Aromatic Patents (Class 436/140)
  • Patent number: 10712336
    Abstract: Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: July 14, 2020
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Ravinder J. Singh, Robert L. Taylor, Stefan K. G. Grebe
  • Patent number: 10551283
    Abstract: A vibrating platform for the deploying of passive sampling devices in sediments and other media to be sampled. The vibrating platform can greatly enhance the rate of mass transfer of analytes, such as polycyclic aromatic hydrocarbons and polychlorinated biphenyls, into passive sampler material by disrupting the formation of a depletion layer in proximity of the passive sampler material.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: February 4, 2020
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY
    Inventors: Upal Ghosh, Mehregan Jalalizadeh
  • Patent number: 10416149
    Abstract: Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: September 17, 2019
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Ravinder J. Singh, Robert L. Taylor, Stefan K. G. Grebe
  • Patent number: 10254217
    Abstract: In an embodiment, a benzene sensor comprises a substrate having an iodine complex disposed thereon, a radiation source configured to project UV radiation onto the complex, and a UV detector configured to detect a UV reflection off of the substrate having the iodine complex. The iodine complex can include a cyclodextrine-iodine complex such as an alpha-cyclodextrine-iodine complex, a ?-cyclodextrine iodine complex, or any combination thereof.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 9, 2019
    Assignee: Honeywell International, Inc.
    Inventors: Bogdan Serban, Octavian Buiu, Mihai Brezeanu, Cornel Cobianu, Cazimir Gabriel Bostan, Cristian Diaconu
  • Patent number: 9828259
    Abstract: Compounds are provided for the capture of polycyclic aromatic hydrocarbons. The compound is selected from formula (I) and formula (II): The compound includes a salt formed with a suitable counter anion.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 28, 2017
    Assignees: Northwestern University, King Abdulaziz City For Science and Technology (KACST)
    Inventors: James Fraser Stoddart, Edward J. Dale, Nicolaas A. Vermeulen, Jonathan C. Barnes, Michal Juricek
  • Patent number: 9778246
    Abstract: Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: October 3, 2017
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Ravinder J. Singh, Robert L. Taylor, Stefan K. G. Grebe
  • Patent number: 9664644
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 30, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Patent number: 9529004
    Abstract: Provided are methods of detecting the presence or amount of a vitamin D metabolite in a sample using mass spectrometry. The methods generally are directed to ionizing a vitamin D metabolite in a sample and detecting the amount of the ion to determine the presence or amount of the vitamin D metabolite in the sample. Also provided are methods to detect the presence or amount of two or more vitamin D metabolites in a single assay.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 27, 2016
    Assignee: Quest Diagnostics Investments Incorporated
    Inventors: Nigel J. Clarke, Brett Holmquist, Gloria Kwang-Ja Lee, Richard E. Reitz
  • Patent number: 9400266
    Abstract: A gas chromatograph includes a sample inlet configured to receive a sample of interest and a carrier gas inlet configured to receive a carrier gas. A plurality of fluid flow valves are operably coupled to the sample inlet and the carrier gas inlet. A detector is operably coupled to the plurality of fluid flow valves and is configured to provide an analytic indication relative to the sample of interest. A controller is operably coupled to the plurality of fluid flow valves and is coupled to memory storing user-configurable information that is accessed by the controller to affect operation of the gas chromatograph.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 26, 2016
    Inventors: Shane Hale, Wanjun Yu
  • Patent number: 9244084
    Abstract: Provided are methods of detecting the presence or amount of a vitamin D metabolite in a sample using mass spectrometry. The methods generally are directed to ionizing a vitamin D metabolite in a sample and detecting the amount of the ion to determine the presence or amount of the vitamin D metabolite in the sample. Also provided are methods to detect the presence or amount of two or more vitamin D metabolites in a single assay.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: January 26, 2016
    Assignee: Quest Diagnostics Investments Incorporated
    Inventors: Nigel J. Clarke, Brett Holmquist, Gloria Kwang-Ja Lee, Richard E. Reitz
  • Patent number: 9193986
    Abstract: Method for marking a target structure, comprising the following steps: a) providing a compound V that includes at least one dihydroxy- or trihydroxyphenyl group, b) providing a means for converting the dihydroxy- or trihydroxyphenyl group to a quinone group, c) providing a target structure, d) oxidizing the dihydroxy- or trihydroxyphenyl group of the compound V to the quinone group, and e) contacting the compound V with the target structure, so that a covalent bond can be formed, wherein in step e) the compound V is used in a concentration such that the maximum concentration of dihydroxy-, trihydroxyphenyl groups and quinone groups that are introduced by the compound V is ?500 ?M, preferably ?300 ?M, and more preferably ?100 ?M.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: November 24, 2015
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Michael Szardenings, Ingo Grunwald, Klaus Rischka, Katharina Richter
  • Patent number: 9146228
    Abstract: Nanoporous polymorphic crystals of CaCO3 were used as sorbent and were applied in the dispersive micro-solid-phase extraction of selected polycyclic aromatic hydrocarbons as target analytes. After separation of the analytes on gas chromatography, they were successfully quantified with external calibration using flame ionization detection. Performance of the dispersive micro-solid-phase extraction was compared with a previously optimized solid-phase extraction technique.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: September 29, 2015
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Abdulmumin A. Nuhu, Chanbasha Basheer, Amjad Ashfaque Shaikh, Abdul Rahman Al-Arfaj
  • Patent number: 9097650
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 4, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Publication number: 20150140673
    Abstract: A sampling system includes an analyte sampler that includes an enclosure; a mount disposed in the enclosure; a capillary tube disposed in the mount; and a thermal member disposed in the enclosure and including a first fluid supply member to provide a fluid to an interior of the enclosure. The sampling system also includes a manifold in fluid communication with the analyte sampler. A process for sampling an analyte includes subjecting the capillary tube to a negative pressure; and controlling the temperature of the capillary tube to immobilize the analyte in the capillary tube; providing an analyte to a second end of the capillary tube; and immobilizing the analyte in the capillary tube to sample the analyte.
    Type: Application
    Filed: December 15, 2014
    Publication date: May 21, 2015
    Inventor: Thomas J. Bruno
  • Patent number: 9034653
    Abstract: The invention relates to the quantitative measurement of steroidal compounds by mass spectrometry. In a particular aspect, the invention relates to methods for quantitative measurement of steroidal compounds from multiple samples by mass spectrometry.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 19, 2015
    Assignee: Quest Diagnostics Investments Inc.
    Inventors: Brett Holmquist, Nigel Clarke
  • Publication number: 20150099308
    Abstract: Nanoporous polymorphic crystals of CaCO3 were used as sorbent and were applied in the dispersive micro-solid-phase extraction of selected polycyclic aromatic hydrocarbons as target analytes. After separation of the analytes on gas chromatography, they were successfully quantified with external calibration using flame ionization detection. Performance of the dispersive micro-solid-phase extraction was compared with a previously optimized solid-phase extraction technique.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Abdulmumin A. NUHU, CHANBASHA BASHEER, AMJAD ASHFAQUE SHAIKH, ABDUL RAHMAN AL-ARFAJ
  • Patent number: 8993984
    Abstract: A high energy UV fiber-coupled laser-induced fluorescence system is provided having a transmission component and a receiving component. The transmission component includes a laser source configured to produce high-energy UV pulses, a UV-enhanced fused-silica fiber coupled to the laser source, and optics coupled to the UV-enhanced fused-silica fiber for transmitting the high-energy UV pulses to a target area. The receiving component receives laser-induced florescence events from the target area and includes additional UV-enhanced fused-silica fiber coupled to optics and a receiving means.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 31, 2015
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: James R Gord, Sukesh Roy, Paul Hsu, Waruna Kulatilaka
  • Patent number: 8987002
    Abstract: Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 24, 2015
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Ravinder J. Singh, Robert L. Taylor, Stefan K. G. Grebe
  • Patent number: 8986998
    Abstract: Disclosed herein is a method for identifying the compounds contributing to a pungent odor from an air conditioner, a method for artificially reproducing the pungent odor, and preparing a corresponding pungent odor composition. Through the analysis method of the present invention, the compounds contributing to the pungent odor from an air conditioner may be identified and quantified. The pungent odor may be reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced pungent odor may provide significant data required for development of an apparatus and a method for removing specific odors.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 24, 2015
    Assignee: Hyundai Motor Company
    Inventors: Tae Hee Lee, Ji Wan Kim
  • Publication number: 20150065365
    Abstract: An apparatus is provided for sensing an analyte in a fluid.
    Type: Application
    Filed: May 12, 2014
    Publication date: March 5, 2015
    Applicant: Invoy Technologies, L.L.C
    Inventor: Lubna Ahmad
  • Patent number: 8969083
    Abstract: A method that identifies the compounds contributing to a fish-like odor from an air conditioner and artificially reproduces the fish-like odor, and prepares a corresponding fish-like odor composition. Through the analysis method of the present invention, the compounds contributing to the fish-like odor from an air conditioner are identified and quantified. The fish-like odor is reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced fish-like odor provides significant data required for development of an apparatus and a method for removing specific odor.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: March 3, 2015
    Assignee: Hyundai Motor Company
    Inventors: Tae Hee Lee, Ji Wan Kim, Sang Jun Lee, Seok Man Kim
  • Patent number: 8969084
    Abstract: A method that identifies the compounds contributing to a sweet odor from an air conditioner, reproduces the sweet odor, and prepares a corresponding sweet odor composition. Through the analysis method of the present invention, the compounds contributing to the sweet odor from an air conditioner are identified and quantified. The sweet odor is reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced sweet odor provides significant data required for development of an apparatus and a method for removing specific odor.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Hyundai Motor Company
    Inventors: Tae Hee Lee, Ji Wan Kim, Seok Man Kim, Sang Jun Lee
  • Patent number: 8962334
    Abstract: A method is provided that identifies the compounds contributing to a malodor from an air conditioner, reproduces the malodor, and prepares a corresponding malodor composition. Through the analysis method of the present invention, the compounds contributing to the malodor from an air conditioner are identified and quantified. The malodor is reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced malodor provides significant data required for development of an apparatus and a method for removing specific odor.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: February 24, 2015
    Assignee: Hyundai Motor Company
    Inventors: Tae Hee Lee, Chi Won Jeong, Ji Wan Kim, Sun Dong Kim, Sang Jun Lee, Seok Man Kim
  • Publication number: 20140302612
    Abstract: A method of detecting an analyte by: providing a device having a substrate, an alignment layer on the substrate, and a film having 4-pentyl-4?-cyanobiphenyl on the alignment layer; exposing the film to air suspected of containing the analyte; measuring a change in a physical property of the film in response to exposing the film; measuring the kinetics of the change in the physical property; and correlating the kinetics to the concentration of the analyte, identification of the analyte, or both.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Devanand K. Shenoy
  • Patent number: 8852945
    Abstract: Disclosed herein is a method for identifying compounds contributing to a sour odor emitting from an air conditioner, a method for artificially reproducing the detected sour odor and preparing a corresponding sour odor composition. Through the analysis method of the present invention, the compounds contributing to the sour odor emitted from an air conditioner may be identified and quantified. The detected sour odor may be reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced sour odor may provide meaningful data required for development of an apparatus and a method for removing specific odors.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 7, 2014
    Assignee: Hyundai Motor Company
    Inventors: Tae Hee Lee, Ji Wan Kim
  • Patent number: 8852946
    Abstract: Disclosed herein is a method for identifying the compounds contributing to urine odor emitting from an air conditioner, a method for artificially reproducing the detected urine odor, and preparing a corresponding urine odor composition. Through the analysis method of the present invention, the compounds contributing to the urine odor emitted from an air conditioner may be identified and quantified. The detected urine odor may be reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced urine odor may provide meaningful data required for development of an apparatus and a method for removing specific odor.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 7, 2014
    Assignee: Hyundai Motor Company
    Inventors: Tae Hee Lee, Ji Wan Kim, Seok Man Kim
  • Publication number: 20140287514
    Abstract: The present invention includes a sensing device and method detecting the presence of a chemical analyte, comprising: a surface; a continuous or discontinuous terbium(III)-triphenylphosphine oxide coordination polymer layer deposited on the surface, wherein the polymer layer is porous; and a luminescence detector, wherein one or more analytes that interact with the polymer layer luminesce at distinct wavelengths unique to each analyte.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Inventors: Simon M. Humphrey, Bradley J. Holliday
  • Patent number: 8765483
    Abstract: Provided herein are explosives detection substrates which include an electrospun (electro)sprayed and/or dry spun aromatic polymer, such as polystyrene, and a small molecule fluorophore. Methods for detecting an explosive material using such substrates are also provided.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: July 1, 2014
    Assignee: University of Connecticut
    Inventors: Yu Lei, Ying Wang
  • Publication number: 20140179017
    Abstract: Novel tetracationic cyclophanes incorporating ?-electron poor organic compounds into their ring structures, as well as methods of making the cyclophanes, are provided. The cyclophanes are able to form electron donor-acceptor complexes with a variety of polyaromatic hydrocarbons (PAHs) ranging in size, shape, and electron density. Also provided are methods of using the cyclophanes in the sequestration of PAHs in liquid or gaseous samples, the separation of PAHs from liquid or gaseous samples, the detection of PAHs in liquid samples, and the exfoliation of graphene via pseudopolyrotaxane formation.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Inventors: J. Fraser Stoddart, Jonathan C. Barnes, Michal Jurícek
  • Patent number: 8759111
    Abstract: Porous sol-gel material essentially consisting of units of one or more first polyalkoxysilanes chosen from the following compounds: (chloromethyl)triethoxysilane; 1,3-dimethyltetramethoxydisiloxane; ethyl trimethoxysilane; triethoxy(ethyl)silane; triethoxymethylsilane; triethoxy(vinyl)silane; trimethoxymethylsilane; trimethoxy(vinyl)silane; tetraethoxysilane or tetramethoxysilane (TMOS) and of units of one or more second polyalkoxysilanes chosen from the following compounds: (N-(3-(trimethoxysilyl)propyl)ethylenediamine; 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane, in a first polyalkoxysilane/second polyalkoxysilane molar ratio of 1/0.01 to 1/1, optionally comprising a probe molecule, method of preparation and applications in the trapping of monocyclic aromatic hydrocarbons and other pollutants or in their detection.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 24, 2014
    Assignees: CEA—Commisariat a l'Energie Atomique et aux Energies Alternatives, CNRS—Centre National de la Recherche Scientifique
    Inventors: Sabine Crunaire, Thu-Hoa Tran-Thi
  • Publication number: 20140170763
    Abstract: Processes for simulated moving bed systems for separating a preferentially adsorbed component from a feed stream and processes for determining compositions of one or more streams in the system are provided. The process comprises the steps of rotating a rotary valve to a first valve position to direct the feed stream to a first adsorbent sub-bed. A process stream is irradiated with laser light that is directed from a probe of a Raman system positioned for inline sampling of the stream. Scattered light from the irradiated stream is collected with the probe and analyzed to assess concentrations of one or more components in the stream.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: UOP LLC
    Inventors: Chad A. Williams, Bruce R. Beadle, Heather A. Fleitz, Edwin M. Victor, Gregory A. Ernst
  • Patent number: 8735166
    Abstract: Compositions containing polyanthrylene and methods of making these compositions are disclosed herein. The polyanthrylene composition can, for example, be used for detection of iron in a sample.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: May 27, 2014
    Assignee: Tongji University
    Inventors: Mei-rong Huang, Shao-jun Huang, Jiang-Ying Li, Xin-gui Li
  • Patent number: 8709821
    Abstract: The present invention relates to a compound having a structure analogous to firefly luciferin. In particular, the invention relates to a heterocycle compound which produces a luminescence at a light wavelength different from that of firefly luciferin in nature. The present invention provides a heterocycle compound of following general formula I. In the above general formula, R1, R2 and R3 can be each independently H or C1-4-alkyl. In the above general formula, X and Y can be each independently C, N, S or O. In the above general formula, the olefin chain part expressed as “n” can be changed to desired length.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: April 29, 2014
    Assignees: The University of Electro-Communications, Campus Create Co., Ltd.
    Inventors: Shojiro Maki, Satoshi Kojima, Haruki Niwa
  • Publication number: 20130323853
    Abstract: A method of monitoring a reformer unit is disclosed. The method includes analyzing at least one of the feedstock and the product stream. The analyzing includes performing a detailed hydrocarbon analysis of at least one of the feedstock and the product stream. The method further includes obtaining a one-dimensional output from the detailed hydrocarbon analysis and adjusting the one-dimensional output to produce a multi-dimensional equivalent output. Adjusting the one-dimensional output includes applying an appropriate correlation matrix to the one-dimensional output to produce the multi-dimensional equivalent output. The appropriate correlation matrix is selected based upon the characteristics of the feedstock and the particular refinery unit.
    Type: Application
    Filed: May 17, 2013
    Publication date: December 5, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Frank DiSanzo, Eric Shu Shi, Geok Ling Tan, Yoichi Y. Sano
  • Patent number: 8592218
    Abstract: Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: November 26, 2013
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Ravinder J. Singh, Robert L. Taylor, Stefan K. G. Grebe
  • Patent number: 8586383
    Abstract: The invention relates to a device (10) for detection of harmful substances with a measurement unit (28) for measuring at least one harmful substance and an evaluation unit (30) for determining the concentration of the at least one harmful substance. The invention also relates to a method for detecting harmful substances in a gas mixture. It is hereby provided that the gas mixture is tested for a gaseous harmful substance or simultaneously for several gaseous harmful substances, wherein the gaseous harmful substance or the gaseous harmful substances is/are measured with different sensor means, and the gaseous harmful substances are optionally chemically modified such that a measurement is performed with the existing sensor means.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: November 19, 2013
    Assignee: Airsense Analytics
    Inventors: Andreas Walte, Wolf Münchmeyer
  • Patent number: 8487243
    Abstract: The invention provides a method and apparatus for trapping, releasing and/or separating sample components in solution passing through a channel with or without packing material present by passing ion current through the channel driven by an electric field. A portion of the ion current comprises cation and/or anion species generated from second solution flows separated from the sample solution flow path by semipermeable membranes. Cation and/or Anion ion species generated in the second solution flow regions are transferred into the sample solution flow path through ion selective semipermeable membranes. Ion current moving along the sample solution flow path is controlled by varying the composition of the second solutions and/or changing the voltage between membrane sections for a given sample solution composition. The sample composition may also be varied separately or in parallel to enhance trapping, release and/or separation efficiency and range.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: July 16, 2013
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Craig M. Whitehouse, Thomas P. White
  • Patent number: 8455817
    Abstract: A method and apparatus to trap, release and/or separate sample components in solution passing through a channel with or without packing material present by passing ion current through the channel driven by an electric field. A portion of the ion current includes cation and/or anion species generated from second solution flows separated from the sample solution flow path by semipermeable membranes. Cation and/or anion ion species generated in the second solution flow regions are transferred into the sample solution flow path through ion selective semipermeable membranes. Ion current moving along the sample solution flow path is controlled by varying the composition of the second solutions and/or changing the voltage between membrane sections for a given sample solution composition. The sample composition may also be varied separately or in parallel to enhance trapping, release and/or separation efficiency and range.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: June 4, 2013
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Craig M. Whitehouse, Thomas White
  • Publication number: 20130137185
    Abstract: The invention relates to the quantitative measurement of steroidal compounds by mass spectrometry. In a particular aspect, the invention relates to methods for quantitative measurement of steroidal compounds from multiple samples by mass spectrometry.
    Type: Application
    Filed: December 9, 2010
    Publication date: May 30, 2013
    Inventors: Brett Holmquist, Nigel Clarke
  • Patent number: 8398921
    Abstract: A chemical sensor using metal nano-particles and a method for manufacturing a chemical sensor using metal nano-particles are provided. The chemical sensor includes: metal nano-particles; single-ligand organic molecules (or a single molecule) that binds to the metal nano-particles by using a metal bonding functional group; a substrate bonding functional group formed at the metal nano-particles and the single-ligand organic molecules as bound to each other; a substrate; electrodes formed on the substrate and having an interdigitate (IDT) structure; and a substrate functional group formed on the substrate and positioned between the electrodes, wherein the substrate bonding functional group and the substrate functional group are covalently bonded.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Myung Lae Lee, Young Jun Kim, Sung Hae Jung, Ho Jun Ryu, Jong Moo Lee
  • Patent number: 8394643
    Abstract: The present application relates to copolymers having at least one optionally substituted fluoranthene as a first monomer unit and at least one optionally substituted pyrrole as a second monomer unit. The copolymer may, for example, emit green light when exposed to a blue or ultraviolet radiation. Methods of making the copolymer are also disclosed, as well as methods and apparatuses for producing light and detecting nitroaromatics using the copolymer.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 12, 2013
    Assignee: Tongji University
    Inventors: Xingui Li, Dunyin Gu, Meirong Huang
  • Patent number: 8367421
    Abstract: An improved detection reaction for benzene in gas analysis with a gas detector tube formed of a carrier material impregnated with gold(III) oxide in a display layer.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: February 5, 2013
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Armin Schulten, Silke Guga
  • Patent number: 8349613
    Abstract: Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: January 8, 2013
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Ravinder J. Singh, Robert L. Taylor, Stefan K. G. Grebe
  • Patent number: 8313697
    Abstract: The present invention relates to a cartridge 1 including a plurality of analyzing tools 3 arranged lined in a plane direction and a case 2 for accommodating the plurality of analyzing tools 3, and being configured to take out the analyzing tool 3 one at a time from the case 2. The plurality of analyzing tools 3 further include engagement means 32, 33 for restricting the analyzing tools 3 adjacent to each other in the plane direction and allowing removable attachment in a thickness direction D1, D2 of the analyzing tool 3. The present invention further relates to an analyzer and an analyzing system for analyzing a sample using the cartridge 1.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 20, 2012
    Assignee: Arkray, Inc.
    Inventor: Yoshiharu Sato
  • Publication number: 20120270330
    Abstract: The present invention provides a device that makes it possible to perform real-time detection and analysis of BTEX components in real samples using an inexpensive and miniaturized hybrid specific binding-separation device. The device may be used in occupational health and safety applications as well as for toxicological population studies to determine the presence of organic volatile components in an air sample.
    Type: Application
    Filed: August 25, 2010
    Publication date: October 25, 2012
    Applicant: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Nongjian Tao, Erica Forzani, Rodrigo A Iglesias, Francis Tsow
  • Patent number: 8241916
    Abstract: A method allowing an accurate diagnosis of a failure of an oil-filled electrical apparatus resulting from production of copper sulfide even with a small amount of an insulating oil is implemented. A diagnostic method for an oil-filled electrical apparatus for diagnosing a failure of the oil-filled electrical apparatus having a copper part disposed in an insulating oil is implemented by detecting at least one compound of bibenzyl and dibenzyl sulfide in the oil of the oil-filled electrical apparatus, to diagnose a failure of the oil-filled electrical apparatus in accordance with the detected amount of the compound. It is configured such that a failure of the oil-filled electrical apparatus resulting from production of copper sulfide can be diagnosed by detecting a specified substance, which allows an accurate diagnosis of a failure even with a small amount of the insulating oil.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: August 14, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Satoru Toyama, Junji Tanimura, Hisakatsu Kawarai, Tsuyoshi Amimoto
  • Publication number: 20120184042
    Abstract: The present invention relates to a new method for fragmenting ions in a mass spectrometer through the use of electron transfer dissociation, and for performing sequence analysis of peptides and proteins by mass spectrometry. In the case of peptides, the invention promotes fragmentation along the peptide backbone and makes it possible to deduce the amino acid sequence of the sample, including modified amino acid residues, through the use of an RF field device.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 19, 2012
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Donald F. HUNT, Joshua J. COON, John Edward Philip SYKA, Jarrod A. MARTO
  • Publication number: 20120142545
    Abstract: A method for the equilibration of enriched isotope species and natural isotope species prior to mass spectrometric analysis using solid phase and/or microwave isotope ratio equilibration and measurement.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 7, 2012
    Inventors: Howard M. Kingston, Mizanur Rahman, David Lineman, Mehmet Pamukcu
  • Publication number: 20110281367
    Abstract: The invention relates to a device (10) for detection of harmful substances with a measurement unit (28) for measuring at least one harmful substance and an evaluation unit (30) for determining the concentration of the at least one harmful substance. The invention also relates to a method for detecting harmful substances in a gas mixture. It is hereby provided that the gas mixture is tested for a gaseous harmful substance or simultaneously for several gaseous harmful substances, wherein the gaseous harmful substance or the gaseous harmful substances is/are measured with different sensor means, and the gaseous harmful substances are optionally chemically modified such that a measurement is performed with the existing sensor means.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Applicant: Airsense Analytics GmbH
    Inventors: Andreas WALTE, Wolf MÜNCHMEYER
  • Patent number: RE44887
    Abstract: The invention provides a method and apparatus for trapping, releasing and/or separating sample components in solution passing through a channel with or without packing material present by passing ion current through the channel driven by an electric field. A portion of the ion current comprises cation and/or anion species generated from second solution flows separated from the sample solution flow path by semipermeable membranes. Cation and/or Anion ion species generated in the second solution flow regions are transferred into the sample solution flow path through ion selective semipermeable membranes. Ion current moving along the sample solution flow path is controlled by varying the composition of the second solutions and/or changing the voltage between membrane sections for a given sample solution composition. The sample composition may also be varied separately or in parallel to enhance trapping, release and/or separation efficiency and range.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 13, 2014
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Craig M. Whitehouse, Thomas P. White