From Vegetation Or Refuse Patents (Class 44/605)
  • Patent number: 10669495
    Abstract: Systems and methods of producing a solid fuel composition are disclosed. In particular, systems and methods for producing a solid fuel composition by heating and mixing a solid waste mixture to a maximum temperature sufficient to melt the mixed plastics within the solid waste mixture is disclosed.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: June 2, 2020
    Assignee: Ecogensus LLC
    Inventor: Bjornulf White
  • Patent number: 10611978
    Abstract: The present invention relates to a process for cooling hot torrefied biomass, which process comprises the steps of a) applying water onto the hot torrefied biomass, resulting in steam with entrained dust and organic volatiles, and cooled torrefied biomass comprising water; b) condensing the steam with entrained dust and organic volatiles to form a condensate comprising dust and organic volatiles; and c) recycling the condensate comprising dust and organic volatiles to step a). The invention also relates to a cooling device for cooling hot torrefied biomass enabling the cooling process according to the invention, and a system for producing torrefied biomass comprising such a cooling device.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: April 7, 2020
    Assignee: BLACKWOOD TECHNOLOGY BV
    Inventors: Peter Christiaan Albert Bergman, Maarten Kees Herrebrugh, Timo Kleingeld
  • Patent number: 10533138
    Abstract: Products from a high pressure processing system are separated and purified. The processing system is adapted for pressurizing and heating a feed mixture comprising carbonaceous material(-s) in the presence of homogeneous catalysts and liquid organic compounds to produce a converted feed mixture. The converted feed mixture is cooled and depressurized, and then separated into: a gas phase, an oil phase, and a water phase comprising liquid organic compounds and dissolved homogeneous catalysts comprising potassium and/or sodium. The liquid organic compounds and dissolved homogenous catalysts are at least partly recovered from said water phase, thereby producing a first water phase stream enriched in liquid organic compounds and homogeneous catalysts and a second water phase stream depleted in liquid organic compounds and homogeneous catalysts. The first water phase is at least partly recycled to the feed mixture, with a bleed stream being withdrawn therefrom prior to recycling.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 14, 2020
    Assignee: STEEPER ENERGY APS
    Inventors: Steen Brummerstedt Iversen, Julie Katerine Rodriguez Guerrero, Andrew Ironside
  • Patent number: 10479691
    Abstract: Rice straw and chaff that are discharged as agricultural waste in large amounts are effectively utilized. The present invention has been completed on the basis of the finding that silica can be recovered with high efficiency by bringing heated titanium oxide into contact with a silica-containing plant body.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 19, 2019
    Assignee: Rapas Corporation
    Inventors: Keiko Kitamura, Itsushi Kashimoto, Masahiro Nishimura
  • Patent number: 10465213
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a fatty acid or fatty acid derived product, wherein the modified microorganism produces fatty acyl-CoA intermediates via a malonyl-CoA dependent but malonyl-ACP independent mechanism.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: November 5, 2019
    Assignee: CARGILL, INCORPORATED
    Inventors: Hans Liao, Eileen Spindler, Joseph R. Warner, Michael Louie, Wendy Ribble, Brittany Prather, Ron Evans, Tanya E. W. Lipscomb, Michael D. Lynch
  • Patent number: 10370597
    Abstract: In the method of obtaining liquid biohydrocarbons from oils of natural origin, in the first step, the oil and/or waste oil is/are heated in the presence of a mixture of hydrogen and carbon monoxide in the presence of a catalyst in the form of a metal oxide selected from a group comprising CoO, NiO, MoO3, ZrO2, or a mixture of such metal oxides, on an oxide support selected from a group comprising SiO2, Al2O3, TiO2, whereupon the product of the first step is contacted with hydrogen gas or with a mixture of hydrogen and carbon monoxide in the presence of a metallic catalyst selected from a group comprising Pd, Pt, Co/Mo, Ni/Mo, Zr on an oxide support selected from a group comprising SiO2, Al2O3, TiO2, P2O5, ZrO2 or on a mixture of such oxides.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 6, 2019
    Assignee: Instyut Chemii Przemyslowej Im. Prof. Ignacego Moscickiego
    Inventors: Osazuwa Osawaru, Jacek Kijenski, Ewa Smigiera, Anna Zgudka, Andrzej Kedziora, Krzysztof Tomon
  • Patent number: 10308887
    Abstract: During hydrothermal carbonization, biomass is converted to biocoal. The reaction yield depends on the reaction conditions, including duration of the carbonization reaction or time period within which the slurry composed of water and biomass remains in the reaction tank and is exposed to pressure and temperature. These conditions should be selected so that the greatest possible dry residue of carbonized material remains in the slurry. It has been shown that the dry residue amount changes during the carbonization reaction with a curve that is similar, to a great extent, to that of the slurry pH value. Because determining the dry residue is difficult during the ongoing reaction, but determining the pH value can be easy during the entire reaction period, the reaction is terminated at a maximum of the pH value corresponding to a maximum of the biocoal dry residue, to the greatest possible extent.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: June 4, 2019
    Assignee: AVA Green Chemistry Development GmbH
    Inventor: Stepan Nicolja Kusche
  • Patent number: 10287609
    Abstract: A plant activator composition increases the concentration of terpenes a terpinoids in aromatic plant oils, and hence resulting in an increased concentration of terpene and terpinoids in the harvested dried plant or fruit. The composition contains one of more bio-active compounds that are optionally extracted from plants selected from one or more of the group consisting of mango, citrus (including grapefruit), Catharanthus roseus and Pelargonium odoratissimum, but alternatively may include one or more synthetic compounds selected from the group consisting of geranyl acetate, geraniol, beta-sitosterol, alpha-amyrin, beta amyrin, carotenoid, geranyl acetate, alpha-humulene, mevalonate kinase and geranyl. Depending on the type of plant being treated, the formulation is added during watering and feeding in optimum doses during the vegetative growth, flowering, and fruit set and/or swell stages.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: May 14, 2019
    Assignee: Rhizoflora Inc.
    Inventor: Alan David Sime
  • Patent number: 10287505
    Abstract: Disclosed is a method for heating a biomass moving along an industrial treatment line including an inlet (1) for the incoming biomass, a heating unit (4), and a treatment station (5). A fraction of the biomass heated by the heating unit (4) is returned along a return branch (R) to a mixing station (2) upstream of the heating unit (4) so as to form, together with the incoming biomass, a mixture having a temperature above the temperature of the incoming biomass, the heated biomass fraction being removed at an outlet (51) of the treatment station (5).
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: May 14, 2019
    Assignees: SUEZ INTERNATIONAL, TERRANOVA ENERGY GMBH
    Inventors: Pierre Emmanuel Pardo, Jean-Louis Bourdais
  • Patent number: 10196570
    Abstract: Naphtha compositions with enhanced reformability are provided. The naphtha compositions can be derived from biomass, can exhibit improved N+2A values, and can be used as a reformer feedstock with little or no processing.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: February 5, 2019
    Assignee: Inaeris Technologies, LLC
    Inventor: Jeffrey C. Trewella
  • Patent number: 10195085
    Abstract: A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye. The patient interface may be a liquid-filled interface, with liquid used as a transmission medium for the laser. During a laser procedure various inputs are monitored to detect a leak. The inputs may include a video feed of the eye looking for air bubbles in the liquid medium, the force sensors on the patient interface that detect patient movement, and vacuum sensors directly sensing the level of suction between the patient interface and the eye. The method may include combining three monitoring activities with a Bayesian algorithm that computes the probabilities of an imminent vacuum loss event.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: February 5, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Michael A. Campos, Javier G. Gonzalez, Teresa G. Miller-Gadda
  • Patent number: 9994872
    Abstract: The present invention presents an alternative to the direct implementation of an industrial scale second generation bioethanol process with the integration of the second generation into the existing first generation bioethanol processes, which aims to reduce the current barriers to process change/investments. In particular, the present invention relates to an integrated second generation process for producing bioethanol comprising at least one fungal cultivation stage for producing ethanol and fungal biomass. The present invention also relates to a novel fungal biomass, rich in protein and essential amino acids, which is produced with said integrated second generation process for producing bioethanol for use as a nutritious substitute for human and domestic animal use.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 12, 2018
    Assignee: LANTMÄNNEN ENERGI
    Inventors: Patrik R. Lennartsson, Per Erlandsson, Mohammad Taherzadeh, Andreas Gundberg
  • Patent number: 9956539
    Abstract: Within the scope of hydrothermal carbonization, biomass is converted to bio-coal and other products. Because biomass occurs at irregular intervals at different locations and also, in part, only individual method steps are required at different locations, however, an apparatus for treatment of biomass is integrated into a variable, mobile container, and mobile containers adapted to the individual steps of the method are provided, which can be transported in compact manner and can be adapted, in terms of size, in the setup situation. This arrangement allows effective equipping of the individual containers, which can be expanded into a setup situation on location.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: May 1, 2018
    Assignee: AVA-CO2 Schweiz AG
    Inventors: Jan Vyskocil, Stepan Kusche
  • Patent number: 9914880
    Abstract: A method of increasing the yield of renewable aviation fuel is described. A renewable feedstock rich in fatty acids having between 8 and 14 carbon atoms is selected, and the selected feedstock is hydrogenated and deoxygenated in a first reaction zone to provide an effluent rich in normal paraffins having between 9 and 15 carbon atoms. The normal paraffins are isomerized in a second reaction zone to isomerize at least a portion of the normal paraffins. The isomerization reaction mixture may be separated into a product stream comprising a product rich in branched paraffins having between 9 and 15 carbon atoms, which has a higher yield than a product stream made using a renewable feedstock rich in fatty acids having more than 15 carbon atoms.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: March 13, 2018
    Assignee: UOP LLC
    Inventors: Geoffrey W. Fichtl, Daniel L. Ellig
  • Patent number: 9809775
    Abstract: An organic fuel additive for improving the combustion of a bioenergy solid fuel product, the organic fuel additive comprising a mixture of combustible organic fines and a polymer material, wherein the polymer material encapsulates the combustible organic fines in solid form, and methods of making and using the same.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: November 7, 2017
    Assignee: IHB TECHNOLOGIES, INC.
    Inventors: Hans E. Iverson, Kerstin K. Iverson
  • Patent number: 9650574
    Abstract: Various techniques are disclosed for pretreating municipal solid waste (MSW) and other biomass-containing feedstocks that may be of a poorer quality and consequently more difficult, or even impossible, to convert to higher value liquid products (e.g., transportation fuels) using conventional processes. Such conventional processes may otherwise be satisfactory for the conversion of the biomass portion of the feedstock alone. The pretreatment of biomass-containing feedstocks may generally include steps carried out prior to a hydropyrolysis step and optionally further steps, in order to change one or more characteristics of the feedstock, rendering it more easily upgradable.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: May 16, 2017
    Assignee: Gas Technology Institute
    Inventors: Larry G. Felix, Martin B. Linck, Terry L. Marker, Michael J. Roberts
  • Patent number: 9562498
    Abstract: There is disclosed a biodegradable fuel additive composition derived from at least one animal or plant source, and a fuel composition containing a biodegradable fuel additive composition derived from at least one animal or plant source useful for reducing the formation of engine deposits and for improving fuel economy of a vehicle combusting the fuel composition.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: February 7, 2017
    Assignee: Afton Chemical Corporation
    Inventor: Lawrence J. Cunningham
  • Patent number: 9505986
    Abstract: The aviation fuel oil base of the present invention is obtained by hydrotreating an oil to be treated containing an oxygen-containing hydrocarbon compound derived from an animal or vegetable oils and fat and a sulfur-containing hydrocarbon compound and then hydroisomerizing the resultant hydrotreated oil, wherein a yield of a fraction having a boiling range of 140 to 300° C. is 70 mass % or more; an isoparaffin content is 80 mass % or more; a content of isoparaffin having 2 or more branches is 17 mass % or more; an aromatic content is less than 0.1 vol %; an olefin content is less than 0.1 vol %; a sulfur content is less than 1 mass ppm; and an oxygen content is less than 0.1 mass %.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: November 29, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasutoshi Iguchi, Hideki Ono, Akira Koyama
  • Patent number: 9388345
    Abstract: Embodiments of the invention include apparatus and systems for hydrocarbon synthesis and methods regarding the same. In an embodiment, the invention includes a process for creating a hydrocarbon product stream comprising reacting a reaction mixture in the presence of a catalyst inside of a reaction vessel to form a product mixture, the reaction mixture comprising a carbon source and water. The temperature inside the reaction vessel can be between 450 degrees Celsius and 600 degrees Celsius and the pressure inside the reaction vessel can be above supercritical pressure for water. In an embodiment, the invention includes an extrusion reactor system for creating a hydrocarbon product stream. The temperature inside the extrusion reactor housing between 450 degrees Celsius and 600 degrees Celsius. Pressure inside the reaction vessel can be above supercritical pressure for water. Other embodiments are also included herein.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: July 12, 2016
    Assignee: SarTec Corporation
    Inventors: Clayton V. McNeff, Larry C. McNeff, Daniel Thomas Nowlan, Bingwen Yan, Peter G. Greuel
  • Patent number: 9382491
    Abstract: Embodiments of the invention include apparatus and systems for hydrocarbon synthesis and methods regarding the same. In an embodiment, the invention includes a method for creating a hydrocarbon product stream comprising reacting a reaction mixture in the presence of a catalyst inside of a reaction vessel to form a product mixture, the reaction mixture comprising a carbon source and water. The temperature inside the reaction vessel can be between 450 degrees Celsius and 600 degrees Celsius and the pressure inside the reaction vessel can be above supercritical pressure for water. In an embodiment, the invention includes an extrusion reactor system for creating a hydrocarbon product stream. The temperature inside the extrusion reactor housing between 450 degrees Celsius and 600 degrees Celsius. Pressure inside the reaction vessel can be above supercritical pressure for water. Other embodiments are also included herein.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: July 5, 2016
    Assignee: SarTec Corporation
    Inventors: Clayton V. McNeff, Larry C. McNeff, Daniel Thomas Nowlan, Bingwen Yan, Peter G. Greuel
  • Patent number: 9298174
    Abstract: System and method for determining total inventory of batch and continuous biomass inventories in a biofuel production process. Measured biomass inventory values are received, including batch inventories from multiple batch fermenters and at least one continuous beer well inventory. The values are premised on a controlled vapor pressure of the batch fermenters and beer well(s), where the pressure fluctuates in an uncontrolled manner. A measured vapor pressure for the batch fermenters and beerwell(s) is received, and pressure compensated inventory values determined based on the measured inventory and pressure values. Measured biomass input flow to the batch fermenters and output flow from the beerwell(s) are received, and are premised on a constant biomass temperature and density, where biomass temperature and density fluctuate in an uncontrolled manner. The total inventory of batch and continuous inventories is determined based on the measured flows and the pressure compensated inventory values, and stored.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: March 29, 2016
    Assignee: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Brian K. Stephenson, Patrick D. Noll, Maina A. Macharia
  • Patent number: 9162938
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: October 20, 2015
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Patent number: 9127227
    Abstract: An assembly for processing green biomass material for pelletizing into a fuel pellet includes a heating assembly, a drying assembly and a cooling assembly. The heating assembly heats a thermal fluid to a temperature within the range of 200° F. to 550° F. The drying assembly includes a rotating dryer drum that has a plurality of thermal fluid tubes therein. Material that is dried in the dryer drum is conveyed to a rotating cooling drum that has a cooling tube extending along the interior thereof. A nozzle is mounted on the end of the cooling tube to discharge cooling fluid on the material therein, and a plurality of flights are mounted on the interior of the cooling drum and arranged to direct material from the inlet to the discharge outlet as the cooling drum is rotated.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 8, 2015
    Assignee: ASTEC, INC.
    Inventors: J. Donald Brock, Malcolm L. Swanson, Gary L. Catlett, Jeffrey Blake Pruett
  • Patent number: 9109170
    Abstract: An improved biodiesel production process includes the steps of processing a feedstock to produce biodiesel, cooling the biodiesel so as to form sediment, and filtering the biodiesel to remove the sediment. The resulting biodiesel from the cold filtration process avoids problems of sediment formation during storage and transportation.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: August 18, 2015
    Assignee: REG Biofuels, LLC
    Inventors: Myron Francis Danzer, Timothy L. Ely, Scott Alan Kingery, Wayne William McCalley, William Michael McDonald, John Mostek, Matthew Leonard Schultes
  • Patent number: 9057037
    Abstract: A process for torrefaction of biomass is provided in which biomass are passed into a fluidized bed or a non-fluidized bed reactor and heated to a predetermined temperature in an oxidizing environment. The dried biomass is then fed to a cooler where the temperature of the product is reduced to approximately 100 degrees Fahrenheit.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: June 16, 2015
    Assignee: River Basin Energy, Inc.
    Inventors: Clinton B. Camper, Vijay Sethi, Jerrod D. Isaak
  • Publication number: 20150150162
    Abstract: The present application relates generally to the field of plant propagation. In particular, the present invention relates to a method for the propagation of vegetatively reproducing plants and plants and plant parts produced by such methods. The invention also provides encapsulated propagules. The invention also provides various end uses for the encapsulated propagules and for plants grown from the same. The invention also provides a method for the modification of the architecture of rhizomes and rhizomes having modified architecture and a method for the modification of the architecture of stem cuttings and stem cuttings having modified architecture. The invention also provides a coating for a propagule and a propagule coated therewith.
    Type: Application
    Filed: June 12, 2013
    Publication date: May 28, 2015
    Applicant: New Energy Farms Limited
    Inventors: Paul Adrian Carver, Dean William Tiessen
  • Publication number: 20150143742
    Abstract: A method for the torrefaction of biomass comprises receiving biomass having a given moisture content. The biomass is heated in a generally inert environment by indirect contact. The biomass is subsequently torrefied by exposing the biomass to a flow of combustion gases in the generally inert environment. The biomass is outlet with a reduced moisture content.
    Type: Application
    Filed: May 27, 2013
    Publication date: May 28, 2015
    Inventor: Guy Prud'Homme
  • Patent number: 9039792
    Abstract: A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Bruce E. Dale, Bryan Ritchie, Derek Marshall
  • Publication number: 20150135347
    Abstract: The invention relates to the wheat cultivar designated WB7618. Provided by the invention are the seeds, plants and derivatives of the wheat cultivar WB7618. Also provided by the invention are tissue cultures of the wheat cultivar WB7618 and the plants regenerated therefrom. Still further provided by the invention are methods for producing wheat plants by crossing the wheat cultivar WB7618 with itself or another wheat cultivar and plants produced by such methods.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: MONSANTO TECHNOLOGY LLC
    Inventors: Zewdie A. Abate, Kim Clifford Shantz
  • Patent number: 9028697
    Abstract: The moisture absorption capacity of biofuels can be more or less 10 times that of fossil diesel oil, causing biofuels to form acids that induce metal corrosion and form deposits in the fuel tank and pipe lines. Methods for removing moisture from stored biofuels and plant oils are described wherein glycerol is used as a solvent to extract the moisture from the bioliquid or oil, comprising the steps of placing the biofuel or oil in fluid contact with glycerol, incubating for a time, and then removing the glycerol. A cellulous ester dialysis or other semi-permeable membrane may be used to prevent the glycerol from contaminating the biofuel while allowing moisture to pass. Crude glycerol produced as a byproduct of biodiesel production may be used in the method of the disclosed invention with good result. Preferred embodiments of apparatus that employ the method of the subject invention are described.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: May 12, 2015
    Inventor: Masatoshi Matsumura
  • Patent number: 9023120
    Abstract: A fuel production method and a fuel production apparatus, for producing fuel by which the fuel efficiency can be improved and the generation of hazardous substances can be easily suppressed and which is stable, and fuel oil produced by such a method and apparatus are provided. This improves the satisfaction of users, and contributes to the prevention of environmental destruction. A fuel production method for producing fuel oil by mixing and reacting enzyme water with petroleum-based hydrocarbon oil is provided, the enzyme water being produced by mixing a natural plant enzyme, containing at least lipase, in water. The natural plant enzyme further contains cellulase. The enzyme water further contains methanol.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 5, 2015
    Assignee: Cyuba Enzyme Ltd.
    Inventors: Atsushi Kato, Shigeji Tsuta, Hirohide Horibe
  • Patent number: 9024096
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include reacting a triacylglycerides-containing oil-carbon dioxide mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: May 5, 2015
    Assignee: Lummus Technology Inc.
    Inventor: Marvin I. Greene
  • Patent number: 9005400
    Abstract: Embodiments presented herein describe an apparatus and method to control the conversion of carbonaceous materials, particularly biomass and those biomass resources, into a high performance solid fuel. This method, and the apparatus described as the means to accomplish this method, provides a process having a control system that enables the system to produce a fuel of uniform quality, even with a change in biomass supply.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: April 14, 2015
    Assignee: Renewable Fuel Technologies, Inc.
    Inventors: Mark Wechsler, James Braig R
  • Publication number: 20150096222
    Abstract: Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including co-firing with coal and as substitutes for coal.
    Type: Application
    Filed: July 25, 2014
    Publication date: April 9, 2015
    Inventors: Paula A. Calabrese, Dingrong Bai
  • Patent number: 8999030
    Abstract: The present invention concerns a process for producing synthetic coal and aqueous liquid plant fertilizing solution products from a fermentation residue such as is left over from the corn based process of producing ethanol. The synthetic coal has a high heat value commensurate with naturally occurring coals and is lower in ash and sulfur content and thus has value as a clean burning energy source. The aqueous fertilizer includes commercially useful amounts of phosphorous, potassium and nitrogen in solution. The process of the invention is also energy efficient in that the products produced thereby involve the use of substantially less energy as compared to the traditional methods of processing fermentation residues in the corn based ethanol production industry.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 7, 2015
    Inventors: Frederick J Schendel, Marc von Keitz, Kenneth J Valentas, Steven M Heilmann, Lindsey R Jader, Brandon M Wood
  • Patent number: 9000244
    Abstract: A multi-stage reactor system for preparing biodiesel is used to increase efficiency and yield and reduce impurities. A three-stage transesterification reaction for preparing biodiesel can include one high-shear cavitation reactor and two low-shear cavitation reactors, preferably in series, and optionally one or more separation vessels for removing waste and recycling triglyceride feedstock, catalyst and alcohol to the high-shear cavitation reactor.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 7, 2015
    Assignee: Arisdyne Systems, Inc.
    Inventors: Oleg Kozyuk, Peter Reimers, Paul A. Reinking
  • Patent number: 8999014
    Abstract: Systems and methods for producing engineered fuels from municipal solid waste material are described herein. In some embodiments, a method includes combining a first waste stream that includes at least one of hard plastic, soft plastic and mixed plastic with a sorbent and increasing the temperature of the combined first waste stream and sorbent to a temperature of at least about 200° C. The method further includes combining the thermally treated first waste stream and sorbent with a second waste stream that includes fiber, and compressing the combined first waste stream, sorbent, and second waste stream to form a densified engineered fuel feedstock.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: April 7, 2015
    Assignee: Accordant Energy, LLC
    Inventor: Dingrong Bai
  • Publication number: 20150089863
    Abstract: Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 2, 2015
    Inventor: Dingrong BAI
  • Patent number: 8993817
    Abstract: A method for obtaining diesel fuel from vegetable or animal oils through the addition of hydrogen in the presence of catalysts under suitable temperature and pressure conditions is described. The method is different from other similar methods in that it involves the use of space velocities of between 5.1 h-1 and 9 h-1, thereby enabling a reduction in the size of the reactor and in hydrogen consumption, as well as lowering construction and operating costs. The invention also relates to the products obtained using said method, which have demonstrated that in additions, even below 10%, they improve the performance of diesel engines, thereby lowering fuel consumption.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 31, 2015
    Inventor: Manuel Laureano Nuñez Isaza
  • Patent number: 8986551
    Abstract: A method that includes clarifying a thin stillage product in a mechanical processor to produce a fine suspended solids stream and a clarified thin stillage is provided. The method further includes providing the thin stillage product and the clarified thin stillage, separately or in a combined stream, to one or more evaporators to produce one or more reduced suspended solids streams, each stream having a reduced amount of suspended solids and a lower viscosity as compared to process streams having a comparable total solids content but containing a higher amount of suspended solids. The method can further included further processing of one or more of the reduced suspended solids streams to produce a bio-oil product.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 24, 2015
    Assignee: ICM, Inc.
    Inventors: Scott Kohl, Charles C. Gallop, Kurt A. Dieker
  • Patent number: 8979952
    Abstract: The invention relates to the improvement of the fuel-properties of biomass in an integrated manner to facilitate storage, shipping and applicability thereof. In the process, biomass (6) is thermally treated within a combustion process to cause partial torrefaction of the organic matter present in biomass, thus yielding components inert to biological decomposition processes. Constituents (10) separated in gaseous form are utilized as fuel, while the thermally treated biomass (8) remaining in the solid form is utilized in a separate process.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: March 17, 2015
    Assignee: Valmet Power Oy
    Inventor: Markku Raiko
  • Publication number: 20150068113
    Abstract: There is provided an apparatus (1) and methods for processing biomass to produce charcoal, bio-oil(s) activated carbon, recarburiser carbon, or nut coke by means of microwave energy. The apparatus has a rotatable tube (5) for receiving biomass (108), an electromagnetic generator (7). One method provides applying electromagnetic energy to the biomass (108) and an absorbing material (109). An alternative method provides allowing an indirect, black body radiation field to develop, and exposing the biomass (108) to the black body radiation field and the electromagnetic energy. Another method provides allowing plasma to form and exposing the biomass to the plasma and the electromagnetic energy. Another method provides introducing the biomass to a second container (205), introducing the second container to a first reaction container (5), applying electromagnetic energy to the biomass and an absorbing material (109), allowing a plasma to form in the first container, which heats the biomass in the second container.
    Type: Application
    Filed: November 21, 2012
    Publication date: March 12, 2015
    Inventors: Gregory Thomas Conner, Forrest John Tyrrell-Baxter
  • Patent number: 8975457
    Abstract: Described herein are methods for producing fuels and solvents from fatty acid resources. In general, the pyrolysis products of fatty acids are extracted in order to remove residual fatty acids and produce very pure hydrocarbon compositions composed of alkanes and alkenes. The fatty acids removed from the extraction step can be further pyrolyzed to produce additional hydrocarbons or, in the alternative, the fatty acids can be isolated and used in other applications. Also disclosed herein are fuels and solvents produced by the methods described herein.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 10, 2015
    Assignee: The Governors of the University of Alberta
    Inventor: David Bressler
  • Patent number: 8969635
    Abstract: A method of: providing a mixture of fecal waste and a bacterium; incubating the mixture to produce a fatty acid enriched mixture; removing water from the fatty acid enriched mixture to produce a dried mixture; and pyrolyzing the dried mixture in an inert atmosphere to produce an alkane from the C5-C32 fatty acid. The bacterium is a type that produces a C5-C32 fatty acid in the presence of any microbes in the fecal waste.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 3, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Justin C. Biffinger, Lisa A. Fitzgerald, Cherie Ziemer, Kurt Henry, Bradley R Ringeisen
  • Patent number: 8957269
    Abstract: The invention relates to a method of producing olefinic monomers for the production of a polymer. The invention particularly relates to the production of tall oil-based biopolymers, such as polyolefins. In the stages of the method bio oil, with a content of over 50% of fatty acids of tall oil and no more than 25% of resin acids of tall oil, and hydrogen gas are fed into a catalyst bed (7); the oil is catalytically deoxygenated in the bed by hydrogen; the flow exiting the bed is cooled down and divided into a hydrocarbon-bearing liquid phase (10) and a gas phase; and the hydrocarbon-bearing liquid (13) is subjected to steam cracking (4) to provide a product containing polymerizing olefins. The deoxygenation in the bed can be followed by a catalytic cracking or, with a suitable catalyst, the deoxygenation and cracking can be simultaneous. The separated hydrogen-bearing gas phase can be circulated in the process.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: February 17, 2015
    Assignee: Stora Enso Oyj
    Inventors: Ali Harlin, Tapani Penttinen, Jari Räsänen, Olli Aaltonen
  • Patent number: 8956426
    Abstract: A process for torrefaction of biomass is provided in which biomass are passed into a fluidized bed or a non-fluidized bed reactor and heated to a predetermined temperature in an oxidizing environment. The dried biomass is then fed to a cooler where the temperature of the product is reduced to approximately 100 degrees Fahrenheit.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: February 17, 2015
    Assignee: River Basin Energy, Inc.
    Inventors: Vijay Sethi, Clinton B. Camper
  • Patent number: 8952210
    Abstract: A green process and system are disclosed for utilizing a biomass filter aid in the filtration of a bio-oil. The process comprises filtering a bio-oil containing residual solids from a conversion reaction in the presence of the biomass filter aid to produce a filtered bio-oil. The biomass filter aid facilitates efficient removal of residual solids from the bio-oil. The spent biomass filter aid containing the residual solids may be recycled as a conversion feedstock or used as a combustion heat source in the biomass conversion system.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 10, 2015
    Assignee: KiOR, Inc.
    Inventor: Ronny W. Lin
  • Patent number: 8951308
    Abstract: Oleaginous microbial biomass is subjected to pyrolysis to make microbial pyrolysis oil for use as a fuel or is otherwise formed into combustible products for the generation of heat and/or light.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: February 10, 2015
    Assignee: Solazyme, Inc.
    Inventors: Graham Ellis, Robert Florence, Adriano Galvez, Tyler Painter, Sonia Sousa
  • Patent number: 8945246
    Abstract: An object of the present invention is to provide a method for producing a liquefied fuel oil using biomass as a feedstock, in which a relatively inexpensive liquefaction apparatus is used; a good balance is maintained between the liquefaction of water-insoluble lignin and the liquefaction of water-soluble cellulose to achieve a high yield of the liquefied fuel oil based on the biomass solids content; and the amount of ash derived from an alkali catalyst and the like is low. The method for producing a liquefied fuel oil using biomass as a feedstock is characterized by adding, to biomass comprising lignocellulose, a solvent comprising an organic solvent and having a moisture content adjusted to 10 to 25 wt %, including moisture contained in the biomass, and liquefying the biomass at a temperature of 250 to 350° C.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazushi Tsurutani, Hitoshi Hayashi, Tsutomu Sakai, Mitsuru Kondo, Hitoshi Nakajima
  • Patent number: 8945245
    Abstract: A method is provided in which pretreated and densified cellulosic biomass particulates can be hydrolyzed at a high solids loading rate as compared with the solids loading rate of loose hydrolysable cellulosic biomass fibers. The resulting high concentration sugar-containing stream can be easily converted to biofuels or an entire suite of other useful bioproducts.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 3, 2015
    Assignees: The Michigan Biotechnology Institute, Board of Trustees of Michigan State University
    Inventors: Bryan Bals, Farzaneh Teymouri, Tim Campbell, Bruce Dale