Lubricant, Grease, Mineral Oil, Hydrocarbon Oil Product, Or Fats Or Lipids For Oxidation (e.g., Breakdown Products Or Contamination, Etc.) Patents (Class 436/60)
  • Patent number: 10466152
    Abstract: A fluid monitoring and management device that includes a housing with a fluid passageway. The fluid monitoring and management device further includes a fluid property sensor with a sensing element in the fluid passageway. A valve is in the fluid passageway of the fluid monitoring and management device. A removable bottle mount is aligned with the valve to be selectively in fluid communication with the fluid passageway.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: November 5, 2019
    Assignee: LogiLube, LLC
    Inventors: William J. Gillette, II, Charles E. Ogden, Harish Muralidhara
  • Patent number: 9772269
    Abstract: Density measurement of mixtures of heavy and light crudes using the vibrating tube densitometer technique determine incompatibility in the crudes mixture containing asphaltenes by determining the incipient point of asphaltenes incompatibility threshold in the mixtures of crudes.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: September 26, 2017
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Marco Antonio Aquino Olivos, Adriana de Jesus Aguirre Gutierrez, Jose Luis Mendoza De La Cruz, Blanca Estela Garcia Flores, Jacinto Aguila Hernandez, Veronica Ramos Corzo, Juan Carlos Cedillo Ramirez
  • Patent number: 9500638
    Abstract: A method of determining the amount of water in an industrial oil (e.g., turbine oil) includes homogenizing an oil sample, subjecting the homogenized sample to infrared spectroscopy within 30 minutes of homogenization, and determining a baseline absorbance level for the sample within a predetermined wavenumber range. That baseline is compared with spectral template baselines and, based on the comparison, the amount of water in the oil sample is estimated.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: November 22, 2016
    Assignee: Spectro Scientific, Inc.
    Inventor: Randi Price
  • Patent number: 9470173
    Abstract: Methods and systems are provided for modeling an oil dilution qualitative indicator based on an integrated difference between a commanded air-to-fuel ratio and an engine air-to-fuel ratio as determined via an oxygen sensor, cumulative cold engine temperature operating duration, and fuel injection characteristics (timing, duration, number of injections) allowing fuel injection timing modifications that minimize oil dilution when the oil dilution qualitative indicator is greater than a threshold level.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 18, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Allen Lehmen, Marcus William Fried, Shuya Shark Yamada, Steven Paul Penkevich
  • Patent number: 9234834
    Abstract: A sensor assembly senses hydrogen and moisture content of insulation liquid of a liquid-filled electrical equipment.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: January 12, 2016
    Assignee: ABB RESEARCH LTD
    Inventors: Jacobus Lodevicus Martinus Van Mechelen, Robin Gremaud, Anna Di-Gianni, Barbara Panella, Miklos Lenner
  • Patent number: 9194856
    Abstract: method for diagnosing corrosion of an underground storage tank system is provided. The method includes the following steps. A sample from the underground storage tank system is collected, wherein the sample comprises at lease one metal ion. The species and the concentration of the metal ion in the sample are detected by an analysis instrument. A concentration threshold value is determined from a database according to the species of the metal ion. A mapping step is performed, wherein the concentration of the metal ion and the concentration threshold value are compared to diagnose if the underground storage tank system is corroded.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: November 24, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Pang-Hung Liu, Huan-Yi Hung, Chien-Wei Lu, Han-Wen Chu, You-Zung Hsieh
  • Patent number: 9034654
    Abstract: A method for analyzing the liquefied petroleum gas includes the following steps. Provide a sample of the liquefied petroleum gas, and one main component group of the liquefied petroleum gas includes at least one sub component group. Analyze the sample of the liquefied petroleum gas so as to obtain a first measured THC corresponding to the main component group and a second measured THC corresponding to the sub component group. Obtain a regressed THC according to the second measured THC and a predetermined relationship of THC. Obtain a result of THC according to the first measured THC, the regressed THC, and a predetermined range of THC. The predetermined range of THC corresponds to the main component group. The device for analyzing the liquefied petroleum gas includes an inlet, a multiposition valve, a first column, a second column, an analyzing apparatus, and a computing unit.
    Type: Grant
    Filed: March 16, 2013
    Date of Patent: May 19, 2015
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsiu-Li Su, Huan-Yi Hung, Han-Wen Chu, Tsung-Chou Hsu, Yao-Ting Huang
  • Patent number: 9029160
    Abstract: The subject of the invention is a method for determining the H2S content arising during the warm storage of sulfur-containing crude and residual oils and mineral distillates containing sulfur-containing crude and/or residual oils, in which a sample of the sulfur-containing mineral oil is dissolved in a solvent or solvent mixture that boils at more than 200° C. and a carrier gas is caused to flow through the solution of the sulfur-containing mineral oil at temperatures above 80° C., and the quantity of hydrogen sulfide carried out with the carrier gas is analyzed quantitatively.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Clariant Finance (BVI) Limited
    Inventors: Michael Feustel, Michael Brauchle, Dominko Andrin, Matthias Krull
  • Patent number: 8999723
    Abstract: A reliable, low cost device for determining when dangerous levels of hydrogen gas have been generated in a transformer is disclosed. The hydrogen indicator is defined by a module assembly that threads into either the headspace or into the oil-filled body of a transformer. The module has an open interior that contains a film that incorporates a hydrogen-sensitive chemochromic indicator. The indicator film is visible through a lens. When the film has been exposed to hydrogen, chemical changes in the chemochromic indicator cause the film to change color—the color change is immediately visible through the lens.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: April 7, 2015
    Assignee: Serveron Corporation
    Inventor: Steven Mahoney
  • Patent number: 8975083
    Abstract: Rotatable bomb device having a stationary hollow housing and a rotatable component inside the housing provides for very good temperature calibration, temperature recording and, when desired, sample control. The device can have at least one of an insulating lower disc or washer; a plurality of staggered heating bands encompassing a stationary housing; a dry scan port; a rear upper and/or lower port; and an extraction/injection fitting for access to the interior of the stationary housing. The device may be used to react or attempt to react substance(s), for example, generally as in ASTM Method D2272 testing of turbine oil.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: March 10, 2015
    Assignee: Tannas Company
    Inventors: Theodore W. Selby, Gregory C. Miiller
  • Patent number: 8969088
    Abstract: A substrate mimicking intercellular lipids in stratum corneum consisting of a substrate and a lipid membrane formed on the substrate, wherein the lipid membrane is formed from ceramide, palmitic acid and cholesterol, and the ceramide, palmitic acid and cholesterol are present at a mass ratio of 20-70%:10-60%:20-40% (ceramide:palmitic acid:cholesterol).
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: March 3, 2015
    Assignee: Shiseido Company, Ltd.
    Inventors: Takuya Saiwaki, Takashi Oka, Yuichiro Mori, Toyoko Imae, Xiaojuan Wang, Masaki Ujihara
  • Patent number: 8932863
    Abstract: Methods for evaluating a fuel are provided. In one embodiment, a method of evaluating a fuel includes providing a testing specimen of the fuel. Also, the method includes analyzing the testing specimen and identifying a compound in the testing specimen. The method also provides for determining the fuel is biologically-sourced based on the identified trace compound.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 13, 2015
    Assignee: UOP LLC
    Inventors: Haiyan Wang, Michael J. McCall
  • Patent number: 8932875
    Abstract: The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: January 13, 2015
    Assignee: Purdue Research Foundation
    Inventors: Robert Graham Cooks, Guangtao Li, Xin Li, Zheng Ouyang
  • Patent number: 8921117
    Abstract: A method for determining the amount of hydrocarbons in a composition including hydrocarbons and water is provided. The method includes adding a chemical agent to the composition in order to form an emulsion of water and hydrocarbons, taking a sample of the emulsion and dissolving this sample in a common solvent for water and hydrocarbons in order to form a solution, and measuring the amount of hydrocarbons in the solution. An installation suitable for implementing this method is also provided.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: December 30, 2014
    Assignee: Total S.A.
    Inventors: Maurice Bourrel, Jean-Michel Gras
  • Publication number: 20140363893
    Abstract: The present invention is a diagnosing method for oil-filled electrical equipment for diagnosing a degree of risk with regard to occurrence of abnormality due to copper sulfide generation in oil-filled electrical equipment, and the method includes a first step of detecting specific compounds contained in insulating oil in said oil-filled electrical equipment, a second step of evaluating a possibility of copper sulfide generation at a dangerous part leading to dielectric breakdown in said oil-filled electrical equipment in accordance with a detection result obtained in said first step, and a third step of diagnosing a degree of risk with regard to occurrence of abnormality in said oil-filled electrical equipment in accordance with an evaluation result obtained in said second step. Said specific compounds include dibenzyldisulfide and 2,6-di-t-butyl-p-cresol.
    Type: Application
    Filed: November 28, 2011
    Publication date: December 11, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Ryuichi Nishiura, Fukutaro Kato, Eiichi Nagao
  • Publication number: 20140349406
    Abstract: Solvent extraction to quantify contamination of a sample by a hydrocarbon contaminant is performed by providing a defined quantity of the sample, providing a defined quantity of a siloxane solvent, mixing the defined quantity of the siloxane solvent and the defined quantity of the sample to extract the hydrocarbon contaminant from the sample to form a contaminant solution with the siloxane solvent, and separating the contaminant solution from the sample. A concentration of the hydrocarbon contaminant in the contaminant solution can be measured by vibrational spectroscopy. Siloxane solvents are CFC free, VOC exempt, odorless, colorless, low to moderately flammable, non-toxic, and safe for incidental skin contact. Some are even used in cosmetic products.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Inventors: Franklin Scott Higgins, John Arthur Seelenbinder
  • Publication number: 20140329328
    Abstract: A reliable, low cost device for determining when dangerous levels of hydrogen gas have been generated in a transformer is disclosed. The hydrogen indicator is defined by a module assembly that threads into either the headspace or into the oil-filled body of a transformer. The module has an open interior that contains a film that incorporates a hydrogen-sensitive chemochromic indicator. The indicator film is visible through a lens. When the film has been exposed to hydrogen, chemical changes in the chemochromic indicator cause the film to change color—the color change is immediately visible through the lens.
    Type: Application
    Filed: April 16, 2014
    Publication date: November 6, 2014
    Applicant: Serveron Corporation
    Inventor: Steven Mahoney
  • Patent number: 8766024
    Abstract: It has been discovered that the residence time of oils/fats in metal apparatus, particularly in the upstream of a hydrotreating unit, for example, a heat exchanger and/or a storage/feed tank, can impact significantly on corrosiveness of oils/fats in combination with and without conventional hydrocarbons. In addition, it is also found that the presence of hydrogen in the metal apparatus can also inhibit the corrosion rate of oils/fats.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: July 1, 2014
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Devadas Panjala, Edward L. Sughrue, II, Eric W. Vetters, Bruce Randolph
  • Patent number: 8765477
    Abstract: A method for measuring the real hot-spot temperature in an electric apparatus containing an oil, such as an electric power transformer. The electric apparatus is operated under predetermined and modifiable operating conditions. This method comprises the use of one or several chemical compounds or tracers present and soluble in the oil. Each tracer may transform, at a given temperature, in order to form a residue, such as a soluble gas. From the presence of the residue in the oil, the operator will be able to determine under which predetermined operating condition the hot-spot has been reached and to deduce the hot-spot for a given condition. Among different used compounds, there are diazoic compounds, carbonyl metals, colorants, pigments, liquid crystals and albumins. The method also allows to check the quality of the apparatus on the market and to estimate its life span.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: July 1, 2014
    Assignee: Hydro-Quebec
    Inventors: Pierre Couture, Michel Duval
  • Patent number: 8748185
    Abstract: The present invention relates to a test medium for the rapid analysis of engine oils in internal combustion engines, having a weight per unit area of 50.0 to 200.0 g/m2, comprising, based on the total weight of the test medium, 20.0% by weight to 98.0% by weight of cotton pulp, 0.0% by weight to 50.0% by weight of cellulose and 0.1% by weight to 50.0% by weight of silicic acid and/or at least one silicate salt. The present invention also relates to a method for the rapid analysis of engine oils in internal combustion engines, in which a drop of an engine oil to be analyzed is applied to the test medium according to the invention and is allowed to penetrate into the test medium, and the text result is then preferably compared with at least one reference image in order to determine the condition of the engine.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: June 10, 2014
    Inventor: Gert Horstmeyer
  • Patent number: 8742340
    Abstract: Disclosed herein are methods for determining and replicate unknown ratios of original target liquid blends, such as hydrocarbon fuel blends or contaminants, by using an in-process fluorescence-monitored procedure. The methods rely on trial-and-error mixing of the fuel ingredients into a single container. At the end of the trial-and-error procedure, the formed blend becomes an exact replica of the target fuel blend. The methods can also be used to build calibration curves without employing sets of previously prepared standard solutions.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 3, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Ezzat Mahmoud Hegazi, Abdullah H. Al-Grainees
  • Publication number: 20140147923
    Abstract: Methods and systems for testing fluid samples include a diffused air flotation (DAF) system and a jar. The jar includes a diffuser for injecting the diffused air into the jar and a tap for drawing a fluid out of the jar.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 29, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Stephen J. Wiacek, Bingbing Guo
  • Patent number: 8709815
    Abstract: Methods and devices are disclosed providing techniques for measuring the amount of biodiesel in a fuel sample. The methods may be used in the field without the use of laboratory equipment. The biodiesel in the sample is converted to the corresponding free acid which can be isolated and quantified to provide information regarding the amount of biodiesel in the original sample.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 29, 2014
    Assignee: Dexsil Corporation
    Inventors: Theodore B. Lynn, Lawrence M. Sacramone
  • Publication number: 20140004611
    Abstract: The subject of the invention is a method for determining the H2S content arising during the warm storage of sulfur-containing crude and residual oils and mineral distillates containing sulfur-containing crude and/or residual oils, in which a sample of the sulfur-containing mineral oil is dissolved in a solvent or solvent mixture that boils at more than 200° C. and a carrier gas is caused to flow through the solution of the sulfur-containing mineral oil at temperatures above 80° C., and the quantity of hydrogen sulfide carried out with the carrier gas is analyzed quantitatively.
    Type: Application
    Filed: February 14, 2012
    Publication date: January 2, 2014
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Michael Feustel, Michael Brauchle, Dominko Andrin, Matthias Krull
  • Patent number: 8569068
    Abstract: A process for controlling the composition of an xBOB so that the xBOB will yield an oxygenate-containing gasoline which precisely meets desired specifications when mixed with the desired amount of oxygenate. The process involves blending a plurality of blendstocks to produce an xBOB, withdrawing a sample of the xBOB, obtaining spectroscopic measurements for the sample, applying mathematical models that were based on correlation of xBOB spectra to associated oxygenate-containing gasoline properties, to predict laboratory analysis results for oxygenate-containing gasoline properties, and using the analysis results to control and optimize the blending process.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: October 29, 2013
    Assignee: Phillips 66 Company
    Inventors: David W. Carpenter, David S. Seiver, James W. Holbert, Yi-Ming Chen, Christopher J. LaFrancois
  • Patent number: 8557589
    Abstract: A new method to determine by quantitative analysis the amount of dye present in dyed engine oils is provided. The method uses imaging techniques, such as spectrophotometry, and a combination of dilution and standard addition techniques to quantitatively determine the concentration of dye in the engine oil to ascertain whether dye concentrations in engine oil have decreased as compared with original specifications, and to quantify the amount of dye to be added to the dyed engine oil to bring dye concentrations to original concentrations.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: October 15, 2013
    Assignee: United Technologies Corporation
    Inventors: Holly S. Eccleston, Mimi Nguyen-Vu, Philip H. Ratliff
  • Publication number: 20130230926
    Abstract: Systems and methods for testing an engine lubricant are provided. The system includes a heated block having at least one cavity therein, at least one test cylinder receiving the engine lubricant therein, and at least one heated test piston selectively disposable into the engine lubricant of the test cylinder whereby deposits are formable on the test piston. The test cylinder is positionable in the cavity of the heated block and heatable thereby. Taxi oils and/or gases may be added to facilitate testing.
    Type: Application
    Filed: August 30, 2012
    Publication date: September 5, 2013
    Applicant: SHELL OIL COMPANY
    Inventors: Abraham Robert DE KRAKER, Brian Lee PAPKE
  • Publication number: 20130210155
    Abstract: The present invention relates to a method for identifying an inhibitor to the formation of naphthenate solids in a liquid hydrocarbon including contacting a sample of the liquid hydrocarbon with an inhibitor and a buffered aqueous solution, observing the extent of formation of naphthenate solids, if any, the extent of formation of naphthenate solids being indicative of the effectiveness of the inhibitor, and repeating the steps, if necessary, until a suitable inhibitor is identified. The present invention also relates to a method for identifying an inhibitor to the formation of naphthenate scale in a liquid hydrocarbon system as well as test kits for use in the methods.
    Type: Application
    Filed: September 17, 2010
    Publication date: August 15, 2013
    Inventors: Chandrashekhar Khandekar, Suguna Gopal, James Smith
  • Patent number: 8481322
    Abstract: A method for marking a petroleum hydrocarbon, biodiesel fuel or ethanol fuel by adding to the petroleum hydrocarbon, biodiesel fuel or ethanol fuel at least one compound having formula (I) wherein R1 and R2 independently represent at least one substituent selected from the group consisting of hydrogen, C1-C12 alkyl, C1-C12 alkoxy and nitro; and R3 and R4 independently represent hydrogen, methyl or ethyl.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: July 9, 2013
    Assignee: ANGUS Chemical Company
    Inventors: George David Green, Raymond John Swedo
  • Patent number: 8476075
    Abstract: A method of estimating the amount of unreacted starting materials (glycerides, methyl esters, etc.) and the composition of a biodiesel using TLC in conjunction with a lipophilic dye, Nile Red is described herein. The dye based TLC method of the present invention is convenient and provides significant advantages over existing methods for estimating the purity of a biodiesel composition.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 2, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventors: Eva Deemer, Wen Yee Lee, Xiomara Carolina Chianelli
  • Patent number: 8471693
    Abstract: When biomass fuel reacts with oxygen for a long period of time, an amount of acid ions in a tank is increased with time. However, when metallic ions are generated for some reason and the reaction proceeds to change the acid ions into metallic salts, the increase rate of the amount of the acid ions in the fuel tank becomes slow. When the metallic salt forming reaction proceeds rapidly, the amount of the acid ions may even be reduced. Therefore, in the embodiment, the change of the acid ions into the metallic salts in a fuel is detected. Unless the fuel is newly supplied by refueling, the decrease of the amount of acid ions in the fuel can be considered as a change into metallic salts. Accordingly, the generation of metallic salts can be detected by monitoring the decrease of the amount of acid ions in the fuel. Thus, clogging of a fuel supply system or the like caused by the metallic salt forming reaction can be prevented.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Satoshi Taniguchi
  • Publication number: 20130115704
    Abstract: Methods and devices are disclosed providing techniques for measuring the amount of biodiesel in a fuel sample. The methods may be used in the field without the use of laboratory equipment. The biodiesel in the sample is converted to the corresponding free acid which can be isolated and quantified to provide information regarding the amount of biodiesel in the original sample.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 9, 2013
    Applicant: DEXSIL CORPORATION
    Inventor: DEXSIL CORPORATION
  • Patent number: 8389285
    Abstract: A process for controlling the composition of an xBOB so that the xBOB will yield an oxygenate-containing gasoline which precisely meets desired specifications when mixed with the desired amount of oxygenate. The process involves blending a plurality of blendstocks to produce an xBOB, withdrawing a sample of the xBOB, obtaining spectroscopic measurements for the sample, applying mathematical models that were based on correlation of xBOB spectra to associated oxygenate-containing gasoline properties, to predict laboratory analysis results for oxygenate-containing gasoline properties, and using the analysis results to control and optimize the blending process.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 5, 2013
    Assignee: Philips 66 Company
    Inventors: David W. Carpenter, David S. Seiver, James W. Holbert, Yi-Ming Chen, Christopher J. LaFrancois
  • Publication number: 20120240454
    Abstract: The present invention is related to hydrocarbon compositions comprising butanol that have substantially the same or improved performance properties than comparable hydrocarbon compositions comprising ethanol and to methods for identifying such compositions.
    Type: Application
    Filed: September 20, 2011
    Publication date: September 27, 2012
    Inventors: Dennis P. Boyd, Theresa M. Dobel, Don Germano, Robert S. Grace, Phillip R. Greene, Delwyn Greene, Ken Kimura, Geoffrey Lulham, Adam Schubert, Ronald D. Stevens
  • Patent number: 8268624
    Abstract: A system and method of characterizing an at least partially hydrophobic sample. The method includes providing an ethanolic solution of ethanol and sodium hydrogen cyanamide, adding a first portion of the ethanolic solution to a sample to produce a reagent-sample mixture, performing infrared spectroscopic testing of the reagent-sample mixture to generate mixture absorption data representing at least one absorption characteristic of the reagent-sample mixture, and generating acidity data for the sample based on the mixture data.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: September 18, 2012
    Assignee: Thermal-Lube, Inc.
    Inventors: Frederick R. van de Voort, David Pinchuk
  • Patent number: 8257976
    Abstract: Herein are disclosed methods and devices for optically monitoring multiple parameters of an oil sample. In one embodiment, the methods and devices can be used for determining the quality of cooking or flying oil in terms of the free fatty acid content and total polar compound content of the oil. The methods use an optical absorbtive/reflective property in evaluating the free fatty acid content, and use optical fluorescence in evaluating the total polar compound content, with both measurements using a single sampling substrate and a single measuring device.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: September 4, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Ai-Ping Wei, Milind Balwant Sabade, Abolghassem B. Mahmoodi
  • Patent number: 8257975
    Abstract: The present invention relates to using a marker in a functional fluid, which survives the use of the functional fluid in an application, with a reagent solution to identify the functional fluid rapidly either before, during or after the functional fluid's use and which is a suitable method for identifying a functional fluid in the field, and which may employ the use of test wipe, or medium, that contains the reagent solution.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 4, 2012
    Assignee: The Lubrizol Corporation
    Inventors: Daniel J. Knapton, John S. Manka
  • Patent number: 8241916
    Abstract: A method allowing an accurate diagnosis of a failure of an oil-filled electrical apparatus resulting from production of copper sulfide even with a small amount of an insulating oil is implemented. A diagnostic method for an oil-filled electrical apparatus for diagnosing a failure of the oil-filled electrical apparatus having a copper part disposed in an insulating oil is implemented by detecting at least one compound of bibenzyl and dibenzyl sulfide in the oil of the oil-filled electrical apparatus, to diagnose a failure of the oil-filled electrical apparatus in accordance with the detected amount of the compound. It is configured such that a failure of the oil-filled electrical apparatus resulting from production of copper sulfide can be diagnosed by detecting a specified substance, which allows an accurate diagnosis of a failure even with a small amount of the insulating oil.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: August 14, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Satoru Toyama, Junji Tanimura, Hisakatsu Kawarai, Tsuyoshi Amimoto
  • Patent number: 8236566
    Abstract: A process for controlling the composition of an xBOB so that the xBOB will yield an oxygenate-containing gasoline which precisely meets desired specifications when mixed with the desired amount of oxygenate. The process involves blending a plurality of blendstocks to produce an xBOB, withdrawing a sample of the xBOB, obtaining spectroscopic measurements for the sample, applying mathematical models that were based on correlation of xBOB spectra to associated oxygenate-containing gasoline properties, to predict laboratory analysis results for oxygenate-containing gasoline properties, and using the analysis results to control and optimize the blending process.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: August 7, 2012
    Assignee: Phillips 66 Company
    Inventors: David W. Carpenter, David S. Seiver, James W. Holbert, Yi-Ming Chen, Christopher J. LaFrancois
  • Patent number: 8202730
    Abstract: A method for detecting contamination of a conventional petroleum-based fuel used in an internal combustion engine is provided. A sample of engine oil is separated into a polar component and a non-polar component by a polar solvent. The polar component is analyzed for one or more biodiesel chemical components selected from the group consisting of plant sterols, fatty acid methyl esters, cetane, and combinations thereof, which relate to a degree of engine oil contamination. The polar and non-polar component may be analyzed by Gas Chromatography and Mass Spectrometry (GC/MS) and optionally Flame Ionization Detection (FID) for the one or more biodiesel chemical components, which can provide a semi-quantitative level of such biodiesel chemical components. Fuel samples can also be analyzed for biodiesel contamination species via GC/MS.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: June 19, 2012
    Inventor: Jill M. Cummings
  • Patent number: 8198091
    Abstract: A method for assaying the antioxidant capacity of a skin care product, the method including preparing an emulsion base, dissolving a sample of a skin care product into the emulsion base to form a homogeneous emulsion mixture, adding a detection probe to the homogeneous emulsion mixture, adding reactive oxygen species generator and/or reactive nitrogen species generator to the homogeneous emulsion mixture, measuring the fluorescence intensity change of the detection probe in the presence of the sample over time, in the presence of the standard over time, and in the presence of a blank over time, and calculating the initial rate of oxidation of the detection probe to determine the antioxidant capacity of the sample of the skin care product.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: June 12, 2012
    Assignee: Brunswick Laboratories, LLC
    Inventors: Boxin Ou, Liliang Zhang, Miwako Kondo, Hongping Ji, Yan Kou
  • Publication number: 20120135398
    Abstract: A method that uses an (DOPC) surfactant based biofilm that reacts with a material in a known manner, and a device that utilizes such a biofilm, to detect a material of interest is provided. The principles of the present invention are particularly useful in detecting/measuring a material that is harmful to a human or to property.
    Type: Application
    Filed: August 2, 2010
    Publication date: May 31, 2012
    Inventor: Mark L. Witten
  • Patent number: 8141401
    Abstract: In a shaping process a metal strip is passed in a rolling direction through shaping rolls and a layer of treatment liquid is applied to a surface of the strip upstream of the shaping rolls. Measurement variables of the liquid on the surface are analyzed by laser-induced, time resolved fluorescent spectroscopic analysis or spectroscopic analysis in the infrared band.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: March 27, 2012
    Assignee: SMS Demag Aktiengesellschaft
    Inventors: Arnt Kohlrausch, Hartmut Pawelski, Hans-Peter Richter
  • Patent number: 8087287
    Abstract: The present disclosure provides a method for detecting degradation of an engine oil, by separation into a polar component and a non-polar component via admixture with a polar solvent having a polarity index greater than or equal to 5 and optionally a non-polar solvent having a polarity index of less than or equal to about 1. The polar component is analyzed for one or more degradation indicators selected from the group consisting of antioxidants, acid content, and combinations thereof. Such degradation indicators relate to a degree of engine oil degradation. The polar component may be analyzed by Gas Chromatography and Mass Spectrometry (GC/MS) for the one or more degradation indicators, which can provide a semi-quantitative level of such degradation indicator species. The non-polar component identifies combustion products that help to explain the level of degradation.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Jill M. Cummings
  • Patent number: 8084264
    Abstract: A method for quantifying the presence of naphthenic acids in a hydrocarbon-comprising liquid that includes: contacting a hydrocarbon-comprising liquid with gaseous ammonia; isolating a reaction product produced by the contacting step; and analyzing the reaction product for the presence of naphthenates using a mass spectrometry technique. The naphthenic acids known to form commercial naphthenate deposits can be (i) ions of tetraprotic carboxylic acids having molecular weights ranging from 1225 to 1270 Daltons, (ii) n-alkyl or branched carboxylic acids having molecular weights ranging from 250 to 650 Daltons, or (iii) both.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: December 27, 2011
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Alan G. Marshall, Priyanka Juyal, Mmilili M. Mapolelo, Ryan P. Rodgers
  • Patent number: 8043858
    Abstract: A small-scale dynamic simulator for crude oil refinery desalters has a pressurized oil deviblis configured to hold a supply of crude oil and a water deviblis configured to hold a supply of wash water. At least one chemical feed pump selectively adds emulsion breaker chemicals to the desalter simulator and a low shear metering pump is configured to pump crude oil and wash water through the desalter simulator. An emulsion forming device forms a crude oil-wash water emulsion that is then received in a desalter vessel. The desalting vessel is fitted with electric grids which simulate those found in electric desalters. The emulsion is resolved within the desalter vessel with the assistance of the emulsion breaker chemicals so the wash water and crude oil form distinct phases, with substantially desalted crude oil removed from an upper portion of the desalter vessel and substantially oil-free wash water removed from a bottom portion of the desalter vessel.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: October 25, 2011
    Assignee: General Electric Company
    Inventors: Cato R. McDaniel, Harold J. Eggert, Kevin S. Solomon, Earl E. Siders, Frank Denison, Alan E. Goliaszewski, David B. Engel, Sherif Eldin, Thomas K. Brow
  • Patent number: 8038948
    Abstract: A gas analyzer system for analyzing samples of compressed or ambient gas such as breathing air within a scuba tank, SCBA or ambient air within an industrial plant and informing the user as to the results of the sample's gas purity without the gas sample having to be physically transported to an accredited laboratory. The system comprises a gas analyzer situated at a user facility for receiving the contents of a gas sample and detecting gas purity characteristics, and a server situated at a remote certified testing site and electrically coupled to the gas analysis module via data transmission, such as a wireless or a computer network connection, wherein the server, maintained by a qualified third party receives and stores the gas purity characteristics in the form of computer-readable data signals.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: October 18, 2011
    Assignee: Lawrence Factor, Inc.
    Inventor: Robert M. Laughlin
  • Patent number: 8021885
    Abstract: The present invention concerns a method for the determination of the oxidative stability of a lubricating fluid, comprising the steps of: introducing a sample of the lubricating fluid under test in an reaction cell; introducing catalytic amounts of a catalyst to the reaction cell; heating the cell to the oxidation temperature of the lubricating fluid and maintaining this temperature; delivering oxygen containing gas at constant flow rate through the cell over the course of the reaction; delivering a gas comprising nitrogen dioxide at a constant flow rate through the cell for a specified time; applying and maintaining a specified vacuum on the reaction cell; allowing the mixture to react for a specified time; measuring the viscosity of the oxidized lubricating fluid. Additionally, the present invention describes an apparatus for the determination of the oxidative stability of a lubricating fluid.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: September 20, 2011
    Assignee: Evonik Rohmax Additives GmbH
    Inventors: Bernard Kinker, Raymond Romaszewski
  • Patent number: 7981680
    Abstract: A method for detecting contamination of a conventional petroleum-based fuel used in an internal combustion engine is provided. A sample of engine oil is separated into a polar component and a non-polar component by a polar solvent. The polar component is analyzed for one or more biodiesel chemical components selected from the group consisting of plant sterols, fatty acid methyl esters, cetane, and combinations thereof, which relate to a degree of engine oil contamination. The polar and non-polar component may be analyzed by Gas Chromatography and Mass Spectrometry (GC/MS) and optionally Flame Ionization Detection (FID) for the one or more biodiesel chemical components, which can provide a semi-quantitative level of such biodiesel chemical components. Fuel samples can also be analyzed for biodiesel contamination species via GC/MS.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: July 19, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Jill M. Cummings
  • Patent number: 7927877
    Abstract: A method of analyzing biodiesel content in a fuel sample generally includes providing a fuel sample including at least one of a biodiesel and other diesel fuel; mixing a predetermined amount of solvent to the fuel sample, wherein the fuel sample is soluble in the solvent; mixing a predetermined amount of water to the fuel sample; analyzing the fuel sample for a change; and associating the change with a biodiesel content in the fuel sample.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: April 19, 2011
    Assignee: Herguth Technologies, Inc.
    Inventor: Robert E. Kauffman