Electrical Property Or Magnetic Property Patents (Class 436/806)
  • Patent number: 7402425
    Abstract: Electrostatic capacitance measurements are used to detect chemical or biological analytes, or chemical interactions, with great sensitivity. A diaphragm is coated with a material capable of selectively interacting with an analyte of interest, and interaction of the analyte with the coating exerts stresses tangential to the diaphragm's surface. These stresses cause diaphragm displacements that are sensed as varying capacitance.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: July 22, 2008
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Marc S. Weinberg, Jeffrey Borenstein, Christopher E. Dubé, Ralph Hopkins, Edwin Carlen
  • Patent number: 7374948
    Abstract: The disclosure provides methods for the determination of the enantiomeric excess of chiral compounds. The methods involve doping a chiral analyte into an achiral liquid crystal host to form a chiral dopant/host liquid crystal mixture. An electro-optic signature of the mixture is then determined and is used to calculate the enantiomeric excess of the chiral analyte. The disclosure also provides systems for performing the disclosed methods of determining enantiomeric excess.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: May 20, 2008
    Assignee: The Regents of the University of Colorado
    Inventors: David M Walba, Noel A. Clark
  • Patent number: 7358099
    Abstract: Superparamagnetic (“SPM”) subunits of 1–30 nm average mean diameter (e.g. ferro fluid) subparticles are treated with a magnetically noninterfering substance capable of coating and covering them (e.g, BSA) and they spontaneously form agglomerates of about 100 nm to about 450 nm or higher average mean diameter and are then used to form complexes with target biological ligands such as viruses, contained in large volumes of liquid. The complexes are subjected to the gradient intensity of a strong magnetic field, and excess liquid is removed, where upon an immunochromatographic assay is conducted to determine the identity and/or amount of target ligand present, in which operation SPM particles that bonded to the ligand function as tags for ligand detection.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 15, 2008
    Assignee: Binax, Inc.
    Inventors: Roger N. Piasio, Nathan Turner
  • Patent number: 7351590
    Abstract: The present invention concerns a novel means by which specific chosen reactions can be accelerated through the use of a new type of artificial enzyme. The invention allows specific reactions to occur at an accelerated rate, even in the presence of other non-chosen molecules, which may be very similar in structure to the chosen reactant. The reactions may be stoichiometric or catalytic.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: April 1, 2008
    Assignee: Mirari Biosciences, Inc.
    Inventor: Mark Martin
  • Patent number: 7348182
    Abstract: The present invention concerns a novel means by which chemical preparations can be made. Reactions can be accelerated on special chips using microwave energy. The chips contain materials that efficiently absorb microwave energy causing chemical reaction rate increases. The invention is important in many small scale chemical transformations including those used in protein chemistry and in combinatorial chemistry.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: March 25, 2008
    Assignee: Mirari Biosciences, Inc.
    Inventors: Mark T. Martin, Richard Saul
  • Patent number: 7332327
    Abstract: In a method for analysis biomolecules (3) attached to a solid surface of a substrate (1) are used for detecting the presence of analytes (4) in a sample by binding of the analytes to the biomolecules. The biomolecules (3) are attached directly to the surface of the substrate together with biomolecule-repellent molecules (5), which cover the surface between the biomolecules (3) to prevent nonspecific binding of analytes (4) and other biomolecules. The invention relates also to a biosensor where biomolecules (3) are attached directly to the substrate (1) together with biomolecule-repellent molecules (5), which cover the surface between the biomolecules (3) to prevent non-specific binding of analytes (4) and other biomolecules. The biomolecules (5) can be self-assembled hydrophilic polymers. One example of using the invention is immunological analysis using surface plasmon resonance (SPR).
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: February 19, 2008
    Assignee: BioNavis Ltd.
    Inventors: Inger Vikholm, Janusz Sadowski
  • Patent number: 7291496
    Abstract: An electronic sensor is provided for detecting the presence of one or more analytes of interest in a sample. The sensor preferably comprises a field effect transistor in which conductance is enhanced by analyte binding to receptors in the active region. An array of sensors may be formed to analyze a sample for multiple analytes.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: November 6, 2007
    Assignee: University of Hawaii
    Inventor: James W. Holm-Kennedy
  • Patent number: 7285424
    Abstract: A membrane-based assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes a self-calibrated magnetic binding assay format (e.g., sandwich, competitive, etc.) that includes detection probes capable of generating a detection signal (e.g., fluorescent non-magnetic particles) and calibration probes capable of generating a calibration signal (e.g., fluorescent magnetic particles). The amount of the analyte within the test sample is proportional (e.g., directly or inversely) to the intensity of the detection signal calibrated by the intensity of the calibration signal. It has been discovered that the fluidics-based device of the present invention provides an accurate, inexpensive, and readily controllable method of determining the presence of an analyte in a test sample.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: October 23, 2007
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Xuedong Song, Rosann Kaylor
  • Patent number: 7250759
    Abstract: The present invention provides an integrated circuit and a method for noise removal in a magnetic nano-particle sensor device. The method of the present invention comprises the steps of sending a conductor current through a conductor to generate a first horizontal magnetic field component at the location of a magneto-resistive sensor. In a further step the optimal operation point of the magneto-resistive sensor is determined by minimizing the noise at the output of the magneto-resistive sensor by means of a noise optimization circuit. By applying an external magnetic field such that nano-particles in the vicinity of the sensor are vertically magnetized, a second horizontal magnetic field component is generated at the location of the sensor. Then, the conductor current is adjusted such that the first horizontal magnetic field component compensates for the second horizontal magnetic field component.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: July 31, 2007
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Josephus Arnoldus Henricus Maria Kahlman
  • Patent number: 7250288
    Abstract: Electrodes and configurations for electrochemical bioreactor systems that can use electrical energy as a source of reducing power in fermentation or enzymatic reactions and that can use electron mediators and a biocatalyst, such as cells or enzymes, to produce electricity are disclosed. Example electrodes in the system may comprise: (1) neutral red covalently bound to graphite felt (FIG. 1); (2) a carboxylated cellulose bound to the graphite fell, neutral red bound to the carboxylated cellulose, NAD+ to the graphite fell, and an oxidoreductase (e.g., fumarate reductase) bound to the graphite fell; or (3) a metal ion electron mediator bound to graphite. Various biocatalysts, such as an oxidoreductase, cells of Actinobacillus succinogenes, cells of Escherichia coli, and sewage sludge, are suitable for use in the electrochemical bioreactor system.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: July 31, 2007
    Assignee: Board of Trustees of Michigan State University
    Inventors: Joseph Gregory Zeikus, Doo Hyun Park
  • Patent number: 7220550
    Abstract: Disclosed is a sensor for sensing the presence of an analyte component without relying on redox mediators. This sensor includes (a) a plurality of conductive polymer strands each having at least a first end and a second end and each aligned in a substantially common orientation; (b) a plurality of molecular recognition headgroups having an affinity for the analyte component and being attached to the first ends of the conductive polymer strands; and (c) an electrode substrate attached to the conductive polymer strands at the second ends. The electrode substrate is capable of reporting to an electronic circuit reception of mobile charge carriers (electrons or holes) from the conductive polymer strands. The electrode substrate may be a photovoltaic diode.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: May 22, 2007
    Assignee: Keensense, Inc.
    Inventor: Randy E. Keen
  • Patent number: 7208322
    Abstract: The present invention provides a sensor surface comprising: a substrate coated with a free electron metal; and a matrix layer disposed on the free electron metal, wherein the matrix layer comprises an organic compound having a boronic acid complexing moiety. The matrix is preferably a self-assembled monolayer (SAM), a mixed self-assembled monolayer (mSAM), or combinations thereof.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: April 24, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Mark L. Stolowitz, Jean P. Wiley, Guisheng Li, Kevin Lund
  • Patent number: 7195738
    Abstract: A sensor is provided for detecting a target substance in a sample by detecting a product formed in the presence of an enzyme and an enzyme substrate. The sensor comprises two or more working electrodes, a first capturing molecule immobilized on the working electrodes, and a current-detector for detecting a current value flowing through at least one of the working electrodes. The sensor also comprises a target substance detection means having an arithmetic unit for determining an amount of the target substance in the sample on the basis of the current value detected by the current-detector in a specified period of time, and a crosstalk detecting electrode arranged between the working electrodes for detecting a crosstalk between the working electrodes. The specified period of time is a time necessary for the current value through the crosstalk detecting electrode to show a particular change.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: March 27, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventor: Norihiko Utsunomiya
  • Patent number: 7179659
    Abstract: The present invention provides a method for detecting an analyte, comprising providing a sensor comprising a substrate coated with a free electron metal, a matrix layer disposed on the free electron metal, the matrix layer comprising an organic compound, wherein the organic compound has a boronic acid complexing moiety and, a boronic acid moiety complexed to the boronic acid complexing moiety; and contacting the sensor with the analyte to elicit a response; and measuring the response thereby detecting the analyte.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: February 20, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Mark L. Stolowitz, Jean P. Wiley, Guisheng Li, Kevin Lund
  • Patent number: 7179383
    Abstract: Method and apparatus for manipulating and monitoring analyte flowing in fluid streams. A giant magnetoresistive sensor has an array of sensing elements that produce electrical output signals which vary in dependence on changes in the magnetic field proximate the sensing elements. The analyte is included in a stream, such that the stream has a magnetic property which is dependent on the concentration and distribution on the analyte therein. The stream is flowed past the giant magnetoresistive sensor and in sufficiently close proximity to cause the magnetic properties of the stream to produce electrical output signals. The electrical output signals are monitored as an indicator of analyte concentration or distribution in the stream flowing past the GMR sensor. Changes in the magnetic field produced by the background stream are introduced by analyte molecules, whose presence in the flow past the GMR will effect the output reading.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: February 20, 2007
    Assignee: Iowa State University Research Foundation
    Inventors: Marc D Porter, Jing Ni, G Brent Dawson, Ruth Shinar, Robert J Lipert, Michael C Granger, Mark Tondra
  • Patent number: 7169618
    Abstract: An improved method for separating materials is provided, using colloidal, magnetizable aggregates, optionally silanized, and coated with a one or more layers of novel polysaccharide derivatives. Materials separated by the aggregates of the invention include inorganic and organic molecules, viruses, organelles, and cells. The invention also relates to a kit for separating such materials. The separated materials are useful in analytical and preparative or in diagnostic and therapeutic techniques.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: January 30, 2007
    Assignee: Skold Technology
    Inventor: Carl Nelson Skold
  • Patent number: 7115362
    Abstract: An electrochemical test device is provided for determining the presence or concentration of an analyte in an aqueous fluid sample. The electrochemical test device includes a working electrode and a counter electrode made of an amorphous semiconductor material. The working electrode is overlaid with a reagent capable of reacting with an analyte to produce a measurable change in potential which can be correlated to the concentration of the analyte in the fluid sample. The test device optionally contains a reference electrode made of an amorphous semiconductor material having a reference material on the reference electrode. The test device electrodes can be constructed on a flexible film substrate, such as a polymeric film or a metal foil coated with a non-conductive coating.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: October 3, 2006
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Joel S. Douglas, Jeffrey N. Roe, John H. Priest
  • Patent number: 7112452
    Abstract: A method and sensor are provided for detecting the binding of a probe and a target biomolecule by measuring a difference in the shear stress on the surface of the sensor before and after hybridization of the target molecule to the probe, such as nucleic acids or proteins. The shear stress may be measured sensitively and conveniently as an electrical signal without additional fluorescent labeling and without use of expensive additional devices.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: September 26, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-kyoung Cho, Sun-hee Kim, Kwang-wook Oh, Geun-bae Lim, Dae-sung Yoon
  • Patent number: 7105358
    Abstract: An apparatus to measure micro-forces includes a cantilever palette with a set of cantilever array blocks. Each cantilever array block includes a set of cantilevers, with each cantilever including a set of cantilever fingers surrounded by a frame with frame fingers. The cantilever fingers and the frame fingers form a diffraction grating. Each cantilever array block is configured to be responsive to a predetermined micro-force, such that cantilevers of the cantilever array block deflect in the presence of the predetermined micro-force, which causes the diffraction grating to diffract light and thereby provide a visual indication of the presence of the predetermined micro-force.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: September 12, 2006
    Assignee: The Regents of the University of California
    Inventors: Arunaya Majumdar, Thomas Michael Perazzo, Minyao Mao, Ohmyoung Kwon, Yang Zhao, Guanghua Wu
  • Patent number: 7083985
    Abstract: A coplanar waveguide biosensor and methods of use include a coplanar waveguide transmission line and a sample containment structure. The coplanar waveguide transmission line is operable to support the propagation of an electromagnetic signal and includes a signal line and one or more spaced apart ground elements. The signal line is configured to conduct a time-varying voltage, and the one or more ground elements are configured to maintain a time-invariant voltage, a detection region being formed between a portion of the signal line and a portion of at least one of the one or more ground elements. Detection methods are improved through the enhancement of the electric field in the detection region via impedance discontinuities in the signal line and ground elements. The sample containment structure intersects the detection region of the coplanar waveguide transmission line and includes a cavity configured to hold 1 ml or less of sample solution within the detection region.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: August 1, 2006
    Inventors: John J. Hefti, Barrett Bartell, Kurt Kramer, Mark A. Rhodes
  • Patent number: 7056746
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: June 6, 2006
    Assignee: BioArray Solutions Ltd.
    Inventors: Michael Seul, Alice Xiang Li
  • Patent number: 7045310
    Abstract: Novel bipyridyl-osmium complex conjugates and their use in electrochemical assays are described. The redox reversible-osmium complexes can be prepared to exhibit unique reversible redox potentials and can thus be used in combination with other electroactive redox reversible species having redox potentials differing by at least 50 millivolts in electrochemical assays designed for use of multiple electroactive species in the same cell and in the same sample without interference between the two or more redox coupled conjugate systems.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: May 16, 2006
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Harvey B. Buck, Jr., Zhi David Deng, Eric R. Diebold
  • Patent number: 7041509
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays. In particular, the devices and methods of the invention are useful in screening large numbers of different compounds for their effects on a variety of chemical, and preferably, biochemical systems.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: May 9, 2006
    Assignee: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Anne R. Kopf-Sill, Luc J. Bousse
  • Patent number: 7018849
    Abstract: Superparamagnetic (“SPM”) subunits of 1–30 nm average mean diameter (e.g. ferro fluid) subparticles are treated with a magnetically noninterfering substance capable of coating and covering them (e.g, BSA) and they spontaneously form agglomerates of about 100 nm to about 450 nm or higher average mean diameter and are then used to form complexes with target biological ligands such as viruses, contained in large volumes of liquid. The complexes are subjected to the gradient intensity of a strong magnetic field, and excess liquid is removed, where upon an immunochromatographic assay is conducted to determine the identity and/or amount of target ligand present, in which operation SPM particles that bonded to the ligand function as tags for ligand detection.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: March 28, 2006
    Inventors: Roger N. Piasio, Nathan Turner
  • Patent number: 7018830
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: March 28, 2006
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 7015034
    Abstract: The subject invention provides new materials and methods for the efficient isolation and purification of stem cells. Specifically, conductive immunopolymers with stem cell specific antibodies can be used to remove stem cells from biological fluids.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: March 21, 2006
    Assignee: Morphogenesis, Inc.
    Inventors: Michael J. P. Lawman, Patricia Lawman
  • Patent number: 7005292
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: February 28, 2006
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 6991912
    Abstract: Novel magnetic assay methods and systems. According to a preferred embodiment, a chromatographic medium, which preferably comprises a test strip, is provided that is designed to be contacted with a test solution having activated magnetic particles such that the solution flows bilaterally thereacross. A magnetic field, generated by a magnet or electromagnet, is selectively applied to the medium which causes the charged particles to become substantially bound at a site on the medium specified by the position of the magnet, to thus form a captured line or zone. In one preferred embodiment, the magnetic field is applied at the site on the medium at which the test solution is contacted. The degree of magnetic force applied to the membrane may be selectively adjusted to vary the width or surface area of the capture line or zone.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: January 31, 2006
    Assignee: Wavesesense, LLC
    Inventor: Christopher Feistel
  • Patent number: 6979544
    Abstract: Disclosed is a sensor for sensing the presence of an analyte component without relying on redox mediators. This sensor includes (a) a plurality of conductive polymer strands each having at least a first end and a second end and each aligned in a substantially common orientation; (b) a plurality of molecular recognition headgroups having an affinity for the analyte component and being attached to the first ends of the conductive polymer strands; and (c) an electrode substrate attached to the conductive polymer strands at the second ends. The electrode substrate is capable of reporting to an electronic circuit reception of mobile charge carriers (electrons or holes) from the conductive polymer strands. The electrode substrate may be a photovoltaic diode.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: December 27, 2005
    Assignee: Keensense, Inc.
    Inventor: Randy E. Keen
  • Patent number: 6979574
    Abstract: The invention relates to a new process for detecting analytes or binding reactions using measurement of the double refraction, as well as the use of the compounds in analytical chemistry that are necessary for this purpose.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: December 27, 2005
    Assignee: Institut fuer Diagnostik Forshung GmbH
    Inventors: Roman Kötitz, Julia Lange, Julian Browaeys, Régine Perzynski, Jean-Claude Bacri, Virginie Ponsinet, Thomas Rheinländer
  • Patent number: 6979543
    Abstract: A sensor is provided including a polymer capable of having an alterable measurable property from the group of luminescence and electrical conductivity, the polymer having an intermediate combination of a recognition element, a tethering element and a property-altering element bound thereto and capable of altering the measurable property, the intermediate combination adapted for subsequent separation from the polymer upon exposure to an agent having an affinity for binding to the recognition element whereupon the separation of the intermediate combination from the polymer results in a detectable change in the alterable measurable property, and, detecting said detectable change in the alterable measurable property.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: December 27, 2005
    Assignee: The Regents of the University of California
    Inventors: Liaohai Chen, Duncan W. McBranch, Hsing-Lin Wang, David G. Whitten
  • Patent number: 6977180
    Abstract: The present invention relates, in general, to biosensors and, in particular, to bioelectronic sensors comprising a macromolecule immobilized on an electrode surface so that a redox cofactor that is site-specifically attached to the surface of the macromolecule is between the macromolecule and electrode surface ligand-mediated conformational changes alter the geometry of interaction between the redox cofactor and the electrode surface resulting in a change in electronic coupling between the cofactor and electrode.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: December 20, 2005
    Assignee: Duke University
    Inventors: Homme W. Hellinga, David W. Conrad, David E. Benson
  • Patent number: 6927070
    Abstract: This invention relates to an improved method and system for sensing of one or more analytes. A host molecule, which serves as an adapter/carrier, is used to facilitate interaction between the analyte and the sensor element. A detectable signal is produced reflecting the identity and concentration of analyte present.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: August 9, 2005
    Assignee: The Texas A&M University System
    Inventors: Hagan Bayley, Orit Braha, LiQun Gu
  • Patent number: 6899849
    Abstract: An integrated optical chip device for molecular diagnostics comprising a tunable laser cavity sensor chip using heterodyned detection at the juncture of a sensor laser and a reference laser, and including a microfluid chip to which the sensor chip is flip-chip bonded to form a sample chamber that includes exposed evanescent field material of the tunable laser cavity to which fluid to be diagnosed is directed.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: May 31, 2005
    Assignee: The Regents of the University of California
    Inventors: Carl D. Meinhart, Larry A. Coldren, Timothy J. Stultz
  • Patent number: 6890762
    Abstract: A method of measuring the physical and chemical properties of tissue or cells and a device for the same is provided, with which the physical and chemical environment of the tissue or cells can be changed arbitrarily corresponding to experimental necessities. The device comprises a system 40 for keeping the physical and chemical environment surrounding the biological tissue or cells constant, a system 50 for arbitrarily changing the physical and chemical environment, observation systems 10 and 20 for observing the physical and chemical properties of the tissue or cells, and a system 30 for comparing the change of the physical and chemical properties of the tissue or cells before and after changing the physical and chemical environment. The observation system 10 is a potential measurement device for measuring the electrophysiological properties of the tissue or cells.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: May 10, 2005
    Assignee: Matsushita Technical Information Services Co., Ltd.
    Inventors: Hirokazu Sugihara, Yasushi Kobayashi, Hiroaki Oka, Ryuta Ogawa, Makoto Taketani
  • Patent number: 6881589
    Abstract: The invention provides compositions and kits for performing a binding assay for an analyte of interest present in a sample based upon electrochemiluminescence. The compositions and kits comprise an electrochemiluminescent label, collectable particles, binding reagents, and an electrolyte.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: April 19, 2005
    Assignee: BioVeris Corporation
    Inventors: John K. Leland, Haresh P. Shah, John H. Kenten, Jack E. Goodman, George E. Lowke, Yuzaburo Namba, Gary F. Blackburn, Richard J. Massey
  • Patent number: 6881536
    Abstract: A method for the detection of an analyte of interest in a sample, which method comprises the steps of: (1) forming a composition comprising (a) a sample, (b) at least one substance selected from the group consisting of (i) added analyte of interest or an analog of the analyte of interest, (ii) a binding partner of the analyte of interest or its said analog, and (iii) a reactive component capable of binding with (i) or (ii), wherein one of said substances is linked to a label compound having a chemical moiety capable of being induced to luminesce, and (c) a plurality of particles capable of specifically binding with the analyte and/or a substance defined in (b) (i), (b) (ii), or (b) (iii); (2) inducing the label compound to luminesce; and (3) measuring luminescence emitted by the composition to determine the presence of the analyte of interest in the sample.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: April 19, 2005
    Assignee: BioVeris Corporation
    Inventors: Haresh P. Shah, Lee O. Hall, Michael J. Powell, Richard J. Massey
  • Patent number: 6846639
    Abstract: The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: January 25, 2005
    Assignee: The Regents of the University of California
    Inventors: Robin R. Miles, Kodumudi S. Venkateswaran, Christopher K. Fuller
  • Patent number: 6841393
    Abstract: A system and method for removing contaminants from a surface. The system is designed to use very small particles having means thereon which are capable of selectively binding to a contaminant or contaminants of interest. The particles may contain a dye to render the particles visible in order for a user to observe the application and removal of the particles. The particles also have magnetic properties which may be provided by a high iron content. A carrier can be used to apply the particles to a surface whereupon the targeted contaminants bind to the particles. The particles may then be readily removed from the surface using magnets. When the particle is removed, the targeted contaminants are also removed. The invention is especially useful for the removal of contaminants from skin.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: January 11, 2005
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: David W. Koenig
  • Patent number: 6806050
    Abstract: This invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents. An electromagnetic biochip comprises an individually addressable micro-electromagnetic unit chip with ligand molecules immobilized on its surface. By controlling the electromagnetic field at each unit of the array and combining this control with magnetic modification of biomolecules, these chips can be used for directed manipulation, synthesis and release of biomolecules in order to increase sensitivity of biochemical or chemical analysis and reduce assay time. Other advantages with these chips include minimized damages to biological molecules and increased reproducibility of assay results.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: October 19, 2004
    Assignee: AVIVA Biosciences
    Inventors: Yuxiang Zhou, Litian Liu, Ken Chen, Depu Chen, Jia Wang, Zewen Liu, Zhimin Tan, Junquan Xu, Xiaoshan Zhu, Xuezhong He, Wenzhang Xie, Zhiming Li, Xiumel Liu
  • Patent number: 6797524
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: September 28, 2004
    Assignee: Bioarray Solutions Ltd.
    Inventor: Michael Seul
  • Patent number: 6794153
    Abstract: The present invention relates to the finding and detection of Helicobacter pylori (H. pylori) antigens in blood of infected individuals. The H. pylori antigens are components of H. pylori cells which include, but not limited to DNA, RNA, and fragments of nucleotides, proteins or peptides. H. pylori DNA, RNA, and fragments of nucleotides can be detected by polymerase chain reaction (PCR), ligase chain reaction (LCR), or DNA hybridization methods or other amplification methods. H. pylori proteins or peptides or other antigenic components thereof can be detected by immunoassays or immunoblot using an antibody against H. pylori, preferably an antibody purified by an affinity column. The present invention further provides immunoassay methods, diagnostic kits, and an immunochromatographic assay device for detection of Helicobacter pylori antigens in serum samples.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: September 21, 2004
    Assignee: Panion & BF Laboratory Ltd.
    Inventors: Ching Sui A. Yi, Chung-Ho Hung
  • Patent number: 6770487
    Abstract: Diagnostic test devices, including diagnostic strip tests, are provided in which identifying information and the test result are machine-readable. Also provided are methods for obtaining identifying information and test results from the diagnostic test devices.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: August 3, 2004
    Assignee: Ischemia Technologies, Inc.
    Inventor: Peter A. Crosby
  • Patent number: 6764583
    Abstract: Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: July 20, 2004
    Assignee: The Regents of the University of California
    Inventor: Robin R. Miles
  • Patent number: 6764860
    Abstract: An ultrasonic energy source is used to provide a variable force for measuring the binding forces between molecular entities and for sensing the presence of an analyte in a test sample. The device includes a surface that has a first binding member attached thereto and one or more particles that have a second binding member attached thereto. A reaction vessel is provided for exposing the surface to the particles whereby, if the first binding member has a binding affinity for the second binding member, a complex is formed between individual first binding members and individual second binding members and the particles thereby become immobilized with respect to the surface. The ultrasonic energy source is positioned for applying a variable ultrasonic force onto the surface, and the position of the particles is monitored as the intensity of the ultrasonic force is varied.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: July 20, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Gil U Lee
  • Patent number: 6762062
    Abstract: The present disclosure relates to a method for determining cholesterol in low density lipoprotein comprising the steps of (a) measuring total cholesterol level in a sample containing at least high density lipoprotein, low density lipoprotein, very low density lipoprotein and chylomicron, and (b) measuring cholesterol levels in the high density lipoprotein, very low density lipoprotein and chylomicron in the sample, wherein the cholesterol level in the low density lipoprotein is determined by subtracting a value obtained in the step (b) from a value obtained in the step (a). The present invention enables concurrent determination of cholesterol level in low density lipoprotein and total cholesterol level, facilitating acquisition of two types of biological information at a time.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: July 13, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Motokazu Watanabe, Toshihiko Yoshioka, Shiro Nankai
  • Patent number: 6736978
    Abstract: Method and apparatus for manipulating and monitoring analyte flowing in fluid streams. A giant magnetoresistive sensor has an array of sensing elements that produce electrical output signals which vary in dependence on changes in the magnetic field proximate the sensing elements. The analyte is included in a stream, such that the stream has a magnetic property which is dependent on the concentration and distribution on the analyte therein. The stream is flowed past the giant magnetoresistive sensor and in sufficiently close proximity to cause the magnetic properties of the stream to produce electrical output signals. The electrical output signals are monitored as an indicator of analyte concentration or distribution in the stream flowing past the GMR sensor. Changes in the magnetic field produced by the background stream are introduced by analyte molecules, whose presence in the flow past the GMR will effect the output reading.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: May 18, 2004
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Marc D. Porter, Jing Ni, G. Brent Dawson, Ruth Shinar, Robert J. Lipert, Michael C. Granger, Mark Tondra
  • Patent number: 6730521
    Abstract: A chemical and bio-chemical assay method is described which screens compounds for enzyme inhibition, or receptor or other target binding. Inhibition or binding by the library compounds causes a change in the amount of an optically detectable label that is bound to suspendable cells or solid supports. The amounts of label bound to individual cells or solid supports are microscopically determined, and compared with the amount of label that is not bound to individual cells or solid supports. The degree of inhibition or binding is determined using this data. Confocal microscopy, and subsequent data analysis, allow the assay to be carried out without any separation step, and provide for high throughput screening of very small assay volume using very small amounts of test compound.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: May 4, 2004
    Assignee: The Technology Partnership PLC
    Inventor: John Cassells
  • Patent number: 6727103
    Abstract: In accordance with a first aspect, a binding assay comprises a machine-readable storage medium which supports a molecular receptor (22). In accordance with a second aspect, a support member (50) supports first (22) and second (24) molecular receptors and first (26) and second (28) data identifying the molecular receptors (22,24). In accordance with a third aspect, a support member has a first annular portion (106) to support molecular receptors and a second annular portion (108) to support machine-readable data identifying the plurality of molecular receptors.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: April 27, 2004
    Assignee: Amersham Biosciences AB
    Inventors: William L. Reber, Cary D. Perttunen
  • Patent number: 6713271
    Abstract: Novel magnetic assay methods and systems. According to a preferred embodiment, a chromatographic medium, which preferably comprises a test strip, is provided that is designed to be contacted with a test solution having activated magnetic particles such that the solution flows bilaterally thereacross. A magnetic field, generated by a magnet or electromagnet, is selectively applied to the medium which causes the charged particles to become substantially bound at a site on the medium specified by the position off the magnet, to thus form a captured line or zone. In one preferred embodiment, the magnetic field is applied at the site on the medium at which the test solution is contacted. The degree of magnetic force applied to the membrane may be selectively adjusted to vary the width or surface area of the capture line or zone.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: March 30, 2004
    Assignee: Wavesense, LLC
    Inventor: Christopher Feistel