By Means Of A Solid Body In Contact With A Fluid Patents (Class 436/151)
  • Patent number: 8449824
    Abstract: A sensor instrument system for detecting and identifying analytes in fluids of a region contains a local sensor instrument and remote central station. The instrument includes a core technology employing a single sensor having two electrodes operated by an electrical frequency sweeping to generate two sets of patterned electrical information from a single measurement, a data transmission module and a GPS receiver module. The central station connects to a network means connected to a plurality of local receiving sites equipped with including the respective transceivers, so that the local analyte electrical information and geographic position information transmitted by the instrument can be wirelessly and remotely received and processed by the central station.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 28, 2013
    Inventor: Yizhong Sun
  • Patent number: 8444937
    Abstract: A method and apparatus for near real-time in-situ soil solution measurements is presented. An outer sleeve is placed in soil where ionic concentrations of organic or inorganic species are to be measured. A porous section connects with the outer sleeve (the porous section initially loaded with distilled water) equilibrates with the solution present in soil pores to form a solution to be measured. The initial distilled water is displaced within the porous section by a removable plunger. After substantial equilibration of the solution to be measured within the apparatus, the plunger is removed and a removable probe replaced. The probe may be an Ion Selective Electrode, or a transflection dip probe. The probe then may be used under computer control for measurement of solution properties. The Ion Selective Electrode may measure nitrate (NO3?) concentrations. The transflection dip probe may be read with spectrometer with an input deuterium light source.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 21, 2013
    Assignee: The Regents of the University of California
    Inventors: Atac Tuli, Jan W. Hopmans, Tamir Kamai, Benjamin D. Shaw
  • Patent number: 8440467
    Abstract: Electronic devices comprising a dielectric material, at least one carbon sheet, and two electrode terminals are described herein. The devices exhibit non-linear current-versus-voltage response over a voltage sweep range in various embodiments. Uses of the electronic devices as two-terminal memory devices, logic units, and sensors are disclosed. Processes for making the electronic devices are disclosed. Methods for using the electronic devices in analytical methods are disclosed.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: May 14, 2013
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Yubao Li, Alexander Sinitskiy
  • Patent number: 8440145
    Abstract: A device and method which comprises a sensing surface on a membrane, solid surface or electrode, where the sensing surface contains a dye or chromophore chosen in relation to a particular target substance to be detected and quantified. The dye or chromophore is of a type which produces an electrical signal upon illumination. The particular dye or chromophore chosen for a particular target substance is one in which the presence of the target substance causes a change in the electrical signal produced. The presence of the target substance modifies the expected photo-induced charge movements (PICM) produced by the sensing surface upon illumination. The photo-induced charge movements produce signals which are detected by electronic circuits, and the presence and concentration of the target substance is determined by analyzing the difference between the PICM of the target sample versus the PICM of a control sample lacking the target substance.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: May 14, 2013
    Assignee: University of North Florida
    Inventors: Jay S. Huebner, Rodolfo T. Arrieta
  • Patent number: 8435796
    Abstract: A method for using of a fabric comprising a material chosen from metals, metallic alloys, polymers, inorganic compounds and mixtures thereof, which material is capable of detecting the presence of a chemical substance, for the detection of said chemical substance.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: May 7, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Jean Brun, Catherine Durand, Alain Soubie
  • Patent number: 8432171
    Abstract: An analyte concentration, in a sample fluid, is determined by differential measurement. Two or more capacitive field effect sensors have an identical basic structure and are arranged in a shared measuring cell. One of the sensors forms a measuring sensor with an active transductor layer. Another sensor forms a reference sensor without an active transductor layer. The sensors are contacted with the sample fluid and the sensors, have an associated reference electrode, or have a shared reference electrode. A bias voltage composed of an electric DC voltage and a superimposed AC voltage is applied between each sensor and associated reference electrode(s) Capacitance changes due to the analyte are eliminated by controlling the bias voltage applied to the measuring sensor in a closed control loop. A measuring signal is obtained by calculating a difference between voltage values representative of DC voltage potentials applied to the measuring sensor and reference sensor, respectively.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 30, 2013
    Assignee: Buerkert Werke GmbH
    Inventors: Thomas Coppe, Jean-Luc Henry, Michael Schoening
  • Patent number: 8426207
    Abstract: Devices, methods and systems effective to evaluate a physical or chemical property of an ion exchange resin-treated biological fluid sample are provided.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: April 23, 2013
    Assignee: Cantimer, Inc.
    Inventors: Ray F. Stewart, Aaron Dickerman-Stewart
  • Patent number: 8420404
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 16, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8415166
    Abstract: The present invention provides a device for the detection of a peroxide-based explosive, in particular, triacetone triperoxide (TATP), which is based on a molecular controlled semiconductor resistor (MOCSER) and composed of at least one insulating or semi-insulating layer, at least one conducting semiconductor layer, two conducting pads and a layer of multifunctional organic molecules capable of adsorbing molecules of the peroxide-based explosive. The invention further provides an array of semiconductor devices for the selective detection of a peroxide-based explosive, as well as a method for the selective detection of vapors of a peroxide-based explosive in a gaseous mixture using this array.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: April 9, 2013
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Ron Naaman, Eyal Capua, Roberto Cao
  • Patent number: 8398921
    Abstract: A chemical sensor using metal nano-particles and a method for manufacturing a chemical sensor using metal nano-particles are provided. The chemical sensor includes: metal nano-particles; single-ligand organic molecules (or a single molecule) that binds to the metal nano-particles by using a metal bonding functional group; a substrate bonding functional group formed at the metal nano-particles and the single-ligand organic molecules as bound to each other; a substrate; electrodes formed on the substrate and having an interdigitate (IDT) structure; and a substrate functional group formed on the substrate and positioned between the electrodes, wherein the substrate bonding functional group and the substrate functional group are covalently bonded.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Myung Lae Lee, Young Jun Kim, Sung Hae Jung, Ho Jun Ryu, Jong Moo Lee
  • Patent number: 8377706
    Abstract: In accordance with an aspect of the present invention, there is provided a transistor including: a substrate; a source electrode and a drain electrode formed being spaced apart from each other on the substrate; a nanostructure electrically contacted with and formed between the source electrode and the drain electrode; and a lipid membrane having an olfactory receptor protein which is formed to cover surfaces of the source electrode, the drain electrode, and the nanostructure. The olfactory receptor-functionalized transistor in accordance with an aspect of the present invention is useful for a bioelectronic nose which can detect odorants highly specifically with femtomolar sensitivity, and may be applied in various fields requiring the rapid detection of specific odorants, for example, anti-bioterrorism, disease diagnostics, and food safety.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: February 19, 2013
    Assignee: Seoul National University Industry Foundation
    Inventors: Seung-Hun Hong, Tai Hyun Park, Tae-Hyun Kim, Sang Hun Lee
  • Patent number: 8377707
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 19, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: David W. Burke, Lance S. Kuhn, James Maxwell
  • Patent number: 8349610
    Abstract: Devices, methods and systems effective to evaluate a physical or chemical property of a surfactant-treated biological fluid sample are provided.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: January 8, 2013
    Assignee: Cantimer, Inc.
    Inventors: Ray F. Stewart, Kathryn M. Morton, Aaron Dickerman-Stewart, Nathan Mak
  • Patent number: 8313697
    Abstract: The present invention relates to a cartridge 1 including a plurality of analyzing tools 3 arranged lined in a plane direction and a case 2 for accommodating the plurality of analyzing tools 3, and being configured to take out the analyzing tool 3 one at a time from the case 2. The plurality of analyzing tools 3 further include engagement means 32, 33 for restricting the analyzing tools 3 adjacent to each other in the plane direction and allowing removable attachment in a thickness direction D1, D2 of the analyzing tool 3. The present invention further relates to an analyzer and an analyzing system for analyzing a sample using the cartridge 1.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 20, 2012
    Assignee: Arkray, Inc.
    Inventor: Yoshiharu Sato
  • Patent number: 8298828
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 30, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8298488
    Abstract: A microfabricated TID comprises a microhotplate and a thermionic source disposed on the microhotplate. The microfabricated TID can provide high sensitivity and selectivity to nitrogen- and phosphorous-containing compounds and other compounds containing electronegative function groups. The microfabricated TID can be microfabricated with semiconductor-based materials. The microfabricated TID can be combined with a microfabricated separation column and used in microanalytical system for the rapid on-site detection of pesticides, chemical warfare agents, explosives, pharmaceuticals, and other organic compounds that contain nitrogen or phosphorus.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: October 30, 2012
    Assignee: Sandia Corporation
    Inventors: Patrick R. Lewis, Ronald P. Manginell, David R. Wheeler, Daniel E. Trudell
  • Patent number: 8268630
    Abstract: Sensor devices and sensing methods are provided. A sensor device is provided two flow channels, each comprising a sensor, and analyte flow is alternated between the two channels such that the sensors alternately serve as a sensor and a reference, thereby increasing accuracy of the sensors. The device is useful, for example, in chemical sensing using a variety of sensor types including without limitation: chemiresistors, gravimetric sensors, optical sensors, among others. Related sensing methods also are provided.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: September 18, 2012
    Assignee: Carnegie Mellon University
    Inventors: Gary Keith Fedder, Nathan Scott Lazarus
  • Patent number: 8257978
    Abstract: Provided are novel technical means for obtaining useful knowledge in practical application of antioxidation action of dissolved hydrogen and in practical application of active oxygen scavenging action in water. Based on the temporal profile of the difference between the dissolved oxygen amount measured with forcibly dissolving hydrogen and the dissolved oxygen amount measured with blowing any other gas than hydrogen, the reaction between dissolved hydrogen and dissolved oxygen is quantitatively evaluated. Based on the temporal profile of the difference between the dissolved oxygen amount measured with making a photosensitizing dye contained in water and with forcibly dissolving hydrogen therein, and the dissolved oxygen amount measured without making a photosensitizing dye contained in water and with forcibly dissolving hydrogen therein, the reaction between dissolved hydrogen and dissolved oxygen is quantitatively evaluated.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: September 4, 2012
    Assignees: Eureka-Lab Inc., Seiji Katayama
    Inventors: Seiji Katayama, Yumiko Katayama
  • Publication number: 20120214193
    Abstract: An object of the present invention is to provide a method for increasing the change in the fluorescent intensity as emitted from potential-sensitive fluorochromes depending on a potential or ionic strength change. Another object of the present invention is to measure the changes in the activity potentials of ES cell- or iPS cell-derived cardiomyocytes that have heretofore been impossible to measure. The present inventors screened a variety of substances and found that vitamin E has an action for increasing the sensitivity of potential-sensitive fluorochromes whereas cholesterol has an action for enhancing the fluorescent intensity of potential-sensitive fluorochromes. In addition, it has become clear that these substances can be combined in such a way that the sensitivity of a potential-sensitive fluorochrome is increased by vitamin E while at the same time its absolute fluorescent intensity is enhanced by cholesterol.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 23, 2012
    Applicant: Keio University
    Inventors: Fumiyuki Hattori, Keiichi Fukuda, Yu-suke Satoh
  • Patent number: 8241913
    Abstract: A multiple-gate field-effect transistor includes a fluid in a top gate, two lateral gates, and a bottom gate. The multiple-gate field-effect transistor also includes a patterned depletion zone and a virtual depletion zone that has a lesser width than the patterned depletion zone. The virtual depletion zone width creates a virtual semiconductor nanowire that is lesser in width than the patterned depletion zone.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: August 14, 2012
    Assignee: Intel Corporation
    Inventors: Gil Shalev, Amihood Doron, Ariel Cohen
  • Patent number: 8236569
    Abstract: The present invention is a multidimensional integrated detection and analysis system (MIDAS) for any gas or fluid that transfers or accepts electronic charge (including but not limited to CH4, CO2, CO, NOx, SOx, H2O, NH3, NHx). MIDAS allows for the development of a highly sensitive, selective, and expedient sensor platform capable of uniquely identifying adsorbed molecules based on simultaneous measurement of truly orthogonal responses based on work function (?), capacitance (C), and/or conductance (?) changes.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: August 7, 2012
    Assignee: University of South Carolina
    Inventors: Tom Vogt, Gautam Koley
  • Patent number: 8227255
    Abstract: A biosensor capable of analyzing an object, such as antigen, antibody, DNA or RNA, through detection of magnetic field to thereby allow washout of unbound label molecules to be unnecessary, which biosensor is compact and available at low price, excelling in detection precision. Coils are arranged at an upper part and a lower part of a magnetic sensor using a hall element as a magnetic field detection element. An object and magnetic particles having an antibody capable of specific bonding with the object bound to the surface thereof are introduced in the magnetic sensor having a molecular receptor capable of specific bonding with the object attached to the surface thereof. Therefore, a change in magnetic field by magnetic particles bonded through the molecular receptor to the surface of the magnetic sensor is detected by means of the hall element.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: July 24, 2012
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventor: Hirofumi Fukumoto
  • Patent number: 8222041
    Abstract: A high electron mobility transistor (HEMT) capable of performing as a CO2 or O2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: July 17, 2012
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Fan Ren, Stephen John Pearton
  • Patent number: 8222043
    Abstract: A leak detection system for a flowing electrolyte battery comprising a containment member associated with at least one of a stack of a flowing electrolyte battery and an electrolyte reservoir of a flowing electrolyte battery and a sensing member for sensing a fluid leak within the containment member.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: July 17, 2012
    Assignee: Premium Power Corporation
    Inventor: Rick Winter
  • Publication number: 20120171775
    Abstract: The present invention is a multidimensional integrated detection and analysis system (MIDAS) for any gas or fluid that transfers or accepts electronic charge (including but not limited to CH4, CO2, CO, NOx, SOx, H2O, NH3, NHx). MIDAS allows for the development of a highly sensitive, selective, and expedient sensor platform capable of uniquely identifying adsorbed molecules based on simultaneous measurement of truly orthogonal responses based on work function (?), capacitance (C), and/or conductance (?) changes.
    Type: Application
    Filed: August 7, 2008
    Publication date: July 5, 2012
    Applicant: UNIVERSITY OF SOUTH CAROLINA
    Inventors: Tom Vogt, Gautam Koley
  • Patent number: 8178357
    Abstract: Sensors, sensing systems and sensing methods of the invention provide for detection of peroxides, including for example, vapor-phase H2O2 and organic peroxides such as di-tert-butyl peroxide. A sensor and sensing method of the invention uses at least two phthalocyanines, one of which exhibits an oxidation reaction with peroxides and the other of which exhibits a reduction reaction with peroxides. A peroxide is readily identified by a sensor of the invention when one of the at least two phthalocyanines exhibits increased resistance to current flow and the other of the at least two phthalocyanines exhibits decreased resistance to current flow.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 15, 2012
    Assignee: The Regents of the University of California
    Inventors: William C. Trogler, Forest Bohrer, Andrew C. Kummel
  • Patent number: 8148164
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 2.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: April 3, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8148160
    Abstract: Molecular sensing of target molecules is performed by using an electrode for molecular sensing in which detecting molecules which can shift a surface potential of the electrode by an interaction with the target molecules are bound directly or via coupling molecules to surface hydroxyl groups on a conductive metal oxide. By this molecular sensing, specific target molecules can be detected selectively and stably with high accuracy. It is also possible to detect an enantiomer selectively and stably with high accuracy. The present invention can provide a chemical sensing system which is useful in fields such as medicines, environments and foods.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: April 3, 2012
    Assignee: Waseda University
    Inventors: Tetsuya Osaka, Mariko Matsunaga, Tsubasa Ueno
  • Patent number: 8114677
    Abstract: A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 14, 2012
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC.
    Inventors: Jonathan S. Morrell, Edward B. Ripley
  • Patent number: 8114675
    Abstract: Described are CO sensors, methods for making the CO sensors, and methods for using the CO sensors. An exemplary CO sensor includes a ruthenium oxide present in a form having one or more surfaces, a pair of conductive electrodes operatively connected to a surface of the ruthenium oxide, and an electrical device operatively connected to the pair of conductive electrodes. The gas mixture contacts at least one surface of the ruthenium oxide during operation of the sensor and the electrical device applies a constant potential (or current) and measures a current (or potential) between the pair of conductive electrodes, from which a resistance can be derived as the gas mixture contacts at least one surface of the ruthenium oxide. The ruthenium oxide may have varying levels of hydration. Furthermore, the sensor operates at a temperature range of from about 25° C. to about 300° C.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 14, 2012
    Assignee: The Ohio State University Research Foundation
    Inventors: Prabir K. Dutta, Adedunni D. Adeyemo
  • Patent number: 8080205
    Abstract: Analyte meter protectors, meters that include the same, and methods. In one example, a ketone monitoring system is provided wherein a port protector is used in combination with a meter.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 20, 2011
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Frederic Arbogast, Paul Strasma, Lawrence Azzano, Kenneth Gary
  • Patent number: 8058077
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: November 15, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Henning Groll, Michael J. Celentano
  • Patent number: 8053245
    Abstract: A system for detecting biomaterials that are suspected to be present in a medium that contains multiple materials. A hydrated substrate has water molecules entrapped within molecular spaces between polymeric chains of the substrate. The hydrated substrate also has detection material, which has a specific affinity for a target material. The entrapped water molecules provide a source of water for the detection material such that a change in charge occurs when the target material and detection material coalesce. A display unit detects the change in charge and provides an indication that the target material is present when the change in charge is detected.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: November 8, 2011
    Assignee: Nanotel Biotechnologies, Inc.
    Inventor: Angelo Karavolos
  • Publication number: 20110269240
    Abstract: The present invention is drawn toward a chemical or biological sensor that can comprise a semi-conducting nanowire and a chemical or biological sensing molecule tethered to the semi-conducting nanowire through a spacer group including a hydrophilic reactive group. In one embodiment, the semi-conducting nanowire can be part of an array of like or similar semi-conducting nanowires. Electrical leads can provide an electrical current to the array, and a signal measurement apparatus can be electrically coupled to the array, and can be configured for detecting changes in the electrical current of the array.
    Type: Application
    Filed: March 8, 2004
    Publication date: November 3, 2011
    Inventors: Zhang-Lin Zhou, Zhiyong Li, Sean Xiao-An Zhang
  • Patent number: 8030100
    Abstract: The application relates to a chemical sensor device comprising a substrate (1), a sensor medium (3) formed on the substrate, the sensor medium comprising one-dimensional nanoparticles, wherein the one-dimensional nanoparticles essentially consist of a semiconducting AxBy compound, e.g. V2O5 and detection means (2) for detecting a change of a physical property of the sensor medium e.g. conductivity. The porosity of the sensor medium supports a fast access of the analyte to the sensing material and therefore a fast response of the sensor. The selectivity and sensitivity of the sensor can be tailored by doping the one-dimensional nanoscale material with different dopants or by varying the dopant concentration. Sensitivity of the sensor device to an analyte, preferably an amine, can be increased by increasing relative humidity of the sample to at least 5%.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: October 4, 2011
    Assignee: Sony Deutschland GmbH
    Inventors: Isabelle Besnard, Tobias Vossmeyer, Akio Yasuda, Marko Burghard, Ulrich Schlecht
  • Patent number: 7998746
    Abstract: Chips that include one or more particle manipulation mechanisms, or force transduction elements, provided at specific locations to manipulate and localize particles proximal the substrate surface. In one embodiment, individually addressable magnetic control mechanisms such as electric coils are provided at specific locations to create a magnetic field to attract magnetic particles, such a magnetic or magnetizable beads, to those specific locations. In another embodiment, electrostatic control mechanisms such as electrodes are provided to attract and manipulate electrically charged micro-particles. A location may include a crater or well formed in the substrate, or it may include an element on the surface of the substrate. In some embodiments, one or more sensors are located proximal specific locations, e.g., specific craters, so as to analyze specific conditions at each location. In other embodiments, multiple locations share one or more sensors.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: August 16, 2011
    Inventors: Robert Otillar, David Storek, Christer Johansson
  • Patent number: 7993932
    Abstract: A leak detection system for a flowing electrolyte battery comprising a containment member associated with at least one of a stack of a flowing electrolyte battery and an electrolyte reservoir of a flowing electrolyte battery and a sensing member for sensing a fluid leak within the containment member.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 9, 2011
    Assignee: Premium Power Corporation
    Inventor: Rick Winter
  • Patent number: 7981363
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: July 19, 2011
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: David W. Burke, Lance S. Kuhn, Terry A. Beaty, Vladimir Svetnik
  • Patent number: 7977112
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 12, 2011
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: David W. Burke, Lance S. Kuhn, James Maxwell
  • Patent number: 7977111
    Abstract: A magnetic sensor for identifying small superparamagnetic particles bonded to a substrate contains a regular orthogonal array of MTJ cells formed beneath that substrate. A magnetic field imposed on the particle, perpendicular to the substrate, induces a magnetic field that has a component within the MTJ cells that is along the plane of the MTJ free layer. If that free layer has a low switching threshold, the induced field of the particle will create resistance changes in a group of MTJ cells that lie beneath it. These resistance changes will be distributed in a characteristic formation or signature that will indicate the presence of the particle. If the particle's field is insufficient to produce the free layer switching, then a biasing field can be added in the direction of the hard axis and the combination of this field and the induced field allows the presence of the particle to be determined.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 12, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Xizeng Shi, Pokang Wang, Hsu Kai Yang
  • Publication number: 20110165557
    Abstract: Provided are an apparatus and method for detecting biomolecules. The apparatus includes a FET having a substrate, a source electrode, a drain electrode, a channel region between the source and drain electrodes, and probe molecules fixed to the channel region, wherein the source and drain electrodes are separated on the substrate, a microfluid supplier selectively supplying one of a reference buffer solution of low ionic concentration and a reaction solution of high ionic concentration containing target molecules, to the channel region of the FET to which the probe molecules are fixed, and a biomolecule detector detecting the target molecules by measuring a first current value of the channel region of the FET, and a second current value of the channel region of the FET to which the target molecules and the probe molecules that bind to each other in the reaction solution of high ionic concentration are fixed.
    Type: Application
    Filed: November 20, 2008
    Publication date: July 7, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chil-Seong Ah, Ansoon Kim, Chan-Woo Park, Chang-Geun Ahn, Jong-Heon Yang, In-Bok Baek, Taeyoub Kim, HyeKyoung Yang, Gun-Yong Sung, Seon-Hee Park, Han-Young Yu, Moon-Gyu Jang
  • Patent number: 7951612
    Abstract: Contemplated herein is an automated microscope slide antigen recovery and staining apparatus and method that features a plurality of individually operable miniaturized pressurizable reaction compartments for individually and independently processing a plurality of individual microscope slides. The apparatus preferably features independently movable slide support elements each having an individually heatable heating plate. Each slide support element preferably supports a single microscope slide. Each microscope slide can be enclosed within an individual pressurizable reaction compartment. Pressures exceeding 1 atm or below 1 atm can be created and maintained in the reaction compartment prior to, during or after heating of the slide begins.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: May 31, 2011
    Inventors: Lee Angros, Thomas Lee Byers
  • Patent number: 7951606
    Abstract: A bilirubin sensor has a working electrode with a first chemical matrix disposed thereon that contains a binder, a substrate electrode with a second chemical matrix dispose thereon that contains a binder and a chemical agent that consumes bilirubin, a reference electrode, a sample chamber containing the working electrode, the substrate electrode and the reference electrode, and a method of measuring bilirubin in a body fluid.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 31, 2011
    Assignee: Nova Biomedical Corporation
    Inventors: Jianhong Pei, Mary M. Lauro, Chung Chang Young
  • Patent number: 7932096
    Abstract: A method of making a nanoclusters functionalized with a single DNA strand comprising the steps of providing nanoclusters, combining said nanoclusters with thiolated DNA, incubating said nanoclusters and thiolated DNA mixture, combining said mixture with a solution comprising ethanol and dichloromethane; separating said mixture into an aqueous phase and an organic phase, mixing said aqueous phase with a solution comprising dicholormethane and NaCl, and separating the mixture into an aqueous phase and an organic phase; wherein said organic phase comprises said nanoclusters functionalized with a single DNA strand. Further, provided is a nanocluster functionalized with a single DNA strand comprising a nanocluster, said nanocluster being functionalized with a single DNA strand, said DNA strand having a length of about 10 to about 50 bases.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: April 26, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Sulay Jhaveri, Mario Ancona, Edward E Foos, Eddie L Chang
  • Patent number: 7927883
    Abstract: A method and apparatus for near real-time in-situ soil solution measurements is presented. An outer sleeve is placed in soil where ionic concentrations of organic or inorganic species are to be measured. A porous section connects with the outer sleeve (the porous section initially loaded with distilled water) equilibrates with the solution present in soil pores to form a solution to be measured. The initial distilled water is displaced within the porous section by a removable plunger. After substantial equilibration of the solution to be measured within the apparatus, the plunger is removed and a removable probe replaced. The probe may be an Ion Selective Electrode, or a transflection dip probe. The probe then may be used under computer control for measurement of solution properties. The Ion Selective Electrode may measure nitrate (NO3?) concentrations. The transflection dip probe may be read with spectrometer with an input deuterium light source.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: April 19, 2011
    Assignee: The Regents of the University of California
    Inventors: Atac Tuli, Jan W. Hopmans, Tamir Kamai, Benjamin D. Shaw
  • Patent number: 7901632
    Abstract: An array of sensor elements is formed by the incorporation of sensing materials into porous structures, creating sensing systems with extremely large surface areas with sensing molecules attached to mimic the large number of cilia of an olfactory system. In each sensor element, the sensing material or molecules are attached to spacer molecules or groups, which are attached to linker molecules or groups, which are attached to the porous substrate material. More specifically, a porphyrin doped aerogel material is used. The porphyrin sensing material is attached to the aerogel throughout its high surface area pore space. The porphyrin is covalently bonded to the silica network of the aerogel with a triethoxysilyl group linker that covalently attaches to the aerogel, and an alkyl group spacer.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: March 8, 2011
    Inventor: Chi Yung Fu
  • Patent number: 7901629
    Abstract: A cartridge device having a receiving portion for receiving a blood sample and a jack portion for receiving a plug; a stirring device for circulating the blood sample within the receiving portion; and an electrode holder having at least one incorporated electrode wire pair; wherein the electrode holder is attachable to the cell such that one end of the at least one electrode wire pair forms a sensor unit for measuring the electrical impedance between the two electrode wires of the at least one electrode wire pair within the blood sample and that the opposite end of the at least one electrode wire pair forms a plug portion being connectable directly to the plug for an electrical connection of the sensor unit to an analyser.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: March 8, 2011
    Assignee: Dynabyte Informationssysteme GmbH
    Inventors: Andreas Calatzis, Ben Krüger, Marc Wittwer
  • Publication number: 20110045523
    Abstract: Systems and methods related to optical nanosensors comprising photoluminescent nanostructures are generally described. Generally, the nanosensors comprise a photoluminescent nanostructure and a polymer that interacts with the photoluminescent nanostructure. In some cases, the interaction between the polymer and the nanostructure can be non-covalent (e.g., via van der Waals interactions). The nanosensors comprising a polymer and a photoluminescent nanostructure may be particularly useful in determining the presence and/or concentration of relatively small molecules, in some embodiments. In addition, in some instances the nanosensors may be capable of determining relatively low concentrations of analytes, in some cases determining as little as a single molecule. In some embodiments, the interaction between the analyte and the nanosensor (e.g.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 24, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Michael S. Strano, Jong-Ho Kim, Jingqing Zhang, Daniel A. Heller
  • Patent number: 7892495
    Abstract: A system for detecting a wide range of microbial organisms, including virus, and determining concentrations in near real-time to determine titer, without the requirement to grow micro-organisms includes an electrometer configured to measure photo-induced interfacial voltages and an electrode assembly with a substrate and at least one electrode on a surface of the substrate electrically coupled to the electrometer. An attachment factor is applied to an exposed surface of each electrode. The attachment factor is effective for interaction with the microbial organism. A transparent vessel for containing the electrolytic solution is provided. The microbial organism may be contained in the electrolytic solution or applied to the coated electrode before being submerged in the electrolytic solution.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: February 22, 2011
    Inventors: Jay S. Huebner, Doria F. Bowers, Erica N. Mejia
  • Patent number: RE42192
    Abstract: Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: March 1, 2011
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr., Theresa M. Bomstad, Susan S. Sorini-Wong, Gregory K. Wong