from primary chicken embryo fibroblasts (CEF). The ZS-1 cell line is free of endogenous retroviruses, including Avian Leukosis Viruses (ALV), and particularly ALV sub-group E. Moreover, the ZS-1 cell line susceptible to all subgroups of ALV, including subgroup E. Cells of the ZS-1 cell line and sub-clones thereof may be used for inter alia the production of viral agents, including recombinant viral agents, expression of recombinant proteins, and diagnostic assays.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventor: Huanmin Zhang
  • Publication number: 20150086577
    Abstract: Described herein are the clinical and laboratory characteristics of two patients bitten by ticks and infected with a unique member of the genus Phlebovirus (family Bunyaviridae) with a proposed name of Heartland virus (HRTLV). Provided herein are nucleotide and amino acid sequences of the Phlebovirus isolates, primers and probes that specifically hybridize with the Phlebovirus isolates, and antibodies specific for the Phlebovirus proteins. Also provided are detection assays using the Phlebovirus nucleic acid molecules, proteins, probes, primers and antibodies. Further provided are recombinant Phleboviruses and their use for eliciting an immune response in a subject.
    Type: Application
    Filed: March 22, 2013
    Publication date: March 26, 2015
    Applicant: The Government of the United States of America as represented by the Secretary of the Department of
    Inventors: Laura K. McMullan, Cynthia Goldsmith, Aubree Kelly, William L. Nicholson, Stuart T. Nichol
  • Patent number: 8986707
    Abstract: The present invention relates to the field of animal health and in particular of Equine Herpes Viruses (EHV) wherein the gene encoding the protein gM is absent, and which is free of heterologous elements. Further aspects of the invention relate to pharmaceutical compositions comprising said viruses, uses thereof, and methods for the prophylaxis and treatment of EHV infections. The invention also relates to pharmaceutical compositions comprising the combination of EHV-1 and EHV-4 viruses wherein the gene encoding the protein gM is absent and which is free of heterologous elements.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Boehringer Ingelheim Vetmedica GmbH
    Inventors: Antonie Neubauer, Christina Ziegler
  • Patent number: 8986672
    Abstract: The present invention is directed to the composition and use of a modified Herpes Simplex Virus Type 2 (HSV-2) as a medicament in the treatment of cancer. The modified HSV-2 has fusogenic activity, and comprises a modified/mutated ICP 10 polynucleotide encoding a polypeptide having ribonucleotide reductase activity and lacking protein kinase activity.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: March 24, 2015
    Assignee: The University Of Houston
    Inventors: Xiaoliu Zhang, Fu Xinping
  • Patent number: 8986709
    Abstract: The present invention relates to a life attenuated Bordetella pertussis vaccine which is deficient for tracheal cytotoxin (TCT), pertussis toxin (PTX), and dermonecrotic toxin (DNT) for prophylaxis or treatment of an allergen-driven airway pathology.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 24, 2015
    Assignees: INSERM (Institut National de la Sante et de la Recherche Medicale), Institut Pasteur de Lille, National University of Ireland Maynooth
    Inventors: Camille Locht, Bernard Mahon, Heather Kavanagh
  • Patent number: 8986674
    Abstract: The present invention concerns methods and compositions for the treatment of cancer and cancer cells using altered poxviruses, including a vaccinia virus that has been altered to generate a more effective therapeutic agent. Such poxviruses are engineered to be attenuated or weakened in their ability to affect normal cells. In some embodiments, methods and compositions involve poxviruses that possess mutations that result in poxviruses with diminished or eliminated capability to implement an antiviral response in a host. Poxviruses with these mutations in combination with other mutations can be employed for more effective treatment of cancer.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Sillajen Biotherapeutics, Inc.
    Inventors: David Kirn, Steve H. Thorne
  • Patent number: 8986972
    Abstract: Novel modulators, including antibodies and derivatives thereof, and methods of using such modulators to treat proliferative disorders are provided.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 24, 2015
    Assignee: Stem CentRx, Inc.
    Inventors: Robert A. Stull, Laura Saunders, Scott J. Dylla, Orit Foord, David Liu, Michael Torgov, Hui Shao
  • Patent number: 8986987
    Abstract: The present application applies to the field of veterinary vaccines, in particular of vaccines for poultry against avian influenza. The vaccine is based on a recombinant viral vector expressing the haemagglutinin protein of an influenza virus, wherein the vector is herpes virus of turkeys (HVT) and the haemagglutinin gene is driven by a glycoprotein B gene promoter from a mammalian herpesvirus. A vaccine comprising this HVT+HA vector can be used to induce a protective immune response against avian influenza in poultry, and to reduce the spread of AIV. The invention also relates to methods, uses, and vaccines involving the HVT+HA vector.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 24, 2015
    Assignee: Intervet Inc.
    Inventors: Paulus Jacobus Antonius Sondermeijer, Iwan Verstegen
  • Patent number: 8986705
    Abstract: Methods and compositions for the optimization of production of influenza viruses suitable as influenza vaccines are provided.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 24, 2015
    Assignee: MedImmune, LLC
    Inventors: George Robert Trager, Vu Truong-Le, Luisa Yee
  • Patent number: 8986706
    Abstract: The present invention encompasses recombinant Newcastle Disease Virus-Herpesvirus vaccines or compositions. The invention encompasses recombinant NDV vectors encoding and expressing herpesvirus pathogen, antigens, proteins, epitopes or immunogens. Such vaccines or compositions can be used to protect animals against disease.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: March 24, 2015
    Assignee: Merial, Inc.
    Inventors: Michel Bublot, Frederic Reynard, Herve Poulet, Frederic Raymond David
  • Publication number: 20150079037
    Abstract: This document provides methods and materials related to vesicular stomatitis viruses. For example, replication-competent vesicular stomatitis viruses, nucleic acid molecules encoding replication-competent vesicular stomatitis viruses, methods for making replication-competent vesicular stomatitis viruses, and methods for using replication-competent vesicular stomatitis viruses to treat cancer or infectious diseases are provided.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 19, 2015
    Inventors: Kah-Whye Peng, Stephen James Russell, Camilo Ayala Breton
  • Publication number: 20150079123
    Abstract: Disclosed herein are isolated rubella viral vector constructs that include a rubella non-structural protein open reading frame (ORF) without an in-frame deletion, a rubella structural protein ORF, and a heterologous antigenic insert. In one example, the heterologous antigenic insert is positioned within the rubella structural protein ORF. In some examples, the heterologous antigenic insert is positioned in the rubella structural protein ORF in between a gene encoding structural protein E2 and a gene encoding structural protein E1. Exemplary antigenic inserts include HIV, SIV, RSV or hepatitis B surface antigens. In some examples, the HIV antigenic insert is a Gag antigenic insert, a gp41 antigenic insert or a gp120 antigenic insert. Also disclosed are uses of the isolated rubella viral vector, such as to induce an immune response to a particular virus, such as HIV-1, testing sensitivity to neutralizing antibodies, or screening antiviral drugs (such as protease inhibitors).
    Type: Application
    Filed: April 8, 2013
    Publication date: March 19, 2015
    Applicant: The United States of America, as Represented by the Secretary, Dep. of Health and Human Services
    Inventors: Ira Berkower, Konstantin Virnik
  • Patent number: 8980545
    Abstract: Presented herein is the discovery of a new human picornavirus, Cosavirus (previously termed Dekavirus), methods of detecting the Cosavirus and diagnosing Cosavirus infection, methods of treating or preventing Cosavirus infection, and methods for identifying anti-Cosavirus compounds.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: March 17, 2015
    Assignee: Blood Systems, Inc.
    Inventors: Eric Delwart, Amit Kapoor, Joseph Victoria
  • Patent number: 8981073
    Abstract: Disclosed are an HCV gene having higher replication efficiency and higher reinfection efficiency than the known HCV gene of genotype 1b, an RNA replicon having this gene, a cell infected with this RNA replicon, which cell allows replication of HCV, and an HCV particle. The hepatitis C virus gene encodes an amino acid sequence wherein the 979th amino acid is threonine; the 1804th amino acid is leucine; and the 1966th amino acid is lysine. An HCV gene which can propagate in vitro and has higher replication efficiency and higher reinfection efficiency than the known HCV gene of genotype 1b was provided.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 17, 2015
    Assignee: Advanced Life Science Institute, Inc.
    Inventors: Kenichi Mori, Noboru Maki, Hiromi Fukai
  • Patent number: 8980610
    Abstract: The present invention pertains to methods of using arginine to inactivate or reduce the infectious titer of enveloped viruses potentially present in biological compositions produced by eukaryotic cells (such as a antibodies or other therapeutic proteins). In some embodiments, inactivation or reduction of viral titers by exposure to arginine is achieved in a neutral (pH ˜7) or near neutral (˜pH 6 to ˜pH 8) environment.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: March 17, 2015
    Assignee: Biogen Idec MA Inc.
    Inventors: Keith Selvitelli, Justin McCue
  • Publication number: 20150071883
    Abstract: The invention provides improved adeno-associated virus (AAV) Factor VIII (FVIII) vectors, including AAV FVIII vectors that produce a functional Factor VIII polypeptide and AAV FVIII vectors with high expression activity.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventor: Peter Cameron Colosi
  • Publication number: 20150071881
    Abstract: The invention relates to an oncolytic adenovirus for the treatment of cancer, containing a human DNA sequence isolating a promoter conferring selective expression on an adenoviral gene. Said adenovirus can also contain a sequence that optimizes the protein translation of an adenoviral gene regulated by a promoter conferring tumor selectivity. The invention is suitable for use in the treatment of cancer.
    Type: Application
    Filed: July 10, 2014
    Publication date: March 12, 2015
    Inventors: Ramon Alemany Bonastre, Juan Jose Rojas Exposito, Manel Maria Cascallo Piqueras
  • Patent number: 8974797
    Abstract: The invention provides expression vectors and virus-like particles (VLPs) containing Newcastle Disease Virus Sequences in combination with sequences encoding proteins of interest. The vectors are useful in, for example, generating virus-like particles (VLPs) that contain proteins of interest. In one embodiment, the expressed VLPs elicit an immune response by an animal host against the protein. The invention's VLPs are useful as, for example, vaccines.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: March 10, 2015
    Assignee: University of Massachusetts
    Inventor: Trudy Morrison
  • Publication number: 20150064770
    Abstract: Various aspects and embodiments of the invention are directed to high-throughput phage-engineering methods and recombinant bacteriophages with tunable host ranges for controlling phage specificity.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy Kuan-Ta Lu, Hiroki Ando, Sebastien Lemire
  • Publication number: 20150064137
    Abstract: Polypeptides, viruses, methods and compositions provided herein are useful for the selective elimination of senescent cells. Method aspects include methods for inducing apoptosis in a senescent cell comprising administering to the cell a polynucleotide, virus, host cell, or pharmaceutical composition described herein. Other methods include expressing a pro-apoptotic gene in a senescent cell comprising administering to the cell the polynucleotide, virus, or pharmaceutical composition as described herein.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 5, 2015
    Applicant: Kythera Biopharmaceuticals, Inc.
    Inventors: Serge Lichtsteiner, Nathaniel David
  • Patent number: 8969536
    Abstract: The present invention is directed to novel nucleotide and amino acid sequences of Torque teno virus (“TTV”), including novel genotypes thereof, all of which are useful in the preparation of vaccines for treating and preventing diseases in swine and other animals. Vaccines provided according to the practice of the invention are effective against multiple swine TTV genotypes and isolates. Diagnostic and therapeutic polyclonal and monoclonal antibodies are also a feature of the present invention, as are infectious clones useful in the propagation of the virus and in the preparation of vaccines. Particularly important aspects of the invention include vaccines that provide TTV ORF1 protein, or peptide fragments thereof, as antigen.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 3, 2015
    Assignee: Zoetis LLC
    Inventors: Gregory Paul Nitzel, Robert Gerard Ankenbauer, Jay Gregory Calvert, Donna Steuerwald Dunyak, Jacqueline Gayle Marx, Nancee Lois Olen, Douglas Steven Pearce, Mira Ivanova Stoeva, James Richard Thompson
  • Patent number: 8969063
    Abstract: A herpes simplex virus is disclosed in which the herpes simplex virus genome comprises a nucleic acid sequence encoding an ING4 polypeptide.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: March 3, 2015
    Assignee: Virttu Biologics Limited
    Inventors: Joe Conner, Susanne Moira Brown
  • Publication number: 20150056644
    Abstract: A method and device for growing plant, animal or stem cells in a continuous manner.
    Type: Application
    Filed: March 18, 2014
    Publication date: February 26, 2015
    Inventor: Eudes Francois Marie DE CRECY
  • Publication number: 20150056235
    Abstract: The subject invention pertains to isolated influenza virus that is capable of infecting canids and causing respiratory disease in the canid. The subject invention also pertains to compositions and methods for inducing an immune response against an influenza virus of the present invention. The subject invention also pertains to compositions and methods for identifying a virus of the invention and diagnosing infection of an animal with a virus of the invention.
    Type: Application
    Filed: October 6, 2014
    Publication date: February 26, 2015
    Inventors: PATTI CYNTHIA CRAWFORD, PAUL J. GIBBS, EDWARD J. DUBOVI, RUBEN OMAR DONIS, JACQUELINE KATZ, ALEXANDER I. KLIMOV, NALLAKANNU P. LAKSHMANAN, MELISSA ANNE LUM, DANIEL GHISLENA EMIEL GOOVAERTS, MARK WILLIAM MELLENCAMP, NANCY J. COX, WILLIAM L. CASTLEMAN
  • Patent number: 8961995
    Abstract: The present invention provides alphavirus replicons and methods of their use in producing heterologous protein.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 24, 2015
    Assignee: UAB Research Foundation
    Inventors: Ilya Frolov, Elena Frolova
  • Patent number: 8962297
    Abstract: The present invention relates to isolated Clostridium perfringens bacteriophage lytic enzymes from baccteriophages CP26F and CP39O, and uses in controlling Clostridium perfringens.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: February 24, 2015
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Bruce S. Seal, Gregory R. Siragusa, Ibn Mustafa A. Simmons, Johnna K. Garrish, David M. Donovan