Antimony Containing Patents (Class 442/139)
-
Patent number: 11608472Abstract: A method for imparting flame retardancy to a substrate material. The method comprises adding to a substrate material a flame retardant composition. The flame retardant composition comprises at least one flame retardant salt, a nitrogen-containing compound, and optionally water. The at least one flame retardant salt comprises an ammonium salt of phosphoric acid. The ammonium salt of phosphoric acid comprises water soluble ammonium polyphosphate (APP). The water soluble ammonium polyphosphate has a total nitrogen as N from about 5 to about 15 weight percent, and a total phosphorus as P2O5 from about 30 to about 40 weight percent, based on the total weight of the ammonium polyphosphate (APP).Type: GrantFiled: April 1, 2022Date of Patent: March 21, 2023Assignee: CHESTNUT SPRINGS LLCInventors: Randall Cher Liang Cha, Sufan Siauw, Ralph T. Webdale
-
Patent number: 11447665Abstract: The present invention relates to an organosilicon synthetic leather and a preparation method thereof. The organosilicon synthetic leather comprises a surface glue layer, a bottom glue layer, and a base layer which are overlapped sequentially. The preparation method comprises the steps of: mixing the main raw materials of the surface glue layer in a proper proportion to obtain a surface glue; mixing the main raw materials of the bottom glue layer in a proper proportion to obtain a bottom glue; coating and curing the surface glue on a release paper, coating the bottom glue on the cured surface glue to form the bottom glue layer, then compositing the bottom glue layer with the base layer and curing composited bottom glue layer, and striping the release paper to obtain the organosilicon synthetic leather. The inventive organosilicon synthetic leather has excellent safety, wear resistance, antifouling property and flame retardancy.Type: GrantFiled: March 28, 2018Date of Patent: September 20, 2022Assignee: GUANGZHOU XIBO CHEMICAL TECHNOLOGY CO., LTD.Inventors: Dewen Fan, Jiangqun Li
-
Patent number: 11326104Abstract: A process for preparing a flame retardant composition, the process comprising: adding to a container at least one flame retardant salt, a nitrogen-containing compound, and optionally water; and mixing the contents of the container to give a dispersed mixture or dissolved solution comprising the flame retardant composition; wherein the at least one flame retardant salt comprises an ammonium salt of phosphoric acid; wherein the ammonium salt of phosphoric acid comprises water soluble ammonium polyphosphate (APP); wherein the water soluble ammonium polyphosphate has a total nitrogen as N from about 5 to about 15 weight percent, and a total phosphorus as P2O5 from about 30 to about 40 weight percent, based on the total weight of the ammonium polyphosphate (APP).Type: GrantFiled: July 15, 2020Date of Patent: May 10, 2022Assignee: Chestnut Springs LLCInventors: Randall Cher Liang Cha, Sufan Siauw, Ralph T. Webdale
-
Patent number: 10023994Abstract: An air bag coated with a cured organopolysiloxane composition, characterized in that the air bag is top coated with an antifriction coating comprising at least one solid lubricant dispersed in an organic polymer binder.Type: GrantFiled: November 12, 2010Date of Patent: July 17, 2018Assignee: DOW SILICONES CORPORATIONInventors: Marita Barth, William Blackwood, Vittorio Clerici, Andrew William Mountney
-
Patent number: 9932706Abstract: This relates to the coating of air bags, which are used for safety purposes to protect occupants of vehicles such as automobiles, and of air bag fabrics intended to be made into air bags. In particular the invention relates to the top coating of air bags and air bag fabrics which have been pre-coated with a cured organic resin coating composition. The top-coat is an anti-blocking coating composition comprising at least one solid lubricant dispersed in an organic polymer binder. A process for applying the top-coat is also described.Type: GrantFiled: November 12, 2010Date of Patent: April 3, 2018Assignee: DOW CORNING CORPORATIONInventors: Marita Barth, William Blackwood, Vittorio Clerici, Andrew Mountney
-
Patent number: 9717299Abstract: A textile with high weave density which comprises a main-yarn made of a Japanese paper yarn and a sub-yarn thinner than the main-yarn interwoven with each other, wherein the textile has a weave texture structure including warps A and wefts A made of the main-yarn, and warps B and wefts B made of the sub-yarn, wherein in the weave texture structure, warp rows have a repeating row structure where a plurality of warps B are located between two warps A and weft rows have a repeating row structure where a plurality of wefts B are located between two wefts A, and wherein the warps A and the wefts A cross each other in a plain weave texture structure.Type: GrantFiled: October 14, 2014Date of Patent: August 1, 2017Assignee: ITOI LIFESTYLE RESEARCH CO.Inventor: Toru Itoi
-
Patent number: 9266263Abstract: A method for fabricating the palm portion of a glove wherein the top surface of a leather material is treated with polytetrafluoroethylene (PTFE). A layer of silicone is then applied to the leather surface, the silicone penetrating into the material to a predetermined depth, and the resultant assembly is then operated on in a manner to form raised portions and wells in the top and bottom surface of the assembly. The wells in the bottom surface of the assembly are then filled with silicone.Type: GrantFiled: March 1, 2012Date of Patent: February 23, 2016Assignee: Ironclad Performance Wear Corp.Inventor: Eric M. Jaeger
-
Patent number: 9006118Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.Type: GrantFiled: January 22, 2013Date of Patent: April 14, 2015Assignee: Precision Fabrics Group, Inc.Inventors: Melanie Pierce Jones, James Douglas Small, Jr., John H. Walton, Alfred Frank Baldwin, Jr., Zareh Mikaelian, William Scott Kinlaw
-
Publication number: 20140370772Abstract: The present invention provides a method for manufacturing a composite yarn of paper, e.g., traditional Korean paper, and a composite yarn manufactured thereby, a method for manufacturing a fabric using the same and an automotive interior material manufactured thereby. More particularly, the present invention relates to a method for manufacturing a composite yarn of traditional Korean paper by using a traditional Korean paper yarn and a synthetic yarn, in which the composite yarn can be used in weaving and knitting, and a method for manufacturing a fabric as an automotive interior material using the same. Accordingly, the present invention provides a method for manufacturing a composite yarn of paper, comprising twisting a tape-type paper yarn, and covering the twisted paper yarn as a ground yarn at least two strands of synthetic yarn as an effect yarn to manufacture a composite yarn of paper of 160˜700 denier.Type: ApplicationFiled: September 2, 2014Publication date: December 18, 2014Inventor: Si Young Ban
-
Patent number: 8864998Abstract: Reactive beads interact with a fluid to be treated in a treatment chamber that retains the beads in the chamber and provides a geometry which promotes the fluid flow agitation of the beads to enhance the treatment.Type: GrantFiled: October 7, 2013Date of Patent: October 21, 2014Inventor: Al Siamon
-
Patent number: 8822354Abstract: A coated fabric having a base fabric and an auxiliary layer laminated thereto, wherein the exposed face of the auxiliary layer is coated with a coating composition.Type: GrantFiled: March 31, 2006Date of Patent: September 2, 2014Assignee: Clarkson Textiles LimitedInventor: Roger Gordon White
-
Publication number: 20120266384Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.Type: ApplicationFiled: June 28, 2012Publication date: October 25, 2012Inventors: Melanie Pearce Jones, James Douglas Samll, JR., John H. Walton, Alfred Frank Baldwin, JR., Zarch Mikaelian
-
Publication number: 20120266385Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.Type: ApplicationFiled: June 28, 2012Publication date: October 25, 2012Inventors: Melanie Pearce Jones, James Douglas Small, JR., John H. Walton, Alfred Frank Baldwin, JR., Zareh Mikaelian
-
Publication number: 20120246832Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.Type: ApplicationFiled: May 30, 2012Publication date: October 4, 2012Inventors: Melanie Pearce Jones, James Douglas Small, JR., John H. Walton, Alfred Frank Baldwin, JR., Zareh Mikaelian
-
Publication number: 20120238167Abstract: The present invention provides a method for manufacturing a composite yarn of paper, e.g., traditional Korean paper, and a composite yarn manufactured thereby, a method for manufacturing a fabric using the same and an automotive interior material manufactured thereby. More particularly, the present invention relates to a method for manufacturing a composite yarn of traditional Korean paper by using a traditional Korean paper yarn and a synthetic yarn, in which the composite yarn can be used in weaving and knitting, and a method for manufacturing a fabric as an automotive interior material using the same. Accordingly, the present invention provides a method for manufacturing a composite yarn of paper, comprising twisting a tape-type paper yarn, and covering the twisted paper yarn as a ground yarn at least two strands of synthetic yarn as an effect yarn to manufacture a composite yarn of paper of 160˜700 denier.Type: ApplicationFiled: September 20, 2011Publication date: September 20, 2012Applicant: Hyundai Motor CompanyInventor: Si Young Ban
-
Publication number: 20100255270Abstract: The present invention provides a fabric and a fabric structure made of yarns with reduced water absorption. The fabric comprises yarns and interstices between the yarns, the interstices between the yarns having an average width of greater than 100 ?m. At least one of the yarns is comprised of multiple fibers. Said at least one yarn has voids between the fibers wherein the voids are filled up with a polymer material. The interstices remain open and the size of the interstices is the same as before the treatment. The filling of the voids between the fibers with the polymer material prevents the absorption of water into said voids and therefore leads to reduced water absorption of the fabric. The polymer material is substantially only located within the voids of the yarn and has embedded the fibers within the outer surface of said yarn.Type: ApplicationFiled: September 8, 2008Publication date: October 7, 2010Inventor: Werner Stuebiger
-
Publication number: 20100144226Abstract: A firefighting and protection apparatus being thermally-activated and/or heat resistant when subjected to a temperature above a pre-determined limit thermally set chemical reactions occur within the apparatus which causes the apparatus to expand in volume for multifunctional purposes including acting as an insulator against heat, an absorbent for diminishing contact between fuel and oxygen, and release inert gases and flame retardants for disrupting chemical reactions that sustain a fire.Type: ApplicationFiled: July 10, 2008Publication date: June 10, 2010Inventors: Andrew J. Guenthner, Michael E. Wright, Stephen Fallis
-
Publication number: 20080242176Abstract: Fabric impregnated with polysiloxane. The fabric may be leather, synthetic leather or suede. Alternatively the fabric may be made from aramid or oxidized polyacrylic/nitride fibers. One method of making this fabric is to mix liquid silicone rubber; impregnate the fabric with the liquid chemical; and heat the fabric at 120-200° C. for 10-150 seconds. Another method of making the fabric is to mix liquid silicone rubber or a mixture of liquid silicone rubber and catalyzed polyurethane with fibers and heat the mixture at 120-200° C. for 10-150 seconds. Fibers may be polyester microfibers, nylon microfibers, suede, aramid, oxidized polyacrylic/nitride, and mixtures of these fibers.Type: ApplicationFiled: March 30, 2007Publication date: October 2, 2008Inventors: Eric M. Jaeger, Minho Kim
-
Publication number: 20040142616Abstract: A flame retardant, electromagnetic interference (EMI) shielding gasket construction. The construction includes a resilient core member formed of a foamed elastomeric material, an electrically-conductive fabric member surrounding the outer surface of the core member, and a flame retardant layer coating at least a portion of the interior surface of the fabric member. The flame retardant layer is effective to afford the gasket construction with a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No. 94.Type: ApplicationFiled: January 7, 2004Publication date: July 22, 2004Inventors: Michael H. Bunyan, William I. Flanders
-
Publication number: 20040092184Abstract: A flame-retardant substrate is present herein. The flame-retardant substrate includes a material layer surrounded by a flame-retardant coating. The coating is made of a chemical mixture that serves as a flame retardant barrier when exposed to fire. The flame-retardant substrate may be attached beneath the upholstery or surface layer of a textile-based item such as a piece of furniture or mattress. As such, the flame-retardant substrate serves as a barrier to flame to which the item is exposed while further impairing the further spread of fire.Type: ApplicationFiled: November 12, 2002Publication date: May 13, 2004Inventor: Rus Kingman
-
Publication number: 20040062912Abstract: A fire blocking non-woven needlepunched textile structure, comprising a first fiber component containing polyacrylonitrile copolymer with a halogen containing monomer and a second fiber component. The second fiber component is selected such that it supports the first fiber component during burning, optionally including an inorganic filler as a coating for the first and second fiber components. In alternative embodiment, the present invention provides a fire blocking non-woven textile structure containing the above first and second fiber components, blended with a third binder fiber component in the form of a vertically lapped nonwoven structure.Type: ApplicationFiled: October 1, 2002Publication date: April 1, 2004Inventors: Charles R. Mason, Kate Hale-Blackstone
-
Patent number: 6645886Abstract: A corona shielding band having reproducible qualities and allowing only a small increase in dielectric losses in a winding of an insulation of electrical machine is made by impregnating a woven-type support material with an active resin solution containing an inorganic filler with a coating composed of antimony-doped tin oxide and then removing the solvent by a thermal processing to produce the corona shielding band.Type: GrantFiled: July 2, 2001Date of Patent: November 11, 2003Assignee: Siemens AktiengesellschaftInventors: Volker Muhrer, Wolfgang Rogler, Klaus Schaefer
-
Patent number: 6503962Abstract: The present invention is for providing a synthetic resin composition capable of effectively deodorizing amine malodor causing substances such as trimethyl amine. In a synthetic resin composition comprising an aqueous medium, a surfactant, and a polymer latex and a filler dispersed in the aqueous medium by the surfactant, a transitional metal supported silica gel having at least one selected from the group consisting of a transitional metal and a transitional metal compound supported by a silica gel and an activated carbon were used as the filler. Since the transitional metal or the transitional metal compound has an performs extremely well as a Lewis acid, it forms a complex with a Lewis base having an unpaired electron. That is, a malodor causing substance such as amines and ammonia having a nitrogen atom with an unpaired electron can be adsorbed efficiently.Type: GrantFiled: December 9, 1999Date of Patent: January 7, 2003Assignees: Toyoda Boshoku Corporation, Dainippon Ink and Chemicals, Inc.Inventors: Tomiko Mouri, Kazuhiro Fukumoto, Seiji Onoda, Yoshio Yamada, Hideki Ohno, Masako Furuta, Akihiro Matsuyama, Shigeyoshi Miura, Shirou Ueda
-
Patent number: 6153544Abstract: A flame retardant composition for treating a high pulp content nonwoven web is provided. The flame retardant composition includes soluble solids formed from inorganic salts, such as ammonium polyphosphate and sulfur. The TGA range of such soluble solids is from about 175.degree. C. to about 370.degree. C. The flame retardant composition may be continuously and uniformly applied to the high pulp content nonwoven web by a non-compressive process.Type: GrantFiled: March 20, 1998Date of Patent: November 28, 2000Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Fred Robert Radwanski, Henry Skoog, Terry Ray Cleveland, Phillip Sherman Warren, William Francis Cartwright
-
Patent number: 5912196Abstract: A flame retardant composition for treating a high pulp content nonwoven web is provided. The flame retardant composition includes soluble solids formed from inorganic salts, such as ammonium polyphosphate and sulfur. The TGA range of such soluble solids is from about 175.degree. C. to about 370.degree. C. The flame retardant composition may be continuously and uniformly applied to the high pulp content nonwoven web by a non-compressive process.Type: GrantFiled: December 20, 1995Date of Patent: June 15, 1999Assignee: Kimberly-Clark Corp.Inventors: Fred Robert Radwanski, Henry Skoog, Terry Ray Cleveland, Phillip Sherman Warren, William Francis Cartwright
-
Patent number: 5891553Abstract: A film having a width of at least about one foot as defined by the cross machine direction thereof and a substantially uniform average thickness of less than about 10 mils is formed of a crosslinkable thermoplastic olefin polymer, a crosslinking agent, and preferably a flame retardant. The film can be combined with a suitable substrate to form a prepreg or coated substrate, and the prepreg or coated substrate can be subsequently treated under conditions to crosslink the olefin polymer and to form a rigid composite structure. The composite structure is particularly useful for printed circuit board applications.Type: GrantFiled: October 4, 1996Date of Patent: April 6, 1999Assignee: Clark-Schwebel, Inc.Inventors: James Easton Hendrix, Dennis Joseph Vaughan, James Lee Rakes, John Henry Walker
-
Patent number: 5736466Abstract: The invention relates to coating compositions for producing watertight, vapor-permeable and flame-retardant coatings, comprising a vinyl chloride copolymer or vinyl acetate/ethylene dispersion, flameproofing agents, foam stabilizer and optionally crosslinkers. The invention further relates to a process for producing watertight, vapor-permeable and flame-retardant coatings by mechanically foaming the coating composition to produce a stable foam, applying the foam to a woven, knitted or nonwoven support material on one or both of the sides and drying it at a temperature of from 60.degree. to 180.degree. C. and optionally, after drying, compressing the foam layer. The textile support materials coated with the coating composition are suitable for use in building protection and in the geotextile sector.Type: GrantFiled: August 8, 1996Date of Patent: April 7, 1998Assignee: Wacker-Chemie GmbHInventors: Konrad Wierer, Franco Serafini
-
Patent number: 5622778Abstract: A synthetic resin composition comprises an aqueous medium, a surfactant, and a resin and filler dispersed in the aqueous medium by the surfactant. The surfactant comprises a first high molecular weight compound having a weight-average molecular weight of at least 10000 and a second high molecular weight compound having a weight-average molecular weight of not less than 150 and less than 10000. In the synthetic resin composition, a solid material is well dispersed and the viscosity doesn't remarkably increase even if a solid content is increased. So, the increased amount of a non-volatile matter may be used and the storage stability improves. Further, flame retardation, deodorization, heat resistance and light fastness also improve. In addition, an interior material which is a fabric coated with the synthetic resin composition is provided. In the interior material, the texture, flame retardation, deodorization and light fastness improve without the deterioration of workability.Type: GrantFiled: January 26, 1996Date of Patent: April 22, 1997Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha, Toyoda Boshoku Corporation, Dainippon Ink and Chemicals, IncorporatedInventors: Mitsumasa Horii, Masahiro Sugiura, Seiji Onoda, Yoshio Yamada, Osamu Araki, Yoshiro Umemoto, Kazuo Ito, Takatoshi Sekihara, Akihiro Matsuyama, Masaaki Izumichi, Kiyoshi Umehara, Reizaburo Tomioka