Forming Inverted Transistor Structure Patents (Class 438/334)
  • Patent number: 10896832
    Abstract: In substrate processing method, a change in a voltage, which is applied to a component provided in a substrate processing apparatus configured to process a substrate, is measured and a current flowing through the component is measured. A temperature of the component is obtained from a change in a resistance calculated based on the voltage and the current with reference to a conversion table in which a plurality of resistances is correlated with a plurality of temperatures. A determination of whether or not abnormality has occurred in a temperature of the substrate is made based on the change in the voltage, and processing of the substrate is stopped when it is determined that the abnormality has occurred.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 19, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kazuhito Yamada, Hiroki Endo
  • Patent number: 8890252
    Abstract: A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 18, 2014
    Assignee: DENSO CORPORATION
    Inventors: Hirotaka Saikaku, Tsuyoshi Yamamoto, Shoji Mizuno, Masakiyo Sumitomo, Tetsuo Fujii, Jun Sakakibara, Hitoshi Yamaguchi, Yoshiyuki Hattori, Rie Taguchi, Makoto Kuwahara
  • Publication number: 20140312356
    Abstract: A semiconductor device and a method of making the same. The device includes a semiconductor substrate. The device also includes a bipolar transistor on the semiconductor substrate. The bipolar transistor includes an emitter. The bipolar transistor also includes a base located above the emitter. The bipolar transistor further includes a laterally extending collector located above the base. The collector includes a portion that extends past an edge of the base.
    Type: Application
    Filed: March 24, 2014
    Publication date: October 23, 2014
    Applicant: NXP B.V.
    Inventors: Tony Vanhoucke, Viet Thanh Dinh, Anco Heringa, Dirk Claasen, Evelyne Gridelet, Jan Willem Slotboom
  • Patent number: 8461633
    Abstract: A thin film transistor includes a substrate; a gate electrode on the substrate; a gate insulating layer covering the gate electrode; a semiconductor layer corresponding to the gate electrode on the gate insulating layer; a protective layer covering the semiconductor layer and the gate insulating layer and having a source contact hole and a drain contact hole exposing a portion of the semiconductor layer; and a source electrode and a drain electrode on the protective layer and coupled to the semiconductor layer through the source contact hole and the drain contact hole, respectively, wherein the semiconductor layer has a source offset groove at a portion corresponding to the source contact hole of the protective layer.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: June 11, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jeong-Hwan Kim, Joung-Keun Park, Jae-Hyuk Jang
  • Patent number: 8343824
    Abstract: Gallium nitride material devices and related processes are described. In some embodiments, an N-face of the gallium nitride material region is exposed by removing an underlying region.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 1, 2013
    Assignee: International Rectifier Corporation
    Inventors: Edwin Lanier Piner, Jerry Wayne Johnson, John Claassen Roberts
  • Patent number: 8115256
    Abstract: A semiconductor device includes an inverter having an NMOSFET and a PMOSFET having sources, drains and gate electrodes respectively, the drains being connected to each other and the gate electrodes being connected to each other, and a pnp bipolar transistor including a collector (C), a base (B) and an emitter (E), the base (B) receiving an output of the inverter.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: February 14, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Haruki Yoneda, Hideaki Fujiwara
  • Patent number: 8021951
    Abstract: Provided is a semiconductor device including: a silicon substrate; at least two trenches spaced apart from each other, being in parallel with each other, and being formed by vertically etching the silicon substrate from a surface thereof; an electrically insulating film for burying therein at least bottom surfaces of the trenches; a base region formed in a region of the silicon substrate located between the two trenches; and an emitter region and a collector region formed on portions of side surfaces of the trenches, respectively, the portions of the sides located above the insulating film and formed in the base region.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: September 20, 2011
    Assignee: Seiko Instruments Inc.
    Inventor: Kazuhiro Tsumura
  • Patent number: 7939417
    Abstract: A structure is disclosed including a substrate including an insulator layer on a bulk layer, and a bipolar transistor in a first region of the substrate, the bipolar transistor including at least a portion of an emitter region in the insulator layer. Another disclosed structure includes an inverted bipolar transistor in a first region of a substrate including an insulator layer on a bulk layer, the inverted bipolar transistor including an emitter region, and a back-gated transistor in a second region of the substrate, wherein a back-gate conductor of the back-gated transistor and at least a portion of the emitter region are in the same layer of material. A method of forming the structures including a bipolar transistor and back-gated transistor together is also disclosed.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, William F. Clark, Jr., Edward J. Nowak
  • Patent number: 7320922
    Abstract: An integrated circuit on a semiconductor chip is provided with a first bipolar transistor and a second bipolar transistor. The first bipolar transistor has a first collector region of a first conductivity type, grown by at least one epitaxial layer, and the second bipolar transistor has a second collector region of this first conductivity type grown by this epitaxial layer. The first collector region also has a first collector drift zone, and the second collector region has a second collector drift zone. Whereby, the first collector drift zone is shortened as compared to the second collector drift zone by partial etching of the epitaxial layer.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: January 22, 2008
    Assignee: Atmel Germany GmbH
    Inventor: Christoph Bromberger
  • Patent number: 6815272
    Abstract: In a bottom gate-type thin-film transistor manufacturing method, after ion doping, an ion stopper is removed. The ion stopper does not remain in the interlayer insulating film lying immediately above the gate electrode. The thin-film transistor has such a structure that no ion stopper, and the interlayer insulating layer is in direct contact with at least the channel region of the semiconductor layer. The impurity concentration in the vicinity of the interface between the interlayer insulating film and the semiconductor layer 4 is 1018 atoms/cc or less. This structure can prevent the back channel phenomenon and reduce variations in characteristic resulting from variations in manufacturing.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: November 9, 2004
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Nobuhiko Oda, Toshifumi Yamaji, Shiro Nakanishi, Yoshihiro Morimoto, Kiyoshi Yoneda
  • Patent number: 6569730
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 27, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6414371
    Abstract: High frequency performance of transistor designs is enhanced and manufacturing yield improved by removing and reducing sources of parasitic capacitance through combinations of processes from different technologies. After formation of collector, base and emitter regions on a substrate and attachment of a second substrate, the original substrate is wholly or partially removed, the inactive collector area is removed or rendered semi-insulating and wiring and contacts are made from the original back side of the chip. Dielectric material used in the manufacturing process can be removed to further reduce capacitance. The high frequency transistors can be bonded to CMOS chips or wafers to form BICMOS chips.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: July 2, 2002
    Assignee: International Business Machines Corporation
    Inventors: Gregory G. Freeman, Robert A. Groves, Jeffrey Johnson, Seshadri Subbanna, Richard P. Volant
  • Publication number: 20020019099
    Abstract: A novel super-self-aligned (SSA) structure and manufacturing process uses a single photomasking layer to define critical features and dimensions of a trench-gated vertical power DMOSFET. The single critical mask determines the trench surface dimension, the silicon source-body mesa width between trenches, and the dimensions and location of the silicon mesa contact. The contact is self-aligned to the trench, eliminating the limitation imposed by contact-to-trench mask alignment in conventional trench DMOS devices needed to avoid process-induced gate-to-source shorts. Oxide step height above the silicon surface is also reduced avoiding metal step coverage problems. Poly gate bus step height is also reduced. Other features described include polysilicon diode formation, controlling the location of drain-body diode breakdown, reducing gate-to-drain overlap capacitance, and utilizing low-thermal budget processing techniques.
    Type: Application
    Filed: April 22, 1999
    Publication date: February 14, 2002
    Inventors: RICHARD K. WILLIAMS, WAYNE GRABOWSKI
  • Patent number: 6326664
    Abstract: A novel transistor with a low resistance ultra shallow tip region and its method of fabrication. The novel transistor of the present invention has a source/drain extension or tip comprising an ultra shallow region which extends beneath the gate electrode and a raised region.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: December 4, 2001
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Chan-Hong Chern, Chia-Hong Jan, Kevin R. Weldon, Paul A. Packan, Leopoldo D. Yau
  • Patent number: 6326292
    Abstract: A semiconductor includes a buried conducting layer, such as a buried collector, comprises a trench, the walls of which are covered with a layer of a material in which dopant ions diffuse faster than in monocrystalline silicon. A contact area is doped in close proximity to the trench wall. The dopants will diffuse through the layer and form a low resistance connection to the buried layer. The layer may comprise polysilicon or porous silicon, or a silicide. If the material used in the layer is not in itself conducting, the size of the component may be significantly reduced.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: December 4, 2001
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Anders Söderbärg, Håkan Sjödin
  • Patent number: 5981323
    Abstract: A structure for the protection of a high-voltage pad includes a lateral bipolar transistor, an N-type diffusion of which, connected to the pad to be protected, is made in an N-type tub with a zone that extends laterally outside the tub in the base. A P-type implantation is made on the entire substrate outside the N-type tub except in the region in which the zone extends.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: November 9, 1999
    Assignee: SGS-Thomson Microelectronics S.A.
    Inventors: Richard Fournel, Fabrice Marinet
  • Patent number: 5938839
    Abstract: A method for forming a semiconductor device is disclosed. The method comprises the step of irradiating a laser light to a surface of a semiconductor through a mask provided on said surface in an atmosphere comprising an impurity of one conductivity type to diffuse said impurity into a region of said semiconductor.
    Type: Grant
    Filed: September 6, 1994
    Date of Patent: August 17, 1999
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hongyong Zhang
  • Patent number: 5914189
    Abstract: A composite that protects thermal barrier coatings from the deleterious effects of environmental contaminants at operational temperatures is discovered. The thermal barrier coated parts have least two outer protective coatings that decrease infiltration of molten contaminant eutectic mixtures into openings in the thermal barrier coating.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: June 22, 1999
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Marcus Preston Borom, Curtis Alan Johnson