From Vegetation Or Refuse Patents (Class 44/605)
  • Patent number: 12110466
    Abstract: A torrefaction method comprises forwarding biomass through a process chamber; heating the biomass in the process chamber to a predetermined temperature and pyrolyzing the biomass to release syngas from the biomass, wherein the syngas contains at least 20% of the power contained in the flow of the biomass; and oxidizing the syngas to heat the biomass in the process chamber.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: October 8, 2024
    Assignee: Perpetual Next Technologies B.V.
    Inventors: Thomas Hamilton Balon, Jr., Neil Alan Butler, Peter Fransciscus Johannes Maria Scheepers
  • Patent number: 12054686
    Abstract: An additive composition for liquid fuels is provided. The additive composition comprises water, one or more mineral salts, a polyol compound, an alcohol and a surfactant. The additive composition can be added to liquid fuels such as gasoline, diesel, kerosene and mazut to improve fuel efficiency and reduce emissions. The composition can be prepared from all natural materials.
    Type: Grant
    Filed: October 10, 2023
    Date of Patent: August 6, 2024
    Assignee: GREEN PETROSOL LTD.
    Inventor: Ziad Abdul Mohsen Hussein Abdeen
  • Patent number: 12024823
    Abstract: The invention herein disclosed and claimed is a process for refining fiber from lignocellulosic biomass. The process provides refined fiber and agriculturally amenable co-products, with a virtually waste-free systems design.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: July 2, 2024
    Inventor: Yitzac Goldstein
  • Patent number: 12006377
    Abstract: A starch separation system for an ethanol plant includes a dry fractionization system, a fiber blender, a refiner, a fiber liquefaction tank and a fiber wash system. A starch separation method includes the steps of providing a dry fractionization system receiving corn from the ethanol plant and fractionating the corn into corn oil, corn fiber, corn grits, corn, endosperm flour and germ cake. The corn components are converted to sugar and the sugar is converted to ethanol. A converted fiber stream is input to the fiber wash system for producing fiber wash water for input to the ethanol plant.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: June 11, 2024
    Assignee: LucasE3, L.C.
    Inventor: Scott A Lucas
  • Patent number: 11939529
    Abstract: A plastic-to-oil plant for converting plastics into petrochemical products is disclosed. Operation shall be energy- and resource-efficient. To reach this aim, the inventions suggests a plastic-to-oil plant, having a cracking reactor for a pyrolysis reaction, wherein plastics, in particular polyolefins, are converted into at least gasified pyrolysis products and char.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: March 26, 2024
    Assignee: Pruvia GmbH
    Inventor: Maria Laura Mastellone
  • Patent number: 11926742
    Abstract: A method for preparing carbon black from pyrolysis char of waste tires by a molten salt thermal treatment and a product thereof are provided. The method includes heating one or two groups of a metal chloride salt group and a metal sulfate group to obtain a molten salt; adding pyrolysis char of waste tires into the molten salt and subjecting same to a molten salt thermal treatment under a preset reaction atmosphere; after the reaction is complete, separating the reaction product to obtain a secondary molten salt and treated pyrolysis char, washing the treated pyrolysis char with hot water and then drying same so as to obtain carbon black, and at the same time, recycling the secondary molten salt.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: March 12, 2024
    Assignee: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Hongyun Hu, Hua Tang, Aijun Li, Kang Xie, Yuhan Yang, Fu Yang, Hong Yao
  • Patent number: 11920004
    Abstract: A system for processing rubber material pre-heats the material and then applies microwave energy to process the system The system comprising a rubber material receiver for accepting the rubber material which passes the material to a pre-heating unit adapted for the rubber material passing through comprising a plurality of heating elements that heat the rubber material to between about 100 to about 350 C in an oxygen depleted atmosphere. Once pre-heated, the material is conveyed to a microwave unit adapted for receiving the pre-heated rubber material comprising microwave magnetrons, which radiate the pre-heated rubber material and external heat sources in an oxygen depleted environment until the pre-heated rubber is substantially reduced to a carbonaceous material having a volatile content of below 5% and more preferably below 2%.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: March 5, 2024
    Assignee: Environmental Waste International, Inc.
    Inventors: Steven L. Kantor, Farzin Rajabi, Paul S. Weinwurm
  • Patent number: 11913006
    Abstract: The present invention relates to methods of producing industrial products from plant lipids, particularly from vegetative parts of plants. In particular, the present invention provides oil products such as biofuel, and processes for producing these products, as well as plants having an increased level medium chain fatty acids such as lauric acid and myristic acid. In one particular embodiment, the present invention relates to combinations of modifications in a fatty acid thioesterase and one or more acyltransferases. In an embodiment, the present invention relates to a process for extracting lipids. In another embodiment, the lipid is converted to one or more hydrocarbon products in harvested plant vegetative parts to produce alkyl esters of the fatty acids which are suitable for use as a renewable biofuel.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: February 27, 2024
    Assignee: NUSEED GLOBAL INNOVATION LTD.
    Inventors: Kyle B. Reynolds, Thomas Vanhercke, Anna El Tahchy, Qing Liu, Surinder S. Singh, James R. Petrie
  • Patent number: 11866650
    Abstract: A process for the preparation of aromatic compounds from a feed stream containing biomass or mixtures of biomass, the process comprising: a) subjecting a feed stream containing biomass or mixtures of biomass to a process to afford a conversion product comprising aromatic compounds; b) recovering the aromatic compounds from said conversion product; c) separating a higher molecular weight fraction comprising polyaromatic hydrocarbons (PAH) from a lower molecular weight fraction comprising benzene, toluene and xylene (BTX) by distillation; d) reducing at least part of said higher molecular weight fraction to obtain a reduced fraction comprising polycyclic aliphatics (PCA); and e) subjecting the higher molecular weight fraction obtained in step c), the reduced fraction obtained in step d), or a mixture thereof, to a process to obtain lower molecular weight aromatics (BTX).
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: January 9, 2024
    Assignee: BioBTX B.V.
    Inventors: André Heeres, Niels Jan Schenk, Inouk Kruize-Muizebelt
  • Patent number: 11655424
    Abstract: The process produces a diesel stream from a biorenewable feedstock by hydrotreating to remove heteroatoms and hydroisomerization to improve cold flow properties. Heavy diesel can be hydrocracked to jet fuel range material or further hydroisomerized to increase its value lower its freeze point while light diesel may be taken as a motor fuel.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: May 23, 2023
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Haiyan Wang, Krishna Mani, Stanley Joseph Frey
  • Patent number: 11452305
    Abstract: The present disclosure relates, according to some embodiments, to methods and systems for processing a high-concentration protein product from a microcrop (e.g., aquatic species, Lemna) and compositions thereof. According to some embodiments, the present disclosure relates to a method of processing a biomass comprising a microcrop (e.g., Lemna), where the method may include: blanching a first portion of the biomass in a blanching solution to form a wet protein concentrate; separating the first wet protein concentrate from a separated solution (e.g., using a screw press, using a vibratory screen); and drying the first wet protein concentrate to form at least one of a first protein concentrate flake and a first protein concentrate granule. In some embodiments at least one of the first protein concentrate flake and the first protein concentrate granule may comprise at least 45% protein and a Protein Digestibility Corrected Amino Acid Score (PDCAAS) value of at least 0.88.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 27, 2022
    Assignee: Lemnature AquaFars Corporation
    Inventors: Valentina Carpio, Girish Kasat, Ebenezer Ifeduba, Jaouad Fichtali
  • Patent number: 11420890
    Abstract: A method of processing enhanced biosolids from a wastewater treatment plant to produce an output mixture. The method includes providing one or more volumes of an input mixture that has an input mixture viscosity. The input mixture includes the enhanced biosolids, which have been subjected to shear forces and mixed in a mixing vessel. The enhanced biosolids are partially hydrolyzed biosolids with an input solids content between 4% and 16% by weight of the input mixture. The input mixture also includes sufficient process liquid to result in the output mixture having an output solids content between 3% and 13% by weight of the output mixture. The input mixture is stored in a storage vessel in which the input mixture is subjected to anaerobic conditions and hydrolysis over a predetermined tie period, to form the output mixture having an output mixture viscosity that is less than the input mixture viscosity.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: August 23, 2022
    Assignee: Lystek International Corp.
    Inventors: Michael Beswick, Ajay Singh
  • Patent number: 11401474
    Abstract: The present disclosure relates to a method that includes pyrolyzing a biomass to produce a pyrolysis oil and upgrading the pyrolysis oil to yield a first upgraded pyrolysis oil, where the pyrolysis oil is in at least one of a liquid phase and/or a vapor phase, the pyrolyzing is performed in a pyrolysis reactor at a first temperature between 400° C. and 600° C., the biomass has a residence time of less than five seconds in the pyrolysis reactor, the upgrading is performed in a fluidized bed reactor, and the upgrading is catalyzed using a zeolite.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: August 2, 2022
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Kimberly A. Magrini, Yves Parent, Mark William Jarvis, Jessica L. Olstad-Thompson
  • Patent number: 11326115
    Abstract: An improved biodiesel production process includes the steps of processing a feedstock to produce biodiesel, cooling the biodiesel so as to form sediment, and filtering the biodiesel to remove the sediment. The resulting biodiesel from the cold filtration process avoids problems of sediment formation during storage and transportation.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: May 10, 2022
    Assignee: Renewable Energy Group, Inc.
    Inventors: Myron Francis Danzer, Timothy L Ely, Scott Alan Kingery, John Mostek, Matthew Leonard Schultes, Wayne William McCalley, William Michael McDonald
  • Patent number: 11274042
    Abstract: Methods are disclosed to make coke, graphite, graphene and other materials from biomass derived bio-oil.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: March 15, 2022
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Robert Milton Baldwin, Mark R. Nimlos, Andrew Nolan Wilson, Maarit Kristiina Iisa
  • Patent number: 11142700
    Abstract: A distillation apparatus for use in microwave-assisted pyrolysis includes a microwave, a pyrolysis reactor, a microwave-absorbent bed, and a condenser. The pyrolysis reactor is located within the microwave and configured to receive a liquid input stream and to output a vapor. The microwave-absorbent bed is located within the pyrolysis reactor that converts microwave energy provided by the microwave to thermal energy to initiate pyrolysis within the pyrolysis reactor, wherein the pyrolysis reactor provides a vapor output. The condenser is configured to receive the vapor output of the pyrolysis reactor and to cool and condense the vapor into a recoverable product.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: October 12, 2021
    Assignee: Resynergi, Inc.
    Inventors: Rongsheng Ruan, Erik Anderson
  • Patent number: 11084988
    Abstract: Methods of separating and purifying products from the catalytic fast pyrolysis of biomass are described. In a preferred method, a portion of the products from a pyrolysis reactor are recovered and purified using a hydrotreating step that reduces the content of sulfur, nitrogen, and oxygen components, and hydrogenates olefins to produce aromatic products that meet commercial quality specifications.
    Type: Grant
    Filed: August 4, 2019
    Date of Patent: August 10, 2021
    Assignee: Anellotech, Inc.
    Inventors: Charles M. Sorensen, Jr., Ruozhi Song, Terry J. Mazanec
  • Patent number: 10941349
    Abstract: The invention is directed to a fuel composition for diesel engines. The fuel composition comprises 0.1-99% by weight of a component or a mixture of components produced from biological raw material originating from plants and/or animals and/or fish. The fuel composition comprises 0-20% of components containing oxygen. Both components are mixed with diesel components based on crude oil and/or fractions from Fischer-Tropsch process.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: March 9, 2021
    Assignee: Neste Oyj
    Inventors: Juha Jakkula, Pekka Aalto, Vesa Niemi, Ulla Kiiski, Jouko Nikkonen, Seppo Mikkonen, Outi Piirainen
  • Patent number: 10829695
    Abstract: A process for producing liquid hydrocarbon products from a biomass-containing feedstock and/or a biomass-derived feedstock is provided. The process comprises: a) contacting the feedstock with a hydropyrolysis catalyst composition and molecular hydrogen in a hydropyrolysis reactor vessel to produce a product stream comprising a deoxygenated hydrocarbon product, H2O, H2, CO2, CO, C1-C3 gases, char and catalyst fines; b) removing char and catalyst fines from said product stream; c) cooling the remaining product stream to a temperature of no more than 300° C.; and d) hydroconverting all or a portion of said deoxygenated hydrocarbon product in a hydroconversion reactor in the presence of one or more catalyst compositions suitable for the aromatic saturation of the deoxygenated hydrocarbon product and of the H2O, CO2, CO, H2, and C1-C3 gas generated in step a), to produce a product comprising C4+ hydrocarbon product, H2O, CO, CO2, and C1-C3 gases.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: November 10, 2020
    Assignee: Shell Oil Company
    Inventors: Laxmi Narasimhan Chilkoor Soundararajan, Alan Anthony Del Paggio, Dhairya Dilip Mehta, Vikrant Nanasaheb Urade
  • Patent number: 10829430
    Abstract: Provided are an ester composition preparation system, including an integrated reactor, a gas-liquid separation column, a purification unit, an alcohol storage tank, and a mixed alcohol separation column, which is an efficient, economical, and simplified ester composition preparation system, and an ester composition preparation method using the same. The ester composition preparation system is a simplified system which can reduce facility space, drastically remove reaction equipment, and reduce transfer time through the introduction of the integrated reactor in which the reaction preparing an ester compound and the reaction preparing an ester composition are carried out in one space, the mixed alcohol separation column and the gas-liquid separation column.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 10, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Ha Na Lee, Sung Kyu Lee, Joon Ho Shin, Hyoung Jun, Hyun Kyu Kim
  • Patent number: 10822546
    Abstract: A process for producing liquid hydrocarbon products from a biomass-containing feedstock and/or a biomass-derived feedstock is provided. The process comprises: a) contacting the feedstock with a hydropyrolysis catalyst composition and molecular hydrogen in a hydropyrolysis reactor vessel to produce a product stream comprising a partially deoxygenated hydrocarbon product, H2O, H2, CO2, CO, C1-C3 gases, char and catalyst fines; b) removing char and catalyst fines from said product stream; c) cooling the remaining product stream to a temperature in the range of from 150 to 400° C.; and d) hydroconverting said partially deoxygenated hydrocarbon product in a hydroconversion reactor in the presence of one or more catalyst compositions suitable for hydrodeoxygenation and aromatic saturation of the partially deoxygenated hydrocarbon product in the presence of H2O, CO2, CO, H2, and C1-C3 gas generated in step a), to produce a vapour phase product comprising a C4+ hydrocarbon product.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: November 3, 2020
    Assignee: Shell Oil Company
    Inventors: Vikrant Nanasaheb Urade, Dhairya Dilip Mehta, Laxmi Narasimhan Chilkoor Soundararajan, Alan Anthony Del Paggio
  • Patent number: 10815430
    Abstract: The present invention relates to a process for purifying renewable feedstock comprising triglycerides, said process comprising the steps, where the renewable feedstock comprising triglycerides, comprising at least one plant oil originating from a plant of the family Brassicaceae, is treated with an aqueous medium to obtain a mixture, and a first stream comprising water and a second stream comprising triglycerides are separated from said mixture, and the second stream is obtained as purified renewable feedstock.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: October 27, 2020
    Assignee: UPM-KYMMENE CORPORATION
    Inventors: Andrea Gutierrez, Thomas Björklöf
  • Patent number: 10669495
    Abstract: Systems and methods of producing a solid fuel composition are disclosed. In particular, systems and methods for producing a solid fuel composition by heating and mixing a solid waste mixture to a maximum temperature sufficient to melt the mixed plastics within the solid waste mixture is disclosed.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: June 2, 2020
    Assignee: Ecogensus LLC
    Inventor: Bjornulf White
  • Patent number: 10611978
    Abstract: The present invention relates to a process for cooling hot torrefied biomass, which process comprises the steps of a) applying water onto the hot torrefied biomass, resulting in steam with entrained dust and organic volatiles, and cooled torrefied biomass comprising water; b) condensing the steam with entrained dust and organic volatiles to form a condensate comprising dust and organic volatiles; and c) recycling the condensate comprising dust and organic volatiles to step a). The invention also relates to a cooling device for cooling hot torrefied biomass enabling the cooling process according to the invention, and a system for producing torrefied biomass comprising such a cooling device.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: April 7, 2020
    Assignee: BLACKWOOD TECHNOLOGY BV
    Inventors: Peter Christiaan Albert Bergman, Maarten Kees Herrebrugh, Timo Kleingeld
  • Patent number: 10533138
    Abstract: Products from a high pressure processing system are separated and purified. The processing system is adapted for pressurizing and heating a feed mixture comprising carbonaceous material(-s) in the presence of homogeneous catalysts and liquid organic compounds to produce a converted feed mixture. The converted feed mixture is cooled and depressurized, and then separated into: a gas phase, an oil phase, and a water phase comprising liquid organic compounds and dissolved homogeneous catalysts comprising potassium and/or sodium. The liquid organic compounds and dissolved homogenous catalysts are at least partly recovered from said water phase, thereby producing a first water phase stream enriched in liquid organic compounds and homogeneous catalysts and a second water phase stream depleted in liquid organic compounds and homogeneous catalysts. The first water phase is at least partly recycled to the feed mixture, with a bleed stream being withdrawn therefrom prior to recycling.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 14, 2020
    Assignee: STEEPER ENERGY APS
    Inventors: Steen Brummerstedt Iversen, Julie Katerine Rodriguez Guerrero, Andrew Ironside
  • Patent number: 10479691
    Abstract: Rice straw and chaff that are discharged as agricultural waste in large amounts are effectively utilized. The present invention has been completed on the basis of the finding that silica can be recovered with high efficiency by bringing heated titanium oxide into contact with a silica-containing plant body.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 19, 2019
    Assignee: Rapas Corporation
    Inventors: Keiko Kitamura, Itsushi Kashimoto, Masahiro Nishimura
  • Patent number: 10465213
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a fatty acid or fatty acid derived product, wherein the modified microorganism produces fatty acyl-CoA intermediates via a malonyl-CoA dependent but malonyl-ACP independent mechanism.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: November 5, 2019
    Assignee: CARGILL, INCORPORATED
    Inventors: Hans Liao, Eileen Spindler, Joseph R. Warner, Michael Louie, Wendy Ribble, Brittany Prather, Ron Evans, Tanya E. W. Lipscomb, Michael D. Lynch
  • Patent number: 10370597
    Abstract: In the method of obtaining liquid biohydrocarbons from oils of natural origin, in the first step, the oil and/or waste oil is/are heated in the presence of a mixture of hydrogen and carbon monoxide in the presence of a catalyst in the form of a metal oxide selected from a group comprising CoO, NiO, MoO3, ZrO2, or a mixture of such metal oxides, on an oxide support selected from a group comprising SiO2, Al2O3, TiO2, whereupon the product of the first step is contacted with hydrogen gas or with a mixture of hydrogen and carbon monoxide in the presence of a metallic catalyst selected from a group comprising Pd, Pt, Co/Mo, Ni/Mo, Zr on an oxide support selected from a group comprising SiO2, Al2O3, TiO2, P2O5, ZrO2 or on a mixture of such oxides.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 6, 2019
    Assignee: Instyut Chemii Przemyslowej Im. Prof. Ignacego Moscickiego
    Inventors: Osazuwa Osawaru, Jacek Kijenski, Ewa Smigiera, Anna Zgudka, Andrzej Kedziora, Krzysztof Tomon
  • Patent number: 10308887
    Abstract: During hydrothermal carbonization, biomass is converted to biocoal. The reaction yield depends on the reaction conditions, including duration of the carbonization reaction or time period within which the slurry composed of water and biomass remains in the reaction tank and is exposed to pressure and temperature. These conditions should be selected so that the greatest possible dry residue of carbonized material remains in the slurry. It has been shown that the dry residue amount changes during the carbonization reaction with a curve that is similar, to a great extent, to that of the slurry pH value. Because determining the dry residue is difficult during the ongoing reaction, but determining the pH value can be easy during the entire reaction period, the reaction is terminated at a maximum of the pH value corresponding to a maximum of the biocoal dry residue, to the greatest possible extent.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: June 4, 2019
    Assignee: AVA Green Chemistry Development GmbH
    Inventor: Stepan Nicolja Kusche
  • Patent number: 10287505
    Abstract: Disclosed is a method for heating a biomass moving along an industrial treatment line including an inlet (1) for the incoming biomass, a heating unit (4), and a treatment station (5). A fraction of the biomass heated by the heating unit (4) is returned along a return branch (R) to a mixing station (2) upstream of the heating unit (4) so as to form, together with the incoming biomass, a mixture having a temperature above the temperature of the incoming biomass, the heated biomass fraction being removed at an outlet (51) of the treatment station (5).
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: May 14, 2019
    Assignees: SUEZ INTERNATIONAL, TERRANOVA ENERGY GMBH
    Inventors: Pierre Emmanuel Pardo, Jean-Louis Bourdais
  • Patent number: 10287609
    Abstract: A plant activator composition increases the concentration of terpenes a terpinoids in aromatic plant oils, and hence resulting in an increased concentration of terpene and terpinoids in the harvested dried plant or fruit. The composition contains one of more bio-active compounds that are optionally extracted from plants selected from one or more of the group consisting of mango, citrus (including grapefruit), Catharanthus roseus and Pelargonium odoratissimum, but alternatively may include one or more synthetic compounds selected from the group consisting of geranyl acetate, geraniol, beta-sitosterol, alpha-amyrin, beta amyrin, carotenoid, geranyl acetate, alpha-humulene, mevalonate kinase and geranyl. Depending on the type of plant being treated, the formulation is added during watering and feeding in optimum doses during the vegetative growth, flowering, and fruit set and/or swell stages.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: May 14, 2019
    Assignee: Rhizoflora Inc.
    Inventor: Alan David Sime
  • Patent number: 10195085
    Abstract: A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye. The patient interface may be a liquid-filled interface, with liquid used as a transmission medium for the laser. During a laser procedure various inputs are monitored to detect a leak. The inputs may include a video feed of the eye looking for air bubbles in the liquid medium, the force sensors on the patient interface that detect patient movement, and vacuum sensors directly sensing the level of suction between the patient interface and the eye. The method may include combining three monitoring activities with a Bayesian algorithm that computes the probabilities of an imminent vacuum loss event.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: February 5, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Michael A. Campos, Javier G. Gonzalez, Teresa G. Miller-Gadda
  • Patent number: 10196570
    Abstract: Naphtha compositions with enhanced reformability are provided. The naphtha compositions can be derived from biomass, can exhibit improved N+2A values, and can be used as a reformer feedstock with little or no processing.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: February 5, 2019
    Assignee: Inaeris Technologies, LLC
    Inventor: Jeffrey C. Trewella
  • Patent number: 9994872
    Abstract: The present invention presents an alternative to the direct implementation of an industrial scale second generation bioethanol process with the integration of the second generation into the existing first generation bioethanol processes, which aims to reduce the current barriers to process change/investments. In particular, the present invention relates to an integrated second generation process for producing bioethanol comprising at least one fungal cultivation stage for producing ethanol and fungal biomass. The present invention also relates to a novel fungal biomass, rich in protein and essential amino acids, which is produced with said integrated second generation process for producing bioethanol for use as a nutritious substitute for human and domestic animal use.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 12, 2018
    Assignee: LANTMÄNNEN ENERGI
    Inventors: Patrik R. Lennartsson, Per Erlandsson, Mohammad Taherzadeh, Andreas Gundberg
  • Patent number: 9956539
    Abstract: Within the scope of hydrothermal carbonization, biomass is converted to bio-coal and other products. Because biomass occurs at irregular intervals at different locations and also, in part, only individual method steps are required at different locations, however, an apparatus for treatment of biomass is integrated into a variable, mobile container, and mobile containers adapted to the individual steps of the method are provided, which can be transported in compact manner and can be adapted, in terms of size, in the setup situation. This arrangement allows effective equipping of the individual containers, which can be expanded into a setup situation on location.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: May 1, 2018
    Assignee: AVA-CO2 Schweiz AG
    Inventors: Jan Vyskocil, Stepan Kusche
  • Patent number: 9914880
    Abstract: A method of increasing the yield of renewable aviation fuel is described. A renewable feedstock rich in fatty acids having between 8 and 14 carbon atoms is selected, and the selected feedstock is hydrogenated and deoxygenated in a first reaction zone to provide an effluent rich in normal paraffins having between 9 and 15 carbon atoms. The normal paraffins are isomerized in a second reaction zone to isomerize at least a portion of the normal paraffins. The isomerization reaction mixture may be separated into a product stream comprising a product rich in branched paraffins having between 9 and 15 carbon atoms, which has a higher yield than a product stream made using a renewable feedstock rich in fatty acids having more than 15 carbon atoms.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: March 13, 2018
    Assignee: UOP LLC
    Inventors: Geoffrey W. Fichtl, Daniel L. Ellig
  • Patent number: 9809775
    Abstract: An organic fuel additive for improving the combustion of a bioenergy solid fuel product, the organic fuel additive comprising a mixture of combustible organic fines and a polymer material, wherein the polymer material encapsulates the combustible organic fines in solid form, and methods of making and using the same.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: November 7, 2017
    Assignee: IHB TECHNOLOGIES, INC.
    Inventors: Hans E. Iverson, Kerstin K. Iverson
  • Patent number: 9650574
    Abstract: Various techniques are disclosed for pretreating municipal solid waste (MSW) and other biomass-containing feedstocks that may be of a poorer quality and consequently more difficult, or even impossible, to convert to higher value liquid products (e.g., transportation fuels) using conventional processes. Such conventional processes may otherwise be satisfactory for the conversion of the biomass portion of the feedstock alone. The pretreatment of biomass-containing feedstocks may generally include steps carried out prior to a hydropyrolysis step and optionally further steps, in order to change one or more characteristics of the feedstock, rendering it more easily upgradable.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: May 16, 2017
    Assignee: Gas Technology Institute
    Inventors: Larry G. Felix, Martin B. Linck, Terry L. Marker, Michael J. Roberts
  • Patent number: 9562498
    Abstract: There is disclosed a biodegradable fuel additive composition derived from at least one animal or plant source, and a fuel composition containing a biodegradable fuel additive composition derived from at least one animal or plant source useful for reducing the formation of engine deposits and for improving fuel economy of a vehicle combusting the fuel composition.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: February 7, 2017
    Assignee: Afton Chemical Corporation
    Inventor: Lawrence J. Cunningham
  • Patent number: 9505986
    Abstract: The aviation fuel oil base of the present invention is obtained by hydrotreating an oil to be treated containing an oxygen-containing hydrocarbon compound derived from an animal or vegetable oils and fat and a sulfur-containing hydrocarbon compound and then hydroisomerizing the resultant hydrotreated oil, wherein a yield of a fraction having a boiling range of 140 to 300° C. is 70 mass % or more; an isoparaffin content is 80 mass % or more; a content of isoparaffin having 2 or more branches is 17 mass % or more; an aromatic content is less than 0.1 vol %; an olefin content is less than 0.1 vol %; a sulfur content is less than 1 mass ppm; and an oxygen content is less than 0.1 mass %.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: November 29, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasutoshi Iguchi, Hideki Ono, Akira Koyama
  • Patent number: 9388345
    Abstract: Embodiments of the invention include apparatus and systems for hydrocarbon synthesis and methods regarding the same. In an embodiment, the invention includes a process for creating a hydrocarbon product stream comprising reacting a reaction mixture in the presence of a catalyst inside of a reaction vessel to form a product mixture, the reaction mixture comprising a carbon source and water. The temperature inside the reaction vessel can be between 450 degrees Celsius and 600 degrees Celsius and the pressure inside the reaction vessel can be above supercritical pressure for water. In an embodiment, the invention includes an extrusion reactor system for creating a hydrocarbon product stream. The temperature inside the extrusion reactor housing between 450 degrees Celsius and 600 degrees Celsius. Pressure inside the reaction vessel can be above supercritical pressure for water. Other embodiments are also included herein.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: July 12, 2016
    Assignee: SarTec Corporation
    Inventors: Clayton V. McNeff, Larry C. McNeff, Daniel Thomas Nowlan, Bingwen Yan, Peter G. Greuel
  • Patent number: 9382491
    Abstract: Embodiments of the invention include apparatus and systems for hydrocarbon synthesis and methods regarding the same. In an embodiment, the invention includes a method for creating a hydrocarbon product stream comprising reacting a reaction mixture in the presence of a catalyst inside of a reaction vessel to form a product mixture, the reaction mixture comprising a carbon source and water. The temperature inside the reaction vessel can be between 450 degrees Celsius and 600 degrees Celsius and the pressure inside the reaction vessel can be above supercritical pressure for water. In an embodiment, the invention includes an extrusion reactor system for creating a hydrocarbon product stream. The temperature inside the extrusion reactor housing between 450 degrees Celsius and 600 degrees Celsius. Pressure inside the reaction vessel can be above supercritical pressure for water. Other embodiments are also included herein.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: July 5, 2016
    Assignee: SarTec Corporation
    Inventors: Clayton V. McNeff, Larry C. McNeff, Daniel Thomas Nowlan, Bingwen Yan, Peter G. Greuel
  • Patent number: 9298174
    Abstract: System and method for determining total inventory of batch and continuous biomass inventories in a biofuel production process. Measured biomass inventory values are received, including batch inventories from multiple batch fermenters and at least one continuous beer well inventory. The values are premised on a controlled vapor pressure of the batch fermenters and beer well(s), where the pressure fluctuates in an uncontrolled manner. A measured vapor pressure for the batch fermenters and beerwell(s) is received, and pressure compensated inventory values determined based on the measured inventory and pressure values. Measured biomass input flow to the batch fermenters and output flow from the beerwell(s) are received, and are premised on a constant biomass temperature and density, where biomass temperature and density fluctuate in an uncontrolled manner. The total inventory of batch and continuous inventories is determined based on the measured flows and the pressure compensated inventory values, and stored.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: March 29, 2016
    Assignee: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Brian K. Stephenson, Patrick D. Noll, Maina A. Macharia
  • Patent number: 9162938
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: October 20, 2015
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Patent number: 9127227
    Abstract: An assembly for processing green biomass material for pelletizing into a fuel pellet includes a heating assembly, a drying assembly and a cooling assembly. The heating assembly heats a thermal fluid to a temperature within the range of 200° F. to 550° F. The drying assembly includes a rotating dryer drum that has a plurality of thermal fluid tubes therein. Material that is dried in the dryer drum is conveyed to a rotating cooling drum that has a cooling tube extending along the interior thereof. A nozzle is mounted on the end of the cooling tube to discharge cooling fluid on the material therein, and a plurality of flights are mounted on the interior of the cooling drum and arranged to direct material from the inlet to the discharge outlet as the cooling drum is rotated.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 8, 2015
    Assignee: ASTEC, INC.
    Inventors: J. Donald Brock, Malcolm L. Swanson, Gary L. Catlett, Jeffrey Blake Pruett
  • Patent number: 9109170
    Abstract: An improved biodiesel production process includes the steps of processing a feedstock to produce biodiesel, cooling the biodiesel so as to form sediment, and filtering the biodiesel to remove the sediment. The resulting biodiesel from the cold filtration process avoids problems of sediment formation during storage and transportation.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: August 18, 2015
    Assignee: REG Biofuels, LLC
    Inventors: Myron Francis Danzer, Timothy L. Ely, Scott Alan Kingery, Wayne William McCalley, William Michael McDonald, John Mostek, Matthew Leonard Schultes
  • Patent number: 9057037
    Abstract: A process for torrefaction of biomass is provided in which biomass are passed into a fluidized bed or a non-fluidized bed reactor and heated to a predetermined temperature in an oxidizing environment. The dried biomass is then fed to a cooler where the temperature of the product is reduced to approximately 100 degrees Fahrenheit.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: June 16, 2015
    Assignee: River Basin Energy, Inc.
    Inventors: Clinton B. Camper, Vijay Sethi, Jerrod D. Isaak
  • Publication number: 20150150162
    Abstract: The present application relates generally to the field of plant propagation. In particular, the present invention relates to a method for the propagation of vegetatively reproducing plants and plants and plant parts produced by such methods. The invention also provides encapsulated propagules. The invention also provides various end uses for the encapsulated propagules and for plants grown from the same. The invention also provides a method for the modification of the architecture of rhizomes and rhizomes having modified architecture and a method for the modification of the architecture of stem cuttings and stem cuttings having modified architecture. The invention also provides a coating for a propagule and a propagule coated therewith.
    Type: Application
    Filed: June 12, 2013
    Publication date: May 28, 2015
    Applicant: New Energy Farms Limited
    Inventors: Paul Adrian Carver, Dean William Tiessen
  • Publication number: 20150143742
    Abstract: A method for the torrefaction of biomass comprises receiving biomass having a given moisture content. The biomass is heated in a generally inert environment by indirect contact. The biomass is subsequently torrefied by exposing the biomass to a flow of combustion gases in the generally inert environment. The biomass is outlet with a reduced moisture content.
    Type: Application
    Filed: May 27, 2013
    Publication date: May 28, 2015
    Inventor: Guy Prud'Homme
  • Patent number: 9039792
    Abstract: A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Bruce E. Dale, Bryan Ritchie, Derek Marshall