Distributed Parameter Device Patents (Class 455/124)
  • Patent number: 9325324
    Abstract: A phase locked loop (PLL) circuit includes a phase comparison circuit configured to compare phase of an input signal to phase of a feedback signal and generate a control signal responsive to the phase comparison and an oscillator circuit configured to generate an output signal at a frequency set by said control signal, where said feedback signal is derived from said output signal. The PLL circuit further operates in a calibration mode of operation wherein the oscillator circuit operates in a frequency locked loop mode to compare frequency of the input signal to frequency of the output signal and center a gain of the oscillator circuit across process, voltage and temperature in response to the frequency comparison. Furthermore, bias current for a charge pump within the phase comparison circuit is calibrated during calibration mode of operation to match a temperature independent reference current.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 26, 2016
    Assignee: STMicroelectronics International N.V.
    Inventors: Nitin Gupta, Anand Kumar, Abhirup Lahiri
  • Patent number: 8977216
    Abstract: A wireless device is described. The wireless device includes a tunable front end module. The tunable front end module includes a Tx microelectromechanical system bandpass filter. The tunable front end module also includes a first Rx microelectromechanical system bandpass filter. The wireless device also includes a power amplifier. The wireless device further includes a low noise amplifier.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 10, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Haim M. Weissman, Avigdor Brillant, David Pezo
  • Patent number: 8918064
    Abstract: A transmitter front-end for wireless chip-to-chip communication, and potentially for other, longer range (e.g., several meters or several tens of meters) device-to-device communication, is disclosed. The transmitter front-end includes a distributed power amplifier capable of providing an output signal with sufficient power for wireless transmission by an on-chip or on-package antenna to another nearby IC chip or device located several meters or several tens of meters away. The distributed power amplifier can be fully integrated (i.e., without using external components, such as bond wire inductors) on a monolithic silicon substrate using, for example, a complementary metal oxide semiconductor (CMOS) process.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: December 23, 2014
    Assignee: Broadcom Corporation
    Inventors: Farid Shirinfar, Med Nariman, Maryam Rofougaran, Ahmadreza Rofougaran
  • Patent number: 8792937
    Abstract: A computing device with a configurable antenna. The antenna is configured through a switching circuit operating under software control. Operating characteristics of the antenna are configured based on connections between conducting segments established by the switching circuit, allowing the nominal frequency, bandwidth or other characteristics of the antenna to be configured. Because the switching is software controlled, the configurable antenna may be integrated with a software defined radio. The radio and antenna can be reconfigured to support communication according to different wireless technologies at different times or to interleave packets according to different wireless technologies to support concurrent sessions using different wireless technologies.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: July 29, 2014
    Assignee: Microsoft Corporation
    Inventors: Amer A. Hassan, Christian Huitema
  • Patent number: 8781417
    Abstract: An embodiment of the present invention provides an apparatus, comprising a transceiver, an antenna tuner connecting said transceiver to an antenna, a power sensor adapted to acquire measurements about transmit power, a receive signal strength indicator (RSSI) adapted to acquire measurements about receive power and wherein said tuner tunes said antenna based upon said transmit and receive measurements to optimize said antenna in both the receive and transmit bands.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: July 15, 2014
    Assignee: BlackBerry Limited
    Inventor: Guillaume Alexandre Blin
  • Patent number: 8731490
    Abstract: In transmitter modules or power amplifier (PA) modules there is at least a possible path for a second and even a third harmonic of a low band to crossover unfiltered into the high band path and reach the antenna and hence cross band isolation is necessary. Forward isolation is necessary in order to limit the input crossing over the PAs into the antenna port. According to the methods and the circuits such cross band isolation and forward isolation is improved by detuning the filter and matching network at the output of the PA. The circuit comprises a trap at the harmonic frequencies of the low band thereby at least reducing the impacts of the cross band and forward isolation.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: May 20, 2014
    Assignee: RF Micro Devices (Cayman Islands), Ltd.
    Inventors: Malcolm Smith, Ying Shi
  • Patent number: 8725093
    Abstract: The present invention discloses a multi-mode full frequency band radio frequency transmission device comprising a radio frequency switch chip positioned in the latter stage of the radio frequency main amplifier chip and configured to integrate all solid switch elements. Each of the solid switch elements comprises a transfer switch used when values of a variable capacitor and a variable inductor are controlled. The variable capacitor and the variable inductor are configured to control values of passive elements in an input switch matching circuit/output switch matching circuit to implement a single input/output matching circuit. The present invention further discloses a multi-mode full frequency band radio frequency transmission method comprising controlling values of passive elements in an input switch matching circuit/output switch matching circuit through the variable capacitor and the variable inductor to implement a single input/output matching circuit.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 13, 2014
    Assignee: ZTE Corporation
    Inventor: Xin Liu
  • Patent number: 8611831
    Abstract: Numeric values “a” representing a respective order of transmission by a plurality of transmitting units, and a numeric value N representing the total number of transmitting units, are set for each of the transmitting units. At startup, a transmitting unit for which the value “a” representing the order of transmission of the unit has been set to 1 sets a trigger value to N and transmits information about the value “a” of the unit and detection information from a sensor, and, when the value N is detected from a received signal, transmits the value “a” of the unit and detection information. When a value of a?1 is detected from a received signal, the transmitting unit for which the value “a” representing the order of transmission of the unit has been set to other than 1 transmits the information of the value “a” of the unit and detection information.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 17, 2013
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Koji Nakatani, Shu Yamada, Sigeki Sakakibara, Michito Kaneko
  • Patent number: 8509679
    Abstract: A receiving device receives one or more signals, each signal including transponder identifying information. The receiving device processes the transponder identifying information to determine which signals are receivable by the receiving device. Based upon the receivable signals, the receiving device modifies its operational behavior accordingly.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: August 13, 2013
    Assignee: EchoStar Technologies L.L.C.
    Inventors: Steven M. Casagrande, Jason Michael Anguiano, William Norris Moran, Michael J. Cavanaugh
  • Patent number: 8457569
    Abstract: An embodiment of the present invention provides an apparatus, comprising a transceiver, an antenna tuner connecting said transceiver to an antenna, a power sensor adapted to acquire measurements about transmit power, a receive signal strength indicator (RSSI) adapted to acquire measurements about receive power and wherein said tuner tunes said antenna based upon said transmit and receive measurements to optimize said antenna in both the receive and transmit bands.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: June 4, 2013
    Assignee: Research In Motion RF, Inc.
    Inventor: Guillaume Blin
  • Patent number: 8340714
    Abstract: A computing device with a configurable antenna. The antenna is configured through a switching circuit operating under software control. Operating characteristics of the antenna are configured based on connections between conducting segments established by the switching circuit, allowing the nominal frequency, bandwidth or other characteristics of the antenna to be configured. Because the switching is software controlled, the configurable antenna may be integrated with a software defined radio. The radio and antenna can be reconfigured to support communication according to different wireless technologies at different times or to interleave packets according to different wireless technologies to support concurrent sessions using different wireless technologies.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: December 25, 2012
    Assignee: Microsoft Corporation
    Inventors: Amer A. Hassan, Christian Huitema
  • Patent number: 8213886
    Abstract: An embodiment of the present invention provides an apparatus, comprising a transceiver, an antenna tuner connecting the transceiver to an antenna, a power sensor adapted to acquire measurements about transmit power, a receive signal strength indicator (RSSI) adapted to acquire measurements about receive power and wherein the tuner tunes the antenna based upon the transmit and receive measurements to optimize the antenna in both the receive and transmit bands.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: July 3, 2012
    Assignee: Paratek Microwave, Inc.
    Inventor: Guillaume Blin
  • Patent number: 8200168
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 12, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 8185062
    Abstract: A configurable antenna assembly includes an antenna structure and a configurable antenna interface. The antenna structure is operable, in a first mode, to provide a first antenna structure and a second antenna structure, wherein the first antenna structure receives an inbound radio frequency (RF) signal and the second antenna structure transmits an outbound RF signal. The configurable antenna interface is operable in the first mode to provide a first antenna interface and a second antenna interface, wherein the first antenna interface is configured in accordance with a receive adjust signal to adjust at least one of phase and amplitude of the inbound RF signal, and wherein the second antenna interface is configured in accordance with a transmit adjust signal to adjust at least one of phase and amplitude of the outbound RF signal.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 22, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 8095082
    Abstract: A transmitter includes a transformer and a transformer tuning circuit. The transformer transforms a differential radio frequency (RF) signal to a single-ended RF signal. The transformer tuning circuit tunes the transformer to permit the transmitter to transmit the single-ended RF signal in a first frequency band (e.g., cellular frequency band) or a second frequency band (e.g., PCS frequency band).
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: January 10, 2012
    Assignee: QUALCOMM, Incorporated
    Inventors: Junxiong Deng, Maulin Pareshbhai Bhagat, Gurkanwal Singh Sahota
  • Patent number: 8014732
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 6, 2011
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 7974574
    Abstract: The normal roles of wireless stations and wireless access points in initiating the establishment of wireless connections may be reversed without the need for changes in the network interfaces for either the station or access point device. This capability may be used to allow wireless devices acting as access points, but on which service clients operate, to initiate the establishment of a connection with a station, on which a wireless service provider operates. Discovery of services between wireless devices can be provided prior to establishing a connection between the devices. A service client device providing access point functionality may broadcast an invitation for service advertisements and then receive service advertisements from relevant service providers acting as wireless stations. An information element may be included as part of periodically broadcast administrative messages to wirelessly convey an invitation for service advertisements.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: July 5, 2011
    Assignee: Microsoft Corporation
    Inventors: Hui Shen, Thomas W. Kuehnel, Yi Lu
  • Patent number: 7933562
    Abstract: A radio frequency (RF) transceiver includes a baseband processing module, a configurable receiver section, a configurable transmitter section and a configurable antenna assembly. The baseband processing module converts outbound data into an outbound symbol stream, converts an inbound symbol stream into inbound data and generates a transmit adjust signal and a receive adjust signal. The receiver section converts an inbound RF signal into the inbound symbol stream. The transmitter section converts the outbound symbol stream into an outbound RF signal. The antenna assembly receives the inbound RF signal via a first antenna structure and transmits the outbound RF signal via a second antenna structure. The first antenna structure and/or the configurable receiver section adjusts phase and/or amplitude of the inbound RF signal in accordance with the receive adjust signal.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: April 26, 2011
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Reza Rofougaran, Maryam Rofougaran
  • Patent number: 7853264
    Abstract: A mechanism for providing a wireless backhaul connection between a remote base transceiver station (BTS) and core radio access network (RAN) equipment such as a base station controller (BSC) for instance. The remote BTS will be provided with wireless server logic, such as a cell site modem (CSM), the RAN equipment will be provided with wireless client logic, such as a mobile station modem (MSM), and the wireless server logic of the remote BTS will be arranged to serve the wireless client logic of the RAN equipment with a packet-data connection for use to carry backhaul communications between the remote BTS and the RAN equipment. Advantageously, limited air interface resources of the core RAN equipment can thus be preserved for directly serving wireless client devices, as limited air interface resources of the wireless client logic at the remote BTS are instead (or in addition) allocated for the backhaul communication.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: December 14, 2010
    Assignee: Sprint Spectrum L.P.
    Inventor: Dae-Sik Oh
  • Patent number: 7831222
    Abstract: A method and system are provided for improving the isolation characteristics of a combiner. In a system comprising a digital and analog radio signal combiner and a digital transmitter, an analog transmitter, an antenna, and a reject load coupled to the combiner, adjusting an impedance matching device coupled between the reject load and combiner so as to reduce the energy transmitted from the digital transmitter to the analog transmitter through the combiner.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 9, 2010
    Assignee: Clear Channel Management Services, Inc.
    Inventors: Randall L. Mullinax, Michael Gideon
  • Patent number: 7818026
    Abstract: The invention relates to a terminal to be used in a system, which comprises a device management server and a data transfer network for transmitting information used in association with configuration between the terminal and the device management server. The terminal comprises means for detecting change in the terminal capabilities, and means for transmitting information on the change in the terminal capabilities to the device management server. In addition, the invention relates to a system for transmitting information used in connection with the terminal configuration between the terminal and the device management server. Further, the invention relates to a method in the configuration of the terminal, to a method for providing configuration information to the terminal, as well as to a computer software product to be used in the terminal configuration.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: October 19, 2010
    Assignee: Nokia Corporation
    Inventors: Rauno Hartikainen, Hannu Pirilä, Matti Jokimies
  • Patent number: 7783311
    Abstract: A receiving station used in a wireless communication system receives information from one or more transmitting stations. The receiving station comprises a receiving unit (112) configured to receive information containing ID information of a transmitting station, and a data extracting unit (1011) configured to extract the ID information from the received information. Transmit timing sequence acquiring means (2012, 2013 and 2014) of the receiving station estimates a transmit timing sequence (Hs) of the transmitting station based on the extracted ID information. Synchronizing means (2014) of the receiving station brings the receive timing of the receiving station in synchronization with transmit timing of the transmitting station based on the transmit timing sequence.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: August 24, 2010
    Assignee: NTT DoCoMo, Inc.
    Inventors: Kosei Takiishi, Shinzo Ohkubo, Hirohito Suda
  • Patent number: 7761061
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: July 20, 2010
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Reza Rofougaran, Maryam Rofougaran
  • Patent number: 7720449
    Abstract: An amplifier matrix (112) has a plurality of inter-coupled matrix clusters (201), and a controller (106). The controller is programmed to detect (304) a fault in an amplification path of one of the matrix clusters, and update (316) vector relationships in the matrix clusters to minimize inter-sector isolation at the outputs of the matrix clusters.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: May 18, 2010
    Assignee: Motorola, Inc.
    Inventors: Ronald L. Porco, William C. Greenwood, Wentian Zhang
  • Patent number: 7693491
    Abstract: Aspects of compensating for transmitter output power may comprise sampling an on-chip transmitter circuit temperature at various time instants and determining a feedback temperature compensation value. At least one digital-to-analog converter may be adjusted by utilizing the feedback temperature compensation value, which may correspond to the sampled temperature. The digital-to-analog converter may be an I-component digital-to-analog converter and/or a Q-component digital-to-analog converter. At least a portion of the on-chip transmitter circuit may be characterized to determine power output dependence of the on-chip transmitter circuit on temperature variation of the on-chip transmitter circuit. Based on this characterization, a feedback temperature compensation value that may correspond to the sampled temperature may be used to adjust the digital-to-analog converter. The feedback temperature compensation value may be, for example, from a lookup table or an algorithm.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: April 6, 2010
    Assignee: Broadcom Corporation
    Inventor: Michael Meng-An Pan
  • Patent number: 7546097
    Abstract: In one embodiment, this disclosure describes a frequency synthesizer for use in a wireless communication device, or similar device that requires precision frequency synthesis but small amounts of noise. In particular, the frequency synthesizer may include a phase locked loop (PLL) and an integrated voltage controlled oscillator (VCO). The frequency synthesizer may implement one or more calibration techniques to quickly and precisely calibrate the VCO. In this manner, the analog gain of the VCO can be significantly reduced, which may improve performance of the wireless communication device. Also, the initial state of the PLL may be improved to reduce lock time of the PLL, which may enhance performance of the wireless communication device.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: June 9, 2009
    Assignee: QUALCOMM Incorporated
    Inventors: Jeremy D. Dunworth, Brett C. Walker
  • Publication number: 20090130997
    Abstract: A transmitting device comprising a transmitter, an antenna and a tuning means comprising a matching network connectable between the transmitter and the antenna, the matching network comprising a plurality of capacitors; characterised in that the tuning means further comprises a means of selectively individually adjusting the capacitors to increase the output power of the transmitting device.
    Type: Application
    Filed: July 13, 2006
    Publication date: May 21, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventor: Laurent Gauthier
  • Patent number: 7149477
    Abstract: A radio-parameter control method allowing fine radio-parameter setting to improve communication quality is disclosed. Fixed stations are distributed at predetermined locations in a service area. A fixed station monitors reception condition of a pilot channel signal and transmits the monitored condition data back to a corresponding base station. A radio network control station statistically analyzes the monitored condition for each fixed station and estimates a future location of a mobile station. Radio parameters for use in radio communication between the mobile station and a base station corresponding to the future location of the mobile station are controlled based on statistical condition data at the future location of the mobile station.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: December 12, 2006
    Assignee: Nec Corporation
    Inventor: Tadashi Ogami
  • Patent number: 6980776
    Abstract: The present invention provides a transceiver apparatus that permits miniaturization even when the antenna thereof is an unbalanced circuit and the transmitter circuit section and receiver circuit section thereof are balanced circuits. The transceiver apparatus is constituted comprising: a semiconductor integrated circuit device that mounts on the same semiconductor chip a balanced receiver circuit 41 for receiving a received signal as a differential input and balanced transmitter circuit 52 for outputting a transmitted signal as a differential output, and that has at least two terminals 71,72 connected to connecting nodes that connect the balanced receiver circuit 41 and the balanced transmitter circuit 52; first and second capacitors C2,C3 connected to the terminals 71, 72 respectively; an external inductor L1 connected to the first and second capacitors C2, C3; a band pass filter 2 and an antenna 1 coupled to the first capacitor C2; and a third capacitor C1 connected to the second capacitor C3.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: December 27, 2005
    Assignees: Rohm Co., Ltd, RF Chips Technology Inc.
    Inventors: Yoshikazu Shimada, Hiroyuki Ashida, Katsuya Ogura, Sadao Igarashi
  • Patent number: 6625428
    Abstract: An apparatus for monitoring a cellular communications system; comprising a plurality of voltage standing-wave ratio (VSWR) measurement means located at respective connections to antennas of said communications system and at respective discontinuities in radio transmission lines to said distributed antennas; wherein each said VSWR measurement means is individually identifiable, has a respective threshold, and is arranged to compare its measured VSWR value to its respective threshold and identifiably indicate an error status if its measured VSWR value exceeds its threshold. Also described is a corresponding method of monitoring a cellular communications system. Also described is a VSWR measurement apparatus, and an antenna arrangement comprising an antenna and such a VSWR measurement apparatus.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: September 23, 2003
    Assignee: Motorola, Inc.
    Inventors: John Fitzgerald Finnell, Thomas Paul Groves, Peter William Bishop
  • Publication number: 20030060170
    Abstract: A dual-channel passband filtering system having a first, second and third balanced ports for connecting, respectively, to a first transceiver, an antenna and a second transceiver. A first lattice-type passband filter is connected between the first and the second port, and a second lattice-type passband filter is connected between the second and the third port. A phase shifter is used to match the first and second transceiver and the second port. A balun can be used for each port to convert the balanced port to a single-ended port. In each passband filter, two series resonators are use to provide two balanced ends, and two shunt resonators are connected to the series resonators in a crisscross fashion to form a differential or balanced topology. The first and second passband filters have different frequencies.
    Type: Application
    Filed: September 26, 2001
    Publication date: March 27, 2003
    Applicant: Nokia Corporation
    Inventors: Pasi Tikka, Juha Ella
  • Publication number: 20010051513
    Abstract: A product and system is disclosed for intelligently controlling the number of amplifier modules that are active in a linear amplification system. By exercising such control, the system can avoid using unnecessary power. The invention monitors the system and gathers information from signals associated with the system, particularly information concerning signal power. A control functionality evaluates the gathered information to decide how many modules are necessary to sufficiently operate the amplification system or to decide if it has been commanded to perform certain functions. Once this decision is made, the control functionality communicates control signals to the power amplification modules to activate the needed or desired number of modules and deactivate the unneeded or undesired number of modules. Likewise, the control functionality configures the splitter and the combiner according to the number of needed or desired amplifier modules. This gathering, evaluation, and control is conducted continuously.
    Type: Application
    Filed: March 31, 1997
    Publication date: December 13, 2001
    Inventor: ANTHONY THOMAS DEMARCO
  • Patent number: 6058294
    Abstract: A transmitter system having an adjustable monolithic frequency stabilization and tuning internal capacitor circuit. The transmitter system has a transmitter for generating and transmitting a transmitter oscillator frequency signal. A data generating chip is coupled to the transmitter. The data generating chip is used for adjusting and controlling the transmitter oscillator frequency signal. A variable capacitor circuit is located internal to the data generating chip and is coupled to a ground pin and one of a plurality of function pins on the data generating chip. The variable capacitor circuit is used for adjusting and setting the centerpoint of the transmitter oscillator frequency signal.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: May 2, 2000
    Assignee: Microchip Technology Incorporated
    Inventors: Frederick J. Bruwer, Willem Smit
  • Patent number: 5990736
    Abstract: A high frequency power amplifier including: a multi-layer printed-circuit board, a transistor for amplifying an input signal and outputting the amplified signal, a first print circuit pattern for receiving the input signal and supplying the input signal to the transistor, a second print circuit pattern for supplying a supply voltage to the transistor, a ground terminal, and concentrated constant elements connected to the transistor on the multi-layer printed-circuit board is disclosed, wherein at least two layers of the multi-layer printed-circuit board are connected to the ground terminal, the first and second print circuit patterns are sandwiched on one layer of the multi-layer print circuit between the at least two layers, a first shielding circuit pattern, connected to the ground terminal, arranged around the first print circuit pattern on the one layer is further provided; and a second shielding circuit pattern, connected to the ground terminal, arranged around the second print circuit pattern on the one
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: November 23, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Isao Nasuno, Yohei Ichikawa
  • Patent number: 5818880
    Abstract: A telemetry transmitter having a dielectric resonator for frequency stabilization, a frequency or phase shift keying modulator and a high efficiency power amplifier. The transmitter can be implemented on gallium arsenide or other kinds of substrates The transmitter is of monolithic microwave integrated circuit (MMIC) technology. The transmitter may obtain its power from a power supply of a local or an associated system, thus not needing an integral power supply of its own.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: October 6, 1998
    Assignee: Honeywell Inc.
    Inventors: Jeffrey J. Kriz, Dennis D. Ferguson
  • Patent number: 5532651
    Abstract: An oscillator (100) includes a resonator (218) having a mirco-strip (217). The micro-strip (217) couples an inductive component (221) to a capacitive portion (219). To tune the oscillator (100), a number of cuts are made on the pad (221) in order to restrict the signal flow. The width of these cuts determine the degree of restriction posed on the signal flow. This controllable restriction of the signal flow provides the circuit (100) with enhanced tunability.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: July 2, 1996
    Assignee: Motorola, Inc.
    Inventors: Rene I. Jager, Peter Vizmuller, Mathias M. Gimpelj
  • Patent number: 5301361
    Abstract: A frequency modulated (FM) transmitter for use in the 100 to 300 megacycle band is described having a low parts count topology. The disclosed topology requires the use of five tank circuits tuned to various frequency multiples of a crystal oscillator to achieve a twelve fold multiplication of the natural frequency of the crystal oscillator.
    Type: Grant
    Filed: December 28, 1990
    Date of Patent: April 5, 1994
    Assignee: Samson Technologies
    Inventor: Yukinaga Koike
  • Patent number: 4772870
    Abstract: A low-level, low-power radio frequency (RF) communications system designed to operate as a point-to-point power line communications sytem (PLC) utilizing frequencies from 50 to 600 MegaHertz (MHz) superimposed onto the AC power signal in a building.
    Type: Grant
    Filed: November 20, 1986
    Date of Patent: September 20, 1988
    Inventor: Ronald R. Reyes
  • Patent number: 4736454
    Abstract: A three-element active device is physically and electrically integrated (e.g., by soldering) onto shaped conductive areas in a thin conformable microstrip structure which includes a microstrip antenna radiator. Two of the elements of the active device are connected to microstrip reactance structures which form a series-resonant partial oscillator circuit. The third (output) element of the active device is connected directly to the microstrip antenna radiator via a microstrip transmission line which, together, directly provide the r.f. load impedance for the thus completed oscillator circuit. Quarter wavelength r.f. microstrip segments are also provided to facilitate the feeding of d.c. bias to the active device without disturbing the r.f. circuitry. The oscillator load impedance to be provided by the microstrip radiator is predetermined in accordance with conventional device-line or loadpull impedance measurements so as to maximize the power output of the active device.
    Type: Grant
    Filed: September 15, 1983
    Date of Patent: April 5, 1988
    Assignee: Ball Corporation
    Inventor: Vincent A. Hirsch
  • Patent number: 4628538
    Abstract: A television transmission system for transmitting UHF signals from a UHF signal generator, the system comprising an antenna for radiating UHF signals generated by said UHF signal generator, an overmoded section of waveguide for carrying the signals at least part of the way between the UHF signal generator and the antenna with a low level of power loss, and a high-power mode filter coupled between the antenna and the overmoded section of waveguide.
    Type: Grant
    Filed: May 13, 1985
    Date of Patent: December 9, 1986
    Assignee: Andrew Corporation
    Inventor: Laddie A. Basa
  • Patent number: 4453269
    Abstract: A novel apparatus and method for improving the stability of an electrical circuit such as an oscillator and/or a radio frequency transmitter which is coupled to a radiating element wherein the radiating element such as a loop is coupled to the inductor or capacitor of the frequency determining circuit of the oscillator so that frequency shifts will not occur due to inductive or capacitive effects. The oscillator circuit is mounted on an insulating sheet which has a ground plane on the opposite side thereof so as to provide effective shielding and the radiating element is mounted on a portion of the insulating sheet where the grounding plane does not extend. The radiating element is also coupled symmetrically to the inductor or capacitors of the frequency determining circuit and is connected at tap points which do not have the entire inductance between them.
    Type: Grant
    Filed: September 22, 1982
    Date of Patent: June 5, 1984
    Assignee: Chamberlain Manufacturing Corporation
    Inventor: Robert C. Skar
  • Patent number: 4228539
    Abstract: The components of a transistor oscillator are mounted on an end cap rotatably mounted on the outer tube of a cavity resonator which stabilizes the oscillator. The intensity with which a high frequency is applied to the cavity resonator is adjustable by rotation of the end cap.
    Type: Grant
    Filed: December 28, 1978
    Date of Patent: October 14, 1980
    Assignee: Valsala Oy
    Inventor: Reijo Hamalainen