Multiple Stages Of Heating Or Heating At Multiple Temperatures Or Application Of Temperature Gradient Patents (Class 436/157)
  • Patent number: 6277649
    Abstract: A system for analysis of materials includes a sensor loop (100). The sensor loop includes sensors (130) therein. The sensor loop includes traps (120, 140). Sample material is desorbed from a first trap, moved past the sensors and collected in the second trap. The material is then desorbed from the second trap, moved past the sensors and again collected in the first trap. The amount and rate of flow of the sample material past the sensors is controlled, and the repeated exposure of the sensors to the sample material enhances sensitivity.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: August 21, 2001
    Inventor: Michael Markelov
  • Patent number: 6254828
    Abstract: Gases flow to individual gas analysis cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes. Cells are suspended from adjustable holders on a frame which is spaced from a table. The table is moved by a linear motor and a fixed platen. Sides of the table are shielded to prevent electromagnetic and magnetic motor interference with detected results. The entire table, cells, mounting plate and linear motor are mounted in a housing with aligned holes for the analysis energy source and detector.
    Type: Grant
    Filed: April 19, 1993
    Date of Patent: July 3, 2001
    Inventor: Robert B. LaCount
  • Patent number: 6207462
    Abstract: A method and apparatus are disclosed for analyzing the aggregate content of asphalt-aggregate compositions. The method includes placing a preheated, preweighed container carrying a sample of an asphalt-aggregate composition into a preheated furnace with the preheated furnace being warmer than the preheated sample, continuing to heat the furnace while drawing air through the furnace at a rate that avoids impeding the heating of the furnace or the sample until the sample in the container reaches its combustion temperature and the combustion of the sample becomes exothermic, initiating a second draw of air around rather than through the furnace to moderate the exterior temperature of the furnace, accelerating the draw through the furnace to increase the rate of combustion of the exothermic reaction, and reweighing the container and sample after combustion is complete.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: March 27, 2001
    Assignee: CEM Corporation
    Inventors: David Allan Barclay, Ali Regimand
  • Patent number: 6193413
    Abstract: A system and method for an improved calorimeter for determining thermodynamic properties of biological and chemical reactions. A microcalorimeter device comprises a thin amorphous membrane anchored to a frame. Thermometers and heaters are placed on one side of a thermal conduction layer mounted on the central portion of the membrane. An environmental chamber is vacated and humidified. First and second samples are placed on the membranes of first and second microcalorimeters. Each sample is heated and its individual heat capacity determined. The samples are then mixed by sandwiching the two microcalorimeters together to cause a binding reaction to occur. The enthalpy of binding is determined by measuring the amount of heat liberated during the reaction. The mixture is then heated and the heat capacity of the mixture is determined. From this data, a binding constant is calculated.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: February 27, 2001
    Inventor: David S. Lieberman
  • Patent number: 6190917
    Abstract: A method and apparatus are disclosed for analyzing asphalt-aggregate compositions. The method includes directing sufficient microwave radiation from a microwave source to a sample of an asphalt-aggregate composition to ignite the asphalt in the composition and to thereafter entirely combust the asphalt in the sample. The apparatus includes a source of microwave radiation, a cavity in communication with the microwave source, a sample holder in the cavity for holding a sample of an asphalt-aggregate composition during exposure to microwaves from the source, thermal insulation between the sample holder and the remainder of the cavity, and means for minimizing or eliminating any undesired combustion products generated by the burning asphalt.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: February 20, 2001
    Assignee: CEM Corporation
    Inventors: David Allan Barclay, Ali Regimand
  • Patent number: 6150119
    Abstract: Throughput rates for microfluidic serial analysis systems are optimized by maximizing the proximity and speed with which multiple different samples may be serially introduced into a microfluidic channel network. Devices are included that include optimized parameters based upon desired throughput rates for a given set of reagents, reaction times and the like.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: November 21, 2000
    Assignee: Caliper Technologies Corp.
    Inventors: Anne R. Kopf-Sill, Andrea W. Chow
  • Patent number: 6143568
    Abstract: A method for determining constituents in water, in particular the content of organic carbon and/or nitrogen, in which an aqueous sample is evaporated and combusted in at least one heating vessel (154a) provided with a heater (154), and the combustion product is delivered in a transporting gas stream to a detector (142) for determining the concentration of a gaseous compound of the constituent, wherein the heating vessel, or a first heating vessel, at the instant of delivery of the aqueous sample has a temperature below or at most within the range of the boiling temperature of the sample, and after delivery of the sample the temperature is increased, wherein the sample is heated by one and the same heater in a first step from an outset temperature below the boiling temperature to an evaporation temperature, and in a second step to a substantially higher temperature, and the combustion product is kept in closed circulation during the analysis.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: November 7, 2000
    Assignee: LAR Analytik und Umweltmesstechnik GmbH
    Inventor: Ulrich Pilz
  • Patent number: 6143571
    Abstract: The method for analyzing a metal for oxygen, using inert gas carrying fusion/infrared absorption analysis, having the steps of: placing a metal analyte in a graphite crucible; heat-melting the metal analyte; extracting a gas from the melt bath; and analyzing the gas to determine the total oxygen content of the metal in the form of a plurality of separated waves, wherein the metal analyte is heated at a temperature rise rate of not more than 20.degree. C./sec in a period from a starting point A of a first wave to a peak point B of the first wave, held at a constant temperature in a period from the peak point B of the first wave to an end point C of the first wave, and, after the completion of the appearance of the first wave, is heated to melt the metal analyte for further analysis.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: November 7, 2000
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Yoshio Nuri, Tomoko Ise, Yoshiyuki Kato
  • Patent number: 6054323
    Abstract: An apparatus and method for assaying an asphalt-containing composite material by irradiating the sample using a radiation source having a tunable preselected wavelength selected to closely approximate the absorbance wavelength of a particular material or materials found in the composite material to reduce the overall time and temperatures ordinarily needed to combust and assay such samples.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: April 25, 2000
    Assignee: Troxler Electronics Laboratories, Inc.
    Inventors: Robert Ernest Troxler, W. Linus Dep, William Finch Troxler, Sr.
  • Patent number: 6033912
    Abstract: A system and method for controlling a microwave heated chemical process is disclosed. Time varying concentrations of some chemical substances within fumes in the microwave oven are monitored to detect concentration variations for which responses are known. Responses to the detected variations are initiated to control the chemical process without terminating the process. Examples of responses include varying microwave radiation energy, initiating safety systems, increased venting of the microwave oven, and so forth.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: March 7, 2000
    Assignee: Milestone S.r.l.
    Inventor: Werner Lautenschlager
  • Patent number: 5985356
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: November 16, 1999
    Assignees: The Regents of the University of California, Symyx Technologies
    Inventors: Peter G. Schultz, Xiaodong Xiang, Isy Goldwasser
  • Patent number: 5981290
    Abstract: A calorimeter for measuring flammability parameters of materials using only milligram sample quantities. The thermochemical and thermophysical processes associated with the flaming combustion of solids are reproduced in the device through rapid anaerobic pyrolysis in a thermogravimetric analyzer. Volatile anaerobic thermal decomposition products are swept from the pyrolysis chamber by an inert gas and combined with excess oxygen in a combustion chamber maintained at several hundred degrees Centigrade to simulate the combustion reactions which occur in a well ventilated diffusion flame. Mass loss is measured continuously during the process and heat release rate is calculated from the oxygen consumed from the gas stream.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: November 9, 1999
    Assignee: The United States of America as represented by the Secretary of Transportation
    Inventors: Richard E. Lyon, Richard N. Walters
  • Patent number: 5981912
    Abstract: An electrically heatable hollow-body furnace with a secondary surface on which an analyte of a sample can be condensed prior to being atomized. The furnace is constructed in two sections which are capable of being electrically heated independently of one another. The secondary surface is defined by a surface of one of the sections. A process for atomizing an analyte of a sample to be examined, utilizing the device according to the following steps: introducing the sample into a hollow-body furnace having a secondary surface, condensing the analyte on the secondary surface and atomizing the analyte.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: November 9, 1999
    Assignee: Bodenseewerk Perkin-Elmer GmbH
    Inventors: Albert Gilmutdinov, Michael Sperling, Bernhard Welz
  • Patent number: 5972711
    Abstract: A method for microwave assisted chemical processes is disclosed that comprises applying sufficient microwave radiation to a temperature-monitored mixture of reagents, with at least one of the reagents being thermally responsive to electromagnetic radiation in the microwave range, and based on the monitored temperature, to maintain the added reagents at or closely about a predetermined temperature while substantially avoiding thermal dilution (or before substantial thermal dilution can occur) that otherwise would have been caused by the addition of the reagents to one another.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: October 26, 1999
    Assignee: CEM Corporation
    Inventors: David A. Barclay, William Edward Jennings, Edward E. King
  • Patent number: 5958777
    Abstract: A device for determining at least one petroleum characteristic of a geologic sediment sample placed in a boat, said device including a first heater heating said sample in a non-oxidizing atmosphere, a measuring component determining hydrocarbon-containing products released after feeding the sample into said first heater, a second subsequent heater heating said sample in an oxidizing atmosphere, a measuring component determining the amount of CO.sub.2 contained in effluents discharged from the two heaters, said CO.sub.2 measuring means include a cell for measuring continuously CO.sub.2 throughout heating of the first and second heaters and a measuring component determining the amount of CO contained in the effluents discharged from the two heaters, and thereby allowing determination of said petroleum characteristic.
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: September 28, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Jean Espitalie, Francois Marquis
  • Patent number: 5866431
    Abstract: An electrically heatable hollow-body furnace with a secondary surface on which an analyte of a sample can be condensed prior to being atomized. The furnace is constructed in two sections which are capable of being electrically heated independently of one another. The secondary surface is defined by a surface of one of the sections. A process for atomizing an analyte of a sample to be examined, utilizing the device according to the following steps: introducing the sample into a hollow-body furnace having a secondary surface, condensing the analyte on the secondary surface and atomizing the analyte.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: February 2, 1999
    Assignee: Bodenseewerk Perkin-Elmer GmbH
    Inventors: Albert Gilmutdinov, Michael Sperling, Bernhard Welz
  • Patent number: 5843787
    Abstract: A method allowing fast assessment of at least one petroleum characteristic of geologic sediments from a sample of these sediments, said method comprising heating the sample in a non-oxidizing atmosphere, and which method comprises different temperature rise stages; determining at least three magnitudes S.sub.1r, S.sub.2a and S.sub.b representative of the quantity of hydrocarbons contained in said sample, and deducing at least one petroleum characteristic of the geologic sediment from these three magnitudes.
    Type: Grant
    Filed: September 16, 1996
    Date of Patent: December 1, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Khomsi Trabelsi, Jean Espitalie
  • Patent number: 5840583
    Abstract: A method for microwave assisted chemical processes is disclosed that comprises applying sufficient microwave radiation to a temperature-monitored mixture of reagents, with at least one of the reagents being thermally responsive to electromagnetic radiation in the microwave range, and based on the monitored temperature, to maintain the added reagents at or closely about a predetermined temperature while substantially avoiding thermal dilution (or before substantial thermal dilution can occur) that otherwise would have been caused by the addition of the reagents to one another.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: November 24, 1998
    Assignee: CEM Corporation
    Inventors: David A. Barclay, William Edward Jennings, Edward E. King
  • Patent number: 5811308
    Abstract: The present invention relates to a method for determining at least one petroleum characteristic of a geologic sediment sample heated in a non-oxidizing atmosphere and an oxidizing atmosphere. The sample is heated to a first temperature value below 200.degree. C. for a predetermined period of time and then to a second temperature value ranging between 600 and 850.degree. C. according to a temperature gradient between 0.2.degree. C. and 50.degree. C./min. Carbon dioxide and carbon monoxide are continuously measured during the temperature stages in order to determine at least one petroleum characteristic, wherein said petroleum characteristic comprises a quantity of organic oxygen, inorganic oxygen, total organic carbon, or inorganic carbon.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: September 22, 1998
    Assignee: Institut Francais Du Petrole
    Inventors: Jean Espitalie, Francois Marquis
  • Patent number: 5786225
    Abstract: A method of evaluating at least on type of pollution characteristic in a soil sample contaminated by hydrocarbon compounds, a method wherein the soil sample is first heated in a non-oxidizing atmosphere, then in an oxidizing atmosphere. The method comprises several temperature rise stages from which at least five quantities Q.sub.0, Q.sub.1, Q.sub.2, Q.sub.3 and Q.sub.4 are measured, wherein the quantities represent concentrations of hydrocarbon compounds in the soil sample. At least one type of pollution characteristic of the sample is determined from quantities Q.sub.0, Q.sub.1, Q.sub.2, Q.sub.3 and Q.sub.4.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: July 28, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Eric Lafargue, Jean Ducreux, Fran.cedilla.ois Marquis, Daniel Pillot
  • Patent number: 5576218
    Abstract: The method for thermal cycling of nucleic acid assays includes a blended fluid stream produced from a plurality of constant velocity, constant volume, constant temperature fluid streams wherein to provide a variable temperature, constant velocity, constant volume fluid stream which is introduced into a sample chamber for heating and cooling samples contained therein. By diverting and altering the ratio of the constant temperature fluid streams relative to one another, the blended fluid stream is rapidly variable in temperature, providing for almost instantaneous temperature change within the environment defined by the sample chamber.
    Type: Grant
    Filed: April 14, 1995
    Date of Patent: November 19, 1996
    Assignee: Abbott Laboratories
    Inventors: Thomas F. Zurek, Kathleen A. Hanley, Curtis J. Pepe
  • Patent number: 5389550
    Abstract: An organic substance analyzing method is disclosed. A sample container 21 charged with a granulated rock sample is installed in a thermal cracking furnace 1. The thermal cracking furnace 1 is connected to a vacuum suction line 27 to be evacuated until a substantial vacuum is created therein, whereupon the furnace is closed. The closed thermal cracking furnace is rapidly heated to a first temperature at which hydrocarbons are more or less cracked but inorganic carbonates are not decomposed. The thermal cracking furnace is maintained at this temperature for a fixed time and then is cooled to a temperature at which the hydrocarbons in the thermal cracking furnace do not react with air. Then the furnace is connected to an air supply line 29 and an exhaust line 35 to pass the produced gases in the furnace to a hydrocarbon detector 34 and a CO.sub.2 detector 33. From the output signals therefrom, HC peak P1 and CO.sub.2 peak P3 are found and recorded.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: February 14, 1995
    Assignee: Japan National Oil Corporation
    Inventors: Shigeaki Ishida, Hidetoshi Fujimori, Hideki Matsubayashi, Tsutomu Machihara
  • Patent number: 5338515
    Abstract: This invention is a process for detecting low concentration levels of sulfur oxides (SO.sub.2) in a flowing gas stream (typically a combustion exhaust gas stream) and a catalytic SO.sub.2 sensor system which may be used in that process.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: August 16, 1994
    Assignee: Catalytica, Inc.
    Inventors: Ralph A. Dalla Betta, David R. Sheridan
  • Patent number: 5279970
    Abstract: Carbon particulate concentration of diesel exhaust or other sampled gas is measured by collecting the particulate on a high efficiency filter while measuring the amount of sampled gas passing through the filter. The filtered particulate is then heated in an oxygen rich environment to oxidize carbon within the particulate to carbon dioxide. The amount of resulting carbon dioxide is measured with a closed measurement loop to derive a corresponding measurement of the amount of filtered particulate. Particulate concentration is calculated by comparing the amount of carbon particulate with the measured amount of sampled gas passed through the filter. Filtered particulate can be heated incrementally to obtain a measurement of volatile carbon components within the particulate prior to the oxidation of the non-volatile carbon component.
    Type: Grant
    Filed: October 19, 1992
    Date of Patent: January 18, 1994
    Assignee: Rupprecht & Patashnick Company, Inc.
    Inventors: Harvey Patashnick, Georg Rupprecht
  • Patent number: 5268302
    Abstract: A method and apparatus for selective, high speed detection of vapors of specific gas-chromatographically-separable compounds. In the disclosed method separate analyses are performed on two portions of a gas sample formed by flash-heating trapped vapors to successively higher temperatures while flowing hydrogen carrier gas over coatings in/on which the vapors are held. Within a total time interval of about twenty seconds 1) two sample portions are formed, 2) each portion is rapidly separated in two series-connected, high speed, temperature-programmed gas chromatographs, and 3) specific compounds are identified by detection of NO gas formed during an oxidative pyrolysis of each separated portion. One application of the described method and apparatus is the rapid, selective, and sensitive detection of nitrogen-containing compounds such as the drugs methamphetamine, cocaine, and heroin.
    Type: Grant
    Filed: March 22, 1993
    Date of Patent: December 7, 1993
    Assignee: Thermedics Inc.
    Inventors: David P. Rounbehler, David P. Lieb
  • Patent number: 5266496
    Abstract: A process for extracting and analyzing virtually any sample which may be contaminated with pollutants, toxics or other impurities. The process can be used to extract and analyze one contaminant, such as a volatile compound (gasoline), or the process can be used to extract and analyze several contaminants, including both volatiles and semi-volatiles. The process comprises a vacuum extraction technique followed by a heating/cooling cycle comprising a series of heating and cooling stages.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: November 30, 1993
    Inventor: Amelia L. Dacruz
  • Patent number: 5266492
    Abstract: A method of determining the critical vapor pressure of a hygroscopic material, such as a drug. A drug sample is placed in a substantially isothermal environment. A vapor, such as water vapor, at a given pressure is then placed in the ambient air over the drug. The rate of heat production from this sample at the given water vapor pressure, or the humidity of the air above the sample, is then measured. The water vapor pressure over the drug is gradually increased. Simultaneously, the rate of increase in heat production from the drug sample, or the rate of change of the relative humidity of the air above the drug sample, is measured. A marked increase in the rate of heat production generated by the drug, or a marked change in the relative humidity of the air over the sample, signals the attainment of the critical water vapor pressure.
    Type: Grant
    Filed: November 13, 1992
    Date of Patent: November 30, 1993
    Assignee: Baxter International Inc.
    Inventors: Ray W. Wood, Lee D. Hansen, John W. Crawford
  • Patent number: 5254310
    Abstract: The installation comprises a selective liquid-feeder assembly, a selective gas-feeder assembly for feeding gas under pressure, a mixing and preheating assembly itself comprising a vaporizing stage, a mixing stage, and a preheating stage to raise the gas-vapor mixture to a temperature of about 150.degree. C. to about 300.degree. C., and a distributor assembly for distributing the flow of gas-vapor mixture to a plurality of high temperature generalized corrosion test circuits. Each test circuit comprises a reactor including an intermediate preheater stage for preheating the gas-vapor mixture applied to the reactor to a temperature of about 400.degree. C. to about 600.degree. C., and a final heater stage containing at least one sample of material to be tested which sample is put into contact with the gas-vapor mixture flow from the intermediate preheater stage, and raised in the final heater stage to a temperature lying between about 700.degree. C. and about 850.degree. C.
    Type: Grant
    Filed: December 19, 1991
    Date of Patent: October 19, 1993
    Assignee: Gaz de France
    Inventor: Joelle A. Bressan
  • Patent number: 5235862
    Abstract: A sample handling apparatus includes a furnace which atomizes elements to be tested in a sample. A matrix modifier is added to the furnace. A quantity of the sample is subsequently added to the furnace. An additional quantity of the matrix modifier is then added into the furnace. The furnace is heated to atomization temperature to permit analysis of the sample to be tested.
    Type: Grant
    Filed: July 18, 1991
    Date of Patent: August 17, 1993
    Assignee: Hitachi, Ltd.
    Inventor: Katsuhito Harada
  • Patent number: 5204270
    Abstract: A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components.
    Type: Grant
    Filed: April 29, 1991
    Date of Patent: April 20, 1993
    Inventor: Robert B. LaCount
  • Patent number: 5171693
    Abstract: A method is presented for the accurate quantitative determination of amounts of reactive (water and ethanol) and non-reactive N-methyl-2-pyrrolidone (NMP) volatiles in graphite-polyimide prepreg samples. The method is also applicable to other condensation-curing and/or solvent-impregnated prepreg systems, regardless of the type of reinforcement. Prepreg samples are heated in a containment chamber and the volatiles are subsequently flushed from the chamber with dry nitrogen gas. The volatiles are condensed, weighed, and analyzed via gas chromatography to determine the volatile composition. The method offers a means of purging the extremely tightly held, relatively non-volatile NMP solvent from the resin matrix by means of high temperatures applied to the sample chamber. The higher volatility reaction products are also captured by means of the specially designed very low temperature condenser. An internal check (collection efficiency) on the accuracy of the results is included in the test method.
    Type: Grant
    Filed: July 5, 1991
    Date of Patent: December 15, 1992
    Assignee: General Dynamics Corporation Air Defense Systems Division
    Inventors: Sean A. Johnson, Nancy K. Roberts
  • Patent number: 5082787
    Abstract: A method for studying the rate and type of hydrocarbon generated from a hydrocarbon source utilizes hydrous pyrolysis to generate hydrocarbons from the sample and then utilizes cryogenic methods to remove the fluid portions to a transfer vessel. The gaseous components are removed to a further vessel of known dimensions for determination of weight. The hydrocarbons in the transfer vessel are passed through a dryer to separate the water and their makeup determined. The hydrocarbons remaining in the reactor vessel are removed by working with solvents and their weights are determined after separation and evaporation of the solvents.
    Type: Grant
    Filed: December 22, 1989
    Date of Patent: January 21, 1992
    Assignee: Texaco Inc.
    Inventors: David G. Nolte, Helen K. Haskin, Edwin L. Colling, Jr.
  • Patent number: 5036699
    Abstract: A sample of a fuel/oil/additive mixture is metered continuously to a channel-like, inclined test element along which there is an increasing temperature profile. Under the increasing action of heat on the flowing mixture, solid residual products form on the test element after a certain flow distance. Their weight and the flow distance are evaluated in order to evaluate the additive.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: August 6, 1991
    Assignee: BASF Aktiengesellschaft
    Inventors: Rolf Fikentscher, Knut Oppenlaender, Roland Schwen
  • Patent number: 5035862
    Abstract: An analytical system for the determination of a component of a fluid, especially blood or urine, is disclosed. It comprises test carriers, which have at least one test field, and an evaluating instrument for the measurement of a characteristic change in the test field.In order to achieve rapid and selective heating of individual test fields, especially in test carriers that are multiple-test strips, the corresponding test field has a metallic conducting layer, which runs parallel to the test field and is in thermal contact with it. The evaluating instrument has an induction heater. The guiding mechanism of the test carrier in the evaluating instrument is designed so that the metallic conducting layer, at least before the measurement, is in the working area of the alternating magnetic field emanating from the induction heater.
    Type: Grant
    Filed: December 9, 1988
    Date of Patent: July 30, 1991
    Assignee: Boehringer Mannheim GmbH
    Inventors: Werner Dietze, Rainer Fullemann, Thomas Lutz
  • Patent number: 4977094
    Abstract: A process is disclosed for monitoring the quality of water, said process comprising a first heated zone, means for introducing at least a portion of said water into said first heated zone, means for gently evaporating at least part of the water in the first heated zone and passing the vapor into and through a second heated zone, means for maintaining the temperature of said second heated zone in the range of from about 450.degree. to about 1000.degree. C., means for collecting and condensing vapor from said second heated zone to condensed liquid water and means for measuring the electrical impedance of at least a portion of said condensed liquid water.
    Type: Grant
    Filed: October 23, 1989
    Date of Patent: December 11, 1990
    Assignee: Ionics, Incorporated
    Inventors: Arthur J. Goldstein, Edgardo J. Parsi
  • Patent number: 4940667
    Abstract: An apparatus is disclosed for monitoring the quality of water, said apparatus comprising a first heated zone, means for introducing at least a portion of said water into said first heated zone, means for gently evaporating at least part of the water in the first heated zone and passing the vapor into and through a second heated zone, means for maintaining the temperature of said second heated zone in the range of from about 450.degree. to about 1000.degree. C., means for collecting and condensing vapor from said second heated zone to condensed liquid water and means for measuring the electrical impedance of at least a portion of said condensed liquid water.
    Type: Grant
    Filed: December 28, 1987
    Date of Patent: July 10, 1990
    Assignee: Ionics, Incorporated
    Inventors: Arthur J. Goldstein, Edgardo J. Parsi
  • Patent number: 4870025
    Abstract: A method of selectively sensing the quantity of methane gas in an oxygen containing gas stream, which method, as taught in one of its preferred embodiment, includes the step of providing a platinum catalyst (12) and a palladium catalyst (14). The platinum and the palladium catalysts are electrically interconnected (16--16) so as to obtain an electrical output reading (24) therefrom. The electrically interconnected catalysts are heated to a temperature in a range of 350.degree.-450.degree. C. whereby a reference electrical output reading is obtained therefrom. A gas stream containing suspected methane is passed over the electrically interconnected catalysts. Methane gas contained in the gas stream is oxidized only by the palladium catalyst while all other oxidizable components of the gas stream are oxidized by both catalysts.
    Type: Grant
    Filed: September 30, 1985
    Date of Patent: September 26, 1989
    Assignee: Ford Motor Company
    Inventors: Michael D. Hurley, William J. Kaiser, Eleftherios M. Logothetis
  • Patent number: 4842825
    Abstract: An assembly of nonreactive material receives a sample of material to be analyzed which is then placed in an environmentally controlled pyrolysis chamber. As the sample is selectively heated, an inert carrier gas is admitted to the chamber to wash the gases from the sample through trap and splitter assemblies where a portion of the sample gas is tapped off by a capillary column. The temperature of the gas in the capillary column is controlled as known makeup gases are added prior to passing through a detector, such as a flame ionization detector, to determine the components of the sample gas. The capillary tube can also be coated with an apolar liquid phase separation material.
    Type: Grant
    Filed: June 19, 1986
    Date of Patent: June 27, 1989
    Assignee: Ruska Laboratories, Inc.
    Inventors: Stephen J. Martin, Raymond D. Worden
  • Patent number: 4824792
    Abstract: The apparatus includes an endless belt of nickel having a surface profile comprising an array of cavities such that any liquid layer deposited on the surface is keyed into the surface and constrained against movement relative to the surface. A liquid comprising solute and solvent is deposited as a layer on the belt from a nozzle. A first heater evaporates the solvent but leaves the solute. A second heater evaporates the solute which is then collected and fed to an analyzing device. The profile of the belt is particularly conducive to constraining a liquid on the belt and ensuring uniform evaporation upon heating.
    Type: Grant
    Filed: December 2, 1986
    Date of Patent: April 25, 1989
    Assignee: Analink Developments Limited
    Inventors: Michael Thorpe, William J. Hoskin, Leslie Brown
  • Patent number: 4824790
    Abstract: An instrument for the chemical analysis of coal and other hydrocarbons combines TGA and FT-IR principles, and utilizes helium to carry the volatiles evolved by pyrolysis of the sample into the optical cell of the FT-IR spectrometer. The connection between the TGA furnace and the optical cell is substantially direct and non-impeding to fluid flow, and the carrier gas is preheated to the same temperature as the sample, preferably using a common heating element.
    Type: Grant
    Filed: October 17, 1986
    Date of Patent: April 25, 1989
    Assignee: Advanced Fuel Research, Inc.
    Inventors: Robert M. Carangelo, Peter R. Solomon
  • Patent number: 4798805
    Abstract: An apparatus for analysis of samples containing organic matter, especially of rock from oil drilling mud, including a loading arm hinged at its base to be movable from a tilted position when it receives a sample-bearing cartridge, which fits on the top of the arm, to a vertical position in which the arm can be raised to fit the upper end of the cartridge within a selectively electrically heated and air cooled chamber. A channel for carrier gas, e.g. hydrogen, passes up the arm so that gas passes through the cartridge when it is held in the heating and cooling chamber, and through the heating and cooling chamber and then through a conduit to a burner within an ignition an analysis chamber.In use, the container is heated to pyrolyze the sample and the resultant vapors are entrained in the gas, burnt and analyzed by flame ionization. After which the sample-bearing cartridge is cooled in the heating and cooling chamber.
    Type: Grant
    Filed: March 28, 1986
    Date of Patent: January 17, 1989
    Assignee: Geoservices, Societe Anonyme
    Inventor: Olivier Issenmann
  • Patent number: 4784833
    Abstract: A pyrolysis apparatus useful in analyzing complex chemical substances including a pyrolysis chamber formed in a tubular member of fused quartz, the apparatus having a mixing chamber formed from a fused quartz material wherein pyrolysis components from a sample to be analyzed are mixed with hydrogen prior to being subjected to detection in an analyzer such as a flame ionization detector.
    Type: Grant
    Filed: June 19, 1986
    Date of Patent: November 15, 1988
    Assignee: Ruska Laboratories, Inc.
    Inventors: Stephen J. Martin, Raymond D. Worden
  • Patent number: 4711854
    Abstract: Disclosed is an apparatus for measuring the moisture content of a sample. The apparatus includes a first sealed chamber for accepting the sample and a first impulse furnace within the first chamber for dissociating water in the sample into the hydrogen and oxygen, a second sealed chamber in gaseous communication with the first chamber, a second impulse furnace within the second chamber for dissociating water and the hydrogen and the oxygen, and a hydrogen analyzer for determining the amount of hydrogen formed by the first and second impulse furnace. Also disclosed is a method of measuring the amount of water in the sample. The sample is heated in an enclosed chamber in the presence of a water dissociation catalyst, whereby water in the first chamber is dissociated into hydrogen and oxygen. Vapors are passed from the enclosed chamber to a second enclosed chamber which contains a water dissociation catalyst, whereby water in the vapors is dissociated into hydrogen and oxygen.
    Type: Grant
    Filed: April 29, 1986
    Date of Patent: December 8, 1987
    Assignee: Westinghouse Electric Corp.
    Inventors: Richard A. Pregnall, Archie M. LeGrand, Jr.
  • Patent number: 4711987
    Abstract: An apparatus for heating samples of biological material contained individually on a plurality of fixtures contained on a centrifuge. A flash tube is located adjacent to the centrifuge to convert electrical energy from a capacitor into heat as the samples of biological material go past the flash tube. A trigger signal is used to cause the capacitor to discharge as the biological material moves past the flash tube. Circuitry is used to control the amount the capacitor is charged by using a fixed number of pulses having a controlled amplitude and to prevent charging of the capacitor when the capacitor is discharged. This causes the flash tube to accurately heat the samples of biological material to a predetermined temperature prior to analysis.
    Type: Grant
    Filed: March 1, 1985
    Date of Patent: December 8, 1987
    Assignee: Abbott Laboratories
    Inventors: G. Thomas Ritter, Mitchell Budniak
  • Patent number: 4710354
    Abstract: A device useful for heating of samples taken in small amounts, comprising a sample holding rod engaging in a tubular liner while leaving a reduced dead or wasted space. The rod has an elongate cavity opening at its upper part and receiving the sample which is in contact with a vector gas. The sample holding rod has two positions one of which places the sample in a moderate temperature zone and the other of which places the sample in a heating zone.
    Type: Grant
    Filed: June 18, 1985
    Date of Patent: December 1, 1987
    Assignee: Institut Francais du Petrole
    Inventors: Francoise Behar, Jeannine Roucache, Jean Auger, Luc Boudet
  • Patent number: 4632908
    Abstract: A heating system for heating a rapidly rotating article, including strobe means capable of emitting radiant energy and positioned to radiate energy onto the article, a light source positioned to illuminate a temperature-sensing means on the article, light detector means to measure changes in the light reflected by the temperature-sensing means and control means to energize the strobe means in response to reflected light from the detector means.
    Type: Grant
    Filed: May 3, 1984
    Date of Patent: December 30, 1986
    Assignee: Abbott Laboratories
    Inventor: Steven G. Schultz
  • Patent number: 4601882
    Abstract: An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.
    Type: Grant
    Filed: May 8, 1984
    Date of Patent: July 22, 1986
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: William H. Benner
  • Patent number: 4578356
    Abstract: The hydrocarbon potential of a source rock comprising hydrocarbons and insoluble organic materials capable of generating hydrocarbons upon pyrolysis or further maturation is analytically determined. In the instant invention, a particulate sample of the source rock is slurried with a solvent to extract the hydrocarbons therefrom and provide a first solution for analysis. The extracted sample is again slurried with a solvent and the resulting slurry is heated to a temperature sufficient to pyrolyze the insoluble organic material to liquid hydrocarbons. The liquid hydrocarbons dissolve in the solvent to provide a second solution for analysis. The first and second solutions are then analyzed independently for hydrocarbon content.
    Type: Grant
    Filed: July 23, 1984
    Date of Patent: March 25, 1986
    Assignee: Union Oil Company of California
    Inventor: Stephen R. Larter
  • Patent number: 4525328
    Abstract: The specification discloses an analyzer for determining the carbon, hydrogen, and nitrogen content of an organic material. The analyzer includes a vertically oriented, U-shaped furnace including a combustion chamber containing a crucible in which the sample is combusted into constituent gases and a reagent chamber containing a reagent through which the constituent gases must pass. A lance extends into the combustion chamber to guide the sample into the crucible and to direct oxygen onto the sample combusting in the crucible. The analyzer further includes an equilibration vessel and means for conveying the constituent gases to the vessel and past CO.sub.2 and H.sub.2 O infrared cells to monitor the products of combustion. Means are provided for conveying the equilibrated gases past the infrared cells to obtain readings relating to carbon and hydrogen content. A doser doses an aliquot of the equilibrated gas into a nitrogen measurement apparatus to obtain a reading relating to nitrogen content.
    Type: Grant
    Filed: March 5, 1982
    Date of Patent: June 25, 1985
    Assignee: Leco Corporation
    Inventor: Roger L. Bredeweg
  • Patent number: 4519983
    Abstract: A method and apparatus for determining the total amount of organic carbon in a sample comprising the successive steps of: (a) heating the sample in an inert atmosphere to a first temperature capable of cracking at least a fraction of the organic material contained in the sample; (b) measuring the amount of organic carbon contained in at least a fraction of the effluent resulting from this cracking; (c) heating the sample in an oxidizing atmosphere to a second temperature at most equal to the first temperature; (d) measuring the amount of organic carbon in the effluent produced by the oxidation of the organic material, and (e) deriving from the above measurements the total organic carbon content of the sample. In order to perform the method of the invention, there is also provided means for performing each of the successive steps. In a further refinement, the method also includes steps for determining the mineral carbon content so that the total carbon content of the sample can be determined.
    Type: Grant
    Filed: July 26, 1982
    Date of Patent: May 28, 1985
    Assignees: Institut Francais du Petrole, Societe Labofina S.A.
    Inventors: Jean Espitalie, Marcel Madec, Paul Leplat, Jacques Paulet