Particular Local Oscillator Control Patents (Class 455/147)
  • Patent number: 11929723
    Abstract: A phase-variable frequency multiplier includes: a 90-degree divider for dividing an input signal into an I-signal and a Q-signal; an amplitude setting circuit for distributing each of the I-signal and the Q-signal to two paths, setting amplitudes of two of four signals including the two distributed I-signals and the two distributed Q-signals depending on a phase shift amount of the input signal, and outputting as set signals, the four signals including the signals with the set amplitudes; a first mixer for multiplying one of the two I-signals included in the set signals by one of the two Q-signals included in the set signals to generate a first signal having a frequency being twice the frequency of the input signal; a second mixer for multiplying the other of the two I-signals included in the set signals by the other of the two Q-signals included in the set signals to generate a second signal with an amplitude ratio with respect to the first signal, being a tangent or a reciprocal of a tangent of the phase sh
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: March 12, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Wataru Yamamoto, Koji Tsutsumi, Sho Ikeda, Masaomi Tsuru
  • Patent number: 11298037
    Abstract: Devices, systems, and methods for multi-band radar sensing are disclosed. In an embodiment, an integrated circuit device includes transmit components and receive components, a low-band transmit interface connected to output a first signal at a low-band frequency, a high-band transmit interface connected to output a second signal at a high-band frequency, a low-band receive interface connected to receive a third signal at the low-band frequency, a high-band receive interface connected to receive a fourth signal at the high-band frequency, and mixers connected to upconvert the first signal at the low-band frequency to the second signal at the high-band frequency for transmission from the high-band transmit interface and to downconvert the fourth signal at the high-band frequency received at the high-band receive interface to a fifth signal at the low-band frequency, wherein the upconversion and the downconversion are implemented using a conversion signal at a conversion frequency.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 12, 2022
    Assignee: Movano Inc.
    Inventor: Michael A. Leabman
  • Patent number: 10044322
    Abstract: A radio frequency signal synthesizer circuit includes a digital to analog converter configured to generate an analog output signal for each clock cycle of a clock signal to provide the radio frequency signal and a controlled oscillator to generate the clock signal. The controlled oscillator is configured to vary a cycle time of the clock signal for a radio frequency signal in a first frequency range in a first operation mode or to maintain a constant cycle time for a radio frequency signal in a second frequency range in a second operation mode, the second frequency range being different than the first frequency range.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 7, 2018
    Assignee: Intel IP Corporation
    Inventors: Andreas Menkhoff, Zdravko Boos
  • Patent number: 9961655
    Abstract: In a wireless communication system, a client terminal may first establish time and frequency synchronization with the network. While establishing the time and frequency synchronization, a client terminal may need to detect additional parameters about the network, such as physical cell identity, before it can initiate communication with the wireless communication system. Detecting the network parameters in presence of time and frequency offsets increases the complexity of the initial cell search procedure that includes time and frequency synchronization as well as detection of network parameters. A method and apparatus are disclosed that achieve frequency synchronization earlier in the cell search procedure, which in turn reduces the complexity and improves the performance of the latter stages of cell search procedure and the overall performance of the client terminal.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: May 1, 2018
    Assignee: MBIT WIRELESS, INC.
    Inventors: Krishnavelan Sivaraman, Bhaskar Patel
  • Patent number: 9154241
    Abstract: A test system for testing a wireless electronic device is provided. The test system may include a test host and a tester. The test host may instruct the electronic device under test (DUT) to transmit radio-frequency test signals in a selected resource block of a desired channel identified by a channel number in the Long Term Evolution frequency band. The tester may measure harmonic output power levels of the radio-frequency test signals transmitted by the DUT at harmonic frequencies of the selected resource block. The test host may compare the measured harmonic output power levels to threshold power levels to characterize the radio-frequency performance of wireless circuitry in the DUT. The test system may test the radio-frequency performance of the DUT for radio-frequency test signals transmitted by the DUT in some or all resource blocks in the desired Long Term Evolution band.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 6, 2015
    Assignee: Apple Inc.
    Inventors: Anh Luong, Aristoteles D. Pritsopoulos
  • Patent number: 9106314
    Abstract: The invention refers to an RF front-end (100) adapted to perform either in a receiving mode or in a transmitting mode and adapted to receive or transmit signals located in at least two separated frequency bands, respectively comprising an input and an output and further comprising an input matching circuit (1) comprising a first input coupled to the input of the RF front-end (100), an output matching circuit (2) coupled to the output; the input matching circuit (1) being coupled to the output matching circuit (2) via respective first amplifier (3) and second amplifier (4), and a phase shifter (5) coupled either to the input of the RF front-end (100) in a receiving mode, or to the output of the RF front-end (100) in a transmitting mode.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 11, 2015
    Assignee: NXP B.V.
    Inventors: Antonius de Graauw, Markus van Schie
  • Patent number: 9014648
    Abstract: A multi-mode receiver is disclosed that is reconfigurable to share a local oscillator signal in diversity mode to save power consumption. In an exemplary embodiment, an apparatus includes a primary receiver having a primary mixer configured to down-convert a primary signal and a secondary mixer configured to down-convert a secondary signal in carrier aggregation mode. The apparatus also includes a supplemental mixer that uses a shared primary local oscillator (LO) signal generated by a shared primary frequency synthesizer in diversity mode to reduce power consumption. The apparatus further includes a controller configured to disable the secondary mixer and to enable the supplemental mixer to down-convert the secondary signal when operating in the diversity mode.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 21, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Prasad Srinivasa Siva Gudem, Li Liu, Frederic Bossu
  • Patent number: 8934853
    Abstract: Embodiments of the present disclosure use shared oscillator for cellular communications and location detection in a communication device. The communications device estimates a frequency offset of one of its subsystems. The communications device determines a frequency offset that results from drifting of this shared oscillator, typically caused by aging and/or changes in temperature, voltage, humidity, pressure, and/or vibration to provide some examples, from the frequency offset this subsystem. The communications device provides various compensation parameters to its various subsystems to compensate for the frequency offset that results from drifting of the oscillator.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: January 13, 2015
    Assignee: Broadcom Corporation
    Inventors: Robert Lorenz, Kamesh Medapalli, Frank Van Diggelen, Charlie Abraham
  • Patent number: 8929840
    Abstract: Selectable sizes for a local oscillator (LO) buffer and mixer are disclosed. In an exemplary embodiment, LO buffer and/or mixer size may be increased when a receiver or transmitter operates in a high gain mode, while LO buffer and/or mixer size may be decreased when the receiver or transmitter operates in a low gain mode. In an exemplary embodiment, LO buffer and mixer sizes are increased and decreased in lock step. Circuit topologies and control schemes for specific exemplary embodiments of LO buffers and mixers having adjustable size are disclosed.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: January 6, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Sankaran Aniruddhan, Chiewcharn Narathong, Sriramgopal Sridhara, Ravi Sridhara, Gurkanwal Singh Sahota, Frederic Bossu, Ojas M. Choksi
  • Patent number: 8923788
    Abstract: In one embodiment the present invention includes a method of generating an oscillating signal at different frequencies. The method comprises configuring a digitally controlled oscillator (DCO). The DCO is configured to generate the oscillating signal at a first frequency, and the DCO is configured to generate the oscillating signal at a second frequency. Additionally, the DCO is configured to transition from the first frequency to the second frequency during a transition time period. During the transition time period, the DCO activates the second frequency and deactivates the first frequency during a plurality of time intervals. The time intervals for activating the second frequency and deactivating the first frequency successively increase from the beginning of the transition time period to the end of the transition time period.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: December 30, 2014
    Assignee: Marvell International Ltd.
    Inventors: David Cousinard, Cao-Thong Tu, Miljan Vuletic, Lydi Smaini
  • Patent number: 8886144
    Abstract: A receiver compensation method comprising receiving a radio frequency signal, amplifying the radio frequency signal, thereby producing an amplified signal, compensating the amplified signal, thereby producing a compensated signal, and mixing the compensated signal, thereby producing a mixed compensated signal, wherein the mixed compensated signal has a first gain difference between a positive differential from a center frequency and a negative differential from the center frequency and wherein the first gain differential is smaller than a second gain differential that would be obtained by mixing the amplified signal without compensating the amplified signal.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: November 11, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Ping Yin, Seong-Mo Yim, Feng Wang, Robert Grant Irvine, Chengfang Liao, Yusong Chi
  • Patent number: 8855579
    Abstract: A method may include measuring a frequency difference between an actual frequency and an expected frequency associated with a frequency control calibration signal value for each of a plurality of frequency control calibration signal values during a calibration phase. The method may additionally include generating integral non-linearity compensation values based on the frequency differences measured The method may further include generating the applied frequency control signal based on a frequency control calibration signal value received by the digital-to-analog converter during the calibration phase. The method may also include generating a compensated frequency control signal value based on a frequency control signal value received by the integral non-linearity compensation module and an integral non-linearity compensation value associated with the frequency control signal value during an operation phase of the wireless communication element.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: October 7, 2014
    Assignee: Intel IP Corporation
    Inventors: David Harnishfeger, Kristopher Kaufman
  • Patent number: 8849228
    Abstract: A receiver having a mixer for mixing a radio frequency signal and a local oscillator signal so as to generate a base band signal, a detecting unit for generating from the base band signal a detection signal that represents an extent of local oscillation leakage, and an adjusting unit coupled electrically to said mixer for outputting a control signal thereto to control a current operating state of said mixer, said adjusting unit being further coupled electrically to said detecting unit, and determining whether there is a reduction in the extent of local oscillation leakage based on the detection signal from said detecting unit. In operation, the adjusting unit maintains an adjusting direction for the control signal upon determining that the extent of local oscillation leakage is reduced, reverses the adjusting direction upon determining that the extent of local oscillation leakage is not reduced, and adjusts the control signal according to the adjusting direction.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: September 30, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Hong-Ta Hsu, Ying-Hsi Lin
  • Patent number: 8761700
    Abstract: An active antenna system for a mobile communications network and a method for relaying radio signal in the mobile communications network is disclosed. The active antenna system comprises a plurality of antenna elements for relaying radio signals at a first frequency band. The antenna elements are connected to a plurality of signal paths. A plurality of signal inputs for inputting radio signals at a second frequency band is connected to the plurality of signal paths. A plurality of mixers in the signal paths converts the frequency of the radio signals between the first frequency band and the second frequency band. A plurality of local oscillators is connected to the mixers and a single reference oscillator can be connected through a plurality of first dispersion elements to different ones of the plurality of local oscillators through a plurality of first oscillator signal paths and to a digital signal processor.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: June 24, 2014
    Assignee: Kathrein-Werke KG
    Inventor: Peter Kenington
  • Patent number: 8744385
    Abstract: A frequency conversion system includes a mixer, which is coupled to mix an input signal with a Local Oscillator (LO) signal, so as to produce an output signal. Control circuitry is configured to adjust an actual level of the LO signal provided to the mixer, so as to maintain the actual level substantially constant. A nulling signal generator is coupled to inject a nulling signal into the input signal prior to mixing with the LO signal adjusted by the control circuitry.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 3, 2014
    Assignee: Provigent Ltd
    Inventors: Nir Yahav, Ofer Rahmanony
  • Patent number: 8731501
    Abstract: Systems and methods that employ receiver circuitry to provide frequency display signals to a digital display without the presence or use of any external timing reference. One or more properties of a controllable local oscillator of a receiver circuit may be heavily or extensively characterized by measuring the local oscillator frequency under a variety of temperature and process conditions, and minimum to maximum frequencies. Measured local oscillator characterization information may be stored in memory, and may be accessed and used during normal operation to control the controllable local oscillator to produce a desired oscillator frequency for tuning the receiver circuitry to a desired radio frequency and for producing digital frequency display signals that are representative of the tuned radio frequency.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 20, 2014
    Assignee: Silicon Laboratories Inc.
    Inventor: Daniel Cooley
  • Patent number: 8725092
    Abstract: In accordance with an example embodiment of the present invention, an apparatus comprises a first multiplier configured to convert a first frequency signal into a second frequency signal based at least in part on a first complex-valued local oscillator signal, a pair of low-pass filters configured to filter the second frequency signal, and a second multiplier configured to convert the filtered second frequency signal into a third frequency signal based at least in part on a second complex-valued local oscillator signal wherein the first frequency signal and the third frequency signal share the same frequency position and the pair of low-pass filters is configured based on an indication of allocated transmitted channels.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: May 13, 2014
    Assignee: Nokia Corporation
    Inventors: Markus Nentwig, Risto Ilari Wichman
  • Patent number: 8670736
    Abstract: A circuit includes, in part, a receiver, a received signal strength indicator (RSSI), and an oscillator. The receiver receives an incoming signal and an oscillating signal. The RSSI is responsive to the receiver and generates an output signal representative of the strength of the incoming signal. The oscillator receives different biasing conditions in response to different outputs of the RSSI. The oscillator generates the oscillating signal received by the receiver. The oscillator receives a first biasing condition when the incoming signal is detected as having a strength lower than or equal to a predetermined threshold value and a second biasing condition when the incoming signal is detected as having a strength higher than the predetermined threshold value. The first biasing condition may be defined by a first current, and the second biasing condition may be defined by a sum of the first current and a second current.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: March 11, 2014
    Assignee: MaxLinear, Inc.
    Inventor: Sheng Ye
  • Patent number: 8655296
    Abstract: A frequency synthesizer includes a phase-locked loop circuit having an output. A frequency divider is connected to the output of the phase-locked loop circuit for receiving the signal therefrom and dividing the frequency of the signal. A tunable bandpass filter is connected to the frequency divider and is tuned for selecting a harmonic frequency to obtain a fractional frequency division for a signal output from the phase-locked loop circuit.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 18, 2014
    Assignee: Harris Corporation
    Inventor: Amilcar Deleon
  • Patent number: 8600324
    Abstract: In one embodiment the present invention includes a method of generating an oscillating signal at different frequencies. The method comprises configuring a digitally controlled oscillator (DCO). The DCO is configured to generate the oscillating signal at a first frequency, and the DCO is configured to generate the oscillating signal at a second frequency. Additionally, the DCO is configured to transition from the first frequency to the second frequency during a transition time period. During the transition time period, the DCO activates the second frequency and deactivates the first frequency during a plurality of time intervals. The time intervals for activating the second frequency and deactivating the first frequency successively increase from the beginning of the transition time period to the end of the transition time period.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 3, 2013
    Assignee: Marvell International Ltd
    Inventors: David Cousinard, Cao-Thong Tu, Miljan Vuletic, Lydi Smaini
  • Patent number: 8588707
    Abstract: The present disclosure relates to methods, systems and devices for shifting a reference frequency from a first value to a second value, the shifting characterized at least in part by a controlled transition of the reference frequency at a predetermined time-rate-of-change.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 19, 2013
    Assignee: Intel Mobile Communications GmbH
    Inventor: Michael Meixner
  • Patent number: 8570146
    Abstract: An in-vehicle wireless system, capable of operating at least in a copy mode and a transmission mode, comprises: at least one receiving unit receiving a wireless signal transmitted from a remote control transmitter and demodulates a control code signal; and at least one transmitting unit transmitting wireless signals at a plurality of carrier frequencies; and a control unit controlling so as to obtain a control code from the control code signal and store it in the copy mode, and so as to perform transmitting the modulated wireless signals at all carrier frequencies unique to a plurality of the garage door opening-closing mechanisms or the like. The receiving unit may include a detection circuit connected to a reception antenna directly.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: October 29, 2013
    Assignee: Toyota Boshoku Kabushiki Kaisha
    Inventors: Hideki Uno, Shigeyoshi Toda
  • Patent number: 8406702
    Abstract: A clock signal generating arrangement for a communication device generates a system clock signal at an output for use as a timing reference. The clock signal generating arrangement comprises a reference clock generator for generating a reference clock signal, a main clock generator for generating a main clock signal having a greater accuracy than the reference clock signal, a clock adjust circuit coupled to the reference clock generator for generating a compensated reference clock signal to compensate for error in the reference clock signal and a clock signal selector coupled to the reference clock generator the main clock generator and the clock adjust circuit.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: March 26, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael Crowley, Norman Beamish, Sean Sexton, Kenneth Stebbings
  • Patent number: 8385865
    Abstract: The wireless receiver of the present invention accommodates dual-carrier Evolved EDGE without significantly impacting existing receiver architectures. The inventive receiver comprises a shared local oscillator and two image-rejecting downconverters. The local oscillator generates a local oscillator frequency between two carrier frequencies of adjacent radio channels. The receiver receives a signal in each of the adjacent radio channels. In a dual-carrier mode, a first image-rejecting downconverter uses the local oscillator frequency to downconvert a first signal received in the first radio channel while rejecting a second signal received in the second radio channel. A second image-rejecting downconverter uses the local oscillator frequency to downconvert the second signal while rejecting the first signal.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: February 26, 2013
    Assignee: Sony Mobile Communications AB
    Inventors: William O. Camp, Jr., Toby John Bowen, Leland Scott Bloebaum
  • Patent number: 8346188
    Abstract: A nonlinearity calibration system and method for a frequency modulation (FM) transmitter. A nonlinearity calibration system for a FM transmitter includes a digitally controlled oscillator (DCO) with a variable capacitor array. The DCO receives a calibrated fine code for tuning the variable capacitor array to modulate a digitally encoded audio signal transmitted by the FM transmitter to a modulation frequency. The nonlinearity calibration system also includes a nonlinearity estimator for generating an approximation of an integral nonlinearity associated with processing of a fine code to tune the variable capacitor array. The nonlinearity calibration system further includes a subtractor for subtracting the approximation of the integral nonlinearity from the fine code to generate the calibrated fine code.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: January 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Karthik Subburaj, Krishnaswamy Nagaraj
  • Patent number: 8315587
    Abstract: In one implementation, a receiver may have an analog front end with an amplifier to receive a radio frequency (RF) signal and a mixer to downconvert the signal to a baseband signal. Then, a demodulator may receive the baseband signal and obtain an audio signal therefrom. Still further, a controller may be coupled to receive a control signal corresponding to a variable impedance level, and control a local oscillator coupled to the mixer responsive to the control signal. The variable impedance may be controlled by a user to tune to the channel.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: November 20, 2012
    Assignee: Silicon Laboratories Inc.
    Inventors: Shahram Tadayon, Wade Robert Gillham, Peter J. Vancorenland, Daniel Mark Thompson
  • Patent number: 8301102
    Abstract: An apparatus, a method and a system for correcting a phase imbalance are described. Embodiments may measure the phase imbalance inherent in a tuner and use the imbalance measure to correct the output of the tuner. Embodiments may include a tone generator to produce a single frequency tone and a tuner to receive the single frequency tone and output an intermediate frequency. The intermediate frequency may be corrected by a correction loop. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 30, 2012
    Assignee: Intel Corporation
    Inventors: Isaac Ali, Nicholas P. Cowley
  • Patent number: 8259888
    Abstract: The present invention provides a method of processing signal data comprising generating a first clock signal and a second clock signal and processing the signal data using the first clock signal and the second clock signal. While processing the signal data, the phase difference between the first clock signal and the second clock signal is measured and corrected for so that a target phase difference between the first clock signal and the second clock signal is maintained.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: September 4, 2012
    Assignee: Integrated Device Technology, Inc.
    Inventors: Junqi Hua, Alberto Baldisserotto, Steven White
  • Patent number: 8254849
    Abstract: An FM radio with a wide frequency range operates in a cell phone without interfering with the VCO of the RF transceiver. The FM transceiver generates a VCO signal whose frequency varies by less than ±7% from the midpoint of a narrow first range. A synthesizer signal is generated by dividing the VCO frequency by a first divisor such that the synthesizer frequency varies over a lower frequency second range. The VCO frequency is also divided by a second divisor such that the synthesizer frequency varies over a third range. The upper limit of the second range falls at the lower limit of the third range. The lower limit of the second range is 85.5 MHz and the upper limit of the third range is 108.0 MHz. By also using a third divisor, a synthesizer signal with a range of 76-108 MHz is generated from the narrow first frequency range.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 28, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Tzu-wang Pan, Yi Zeng, I-Hsiang Lin, Pushp K. Trikha, Jeremy D. Dunworth, Rahul Apte
  • Patent number: 8249533
    Abstract: A rapidly adjustable local oscillation (LO) module for use in a radio transmitter or a radio receiver includes an oscillation generating module and a high frequency switching module. The oscillation generating module is operably coupled to generate a plurality of local oscillations. The high frequency switching module is operably coupled to, for a first one of a plurality of transmission paths, provide one of the plurality of local oscillations when a first transmission path selection indication is in a first state and provide another one of the plurality of local oscillations when the first transmission path selection indication is in a second state and, for a second one of the plurality of transmission paths, provide the one of the plurality of local oscillations when a second transmission path selection indication is in a first state and provide the another one of the plurality of local oscillations when the second transmission path selection indication is in a second state.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: August 21, 2012
    Assignee: Vixs Systems, Inc.
    Inventors: Bojan Subasic, Mathew A. Rybicki
  • Patent number: 8219054
    Abstract: According to an aspect of the invention, an oscillating circuit includes: a first MOS transistor having a first drain terminal and a first source terminal; a load element connected to the first drain terminal; and an oscillator connected to the first source terminal and outputs a fundamental signal and a harmonic signal, wherein the harmonic signal is amplified so that the amplified harmonic signal is output from the first drain terminal.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroaki Hoshino, Toshiya Mitomo
  • Patent number: 8140039
    Abstract: The present invention relates to a quadrature divider which may be used in a phase locked loop or frequency synthesizer or with a single side band mixer. According to a preferred embodiment the divider takes a quadrature input and has a quadrature output. The divider has four analog mixers 1, 2, 3 and 4. The first two mixers 1, 2 take the in-phase quadrature input, while the second mixers 3, 4 take the quadrature-phase quadrature input. The outputs and feedback loops of the mixers are properly arranged such that the in-phase and quadrature-phase outputs of the divider have a determinisitic phase sequence relationship based on the phase sequence relationship of the corresponding quadrature inputs. Third order harmonics may be minimized or reduced by addition or subtraction of the mixer outputs. As the divider is able to take a quadrature input, there is no need for a dummy divider in the phase locked loop, thus saving space and power.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: March 20, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Howard Cam Luong, Hui Zheng
  • Patent number: 8090335
    Abstract: An open loop frequency calibration algorithm is employed whereby frequency counters are utilized to provide frequency information concerning the difference in frequency between a local oscillator and a reference signal prior to obtaining phase locked operation of a phase locked loop (PLL). The frequency difference is then used to adjust the local oscillator's frequency to be changed by a value that is proportional to the frequency difference measured. Through adaptive calibration of the local oscillator's frequency prior to closed loop PLL operations, a substantial reduction in the amount of time required to obtain phase/frequency coherent operation of the PLL is realized.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: January 3, 2012
    Assignee: Xilinx, Inc.
    Inventor: Khaldoun Bataineh
  • Patent number: 8077818
    Abstract: A radio receiver including a reception processing system that uses discrete-time frequency conversion to acquire a signal having a sampling rate corresponding to a local frequency, wherein the reception characteristic is improved when the reception processing system is applied to a system having a wide reception channel band. The radio receiver comprises an A/D converting part that quantizes a discrete-time analog signal to a digital value to output a received digital signal; a channel selection filtering part that uses a tap coefficient value to perform a digital filtering process of the received digital signal; and a frequency response characteristic correcting part that generates the tap coefficient in accordance with the sampling rate.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Katsuaki Abe, Akihiko Matsuoka, Kentaro Miyano
  • Patent number: 8036613
    Abstract: Communication system including a host and a device. The host has an oscillator and the device has a USB-function core. The oscillator in the host is coupled to the USB-function core in the device.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: October 11, 2011
    Assignee: Infineon Technologies AG
    Inventors: Christian Schneckenburger, Till Winteler
  • Patent number: 8023913
    Abstract: A technique to share a local oscillator signal between two radio frequency integrated circuits (RFICs). The local oscillator signal generated internally by one RFIC is ported to the other RFIC for use in transmit or receive operation. The local oscillator signal that is ported may be an RF local oscillator signal. Each RFIC may include a bi-directional port circuit that can be operated to make the RFIC a master, slave or may be totally disabled to disable the porting feature. This is particularly useful in RFICs that are used to communicate using MIMO radio algorithms which rely for optimum performance on phase and frequency coherency among a plurality of transmitters and a plurality of receivers.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: September 20, 2011
    Assignee: IPR Licensing, Inc.
    Inventor: Mark S. Cavin
  • Patent number: 7941115
    Abstract: A circuit receives a first signal (for example, a baseband signal) and mixes it with a local oscillator (LO) signal, and outputs a second signal (for example, an RFOUT signal). The circuit includes multiple identical Mixer and Frequency Divider Pair (MFDP) circuits. Each MFDP can be enabled separately. Each MFDP includes a mixer and a frequency divider that provides the mixer with a local version of the LO signal. The MFDP outputs are coupled together so that the output power of the second signal (RFOUT) is the combined output powers of the various MFDPs. By controlling the number of enabled MFDPs, the output power of the second signal is controlled. Because the MFDPs all have identical layouts, accuracy of output power step size is improved. Because LO signal power within the circuit automatically changes in proportion to the number of enabled MFDPs, local oscillator leakage problems are avoided.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: May 10, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Sankaran Aniruddhan, Bo Sun, Arun Jayaraman, Gurkanwal Singh Sahota
  • Patent number: 7937054
    Abstract: A receiver comprising at least one micro-electromechanical system (MEMS) antenna-select switch, a MEMS filter bank communicatively coupled to the antenna-select switch and a plurality of intermediate frequency modules communicatively coupled to the MEMS filter bank and the non-MEMS filter array, wherein each independent channel supported by the receiver has at least one associated intermediate frequency module.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: May 3, 2011
    Assignee: Honeywell International Inc.
    Inventors: E. F. Charles LaBerge, Andrzej M. Peczalski
  • Patent number: 7920837
    Abstract: Methods and systems for wireless communication are disclosed and may include band-limiting a wireless signal utilizing a programmable bandpass filter, generating a first signal by undersampling utilizing a clock signal and generating a second signal by undersampling the signal utilizing a delayed version of the clock signal, which may then be subtracted from the first signal. The filter may comprise a microstrip or a coplanar waveguide bandpass filter. The delay may be variable, and may be defined as an inverse of a frequency difference between the desired channel and a blocker signal. The bandwidth of the filter may be centered at the desired channel. The clock signal may be generated at a frequency which may be an integer sub-harmonic of the desired channel, and may be greater than twice a bandwidth of the filter. The delay may be controlled by a programmable delay circuit, which may comprise CMOS inverters.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: April 5, 2011
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 7904045
    Abstract: A phase detector includes a plurality of phase detectors located in a phase correction loop, each phase detector configured to receive as input a radio frequency (RF) input signal and an RF reference signal, each of the plurality of phase detectors also configured to provide a signal representing a different phase offset based on the phase difference between the RE input signal and the RF reference signal; and a switch configured to receive an output of each of the plurality of phase detectors and configured to select the output representing the phase offset, that is closest to a phase of an output of an amplifier.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 8, 2011
    Assignee: Axiom Microdevices, Inc.
    Inventors: Ichiro Aoki, Scott D. Kee, Dongjiang Qiao, Alyosha C. Molnar
  • Patent number: 7869778
    Abstract: A technique to share a local oscillator signal between two radio frequency integrated circuits (RFICs). The local oscillator signal generated internally by one RFIC is ported to the other RFIC for use in transmit or receive operation. The local oscillator signal that is ported may be an RF local oscillator signal. Each RFIC may include a bi-directional port circuit that can be operated to make the RFIC a master, slave or may be totally disabled to disable the porting feature. This is particularly useful in RFICs that are used to communicate using MIMO radio algorithms which rely for optimum performance on phase and frequency coherency among a plurality of transmitters and a plurality of receivers.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: January 11, 2011
    Assignee: IPR Licensing, Inc.
    Inventor: Mark S. Cavin
  • Patent number: 7860470
    Abstract: A local oscillator (LO) buffer circuit comprises first and second LO buffers arranged in a cross coupled configuration. The first LO buffer generates in-phase output signals in response to in-phase input signals, and quadrature output signals from the second LO buffer. The second LO buffer generates the quadrature output signals in response to quadrature input signals and the in-phase output signals. The LO buffers may include inductive loads. The LO buffers may include MOS transistors or bipolar junction transistors.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: December 28, 2010
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Zhiwei Xu, Heng-Yu Jian, Yi-Cheng Wu, Charles Chien
  • Patent number: 7860464
    Abstract: Methods and systems for a local oscillator generator based on quadrature mixing using a phase shifter. Aspects of one method may include generating a local oscillator signal, where a frequency of the local oscillator signal may be determined by controlling a phase of in-phase (I) components and quadrature phase (Q) components of a first signal and a second signal. For example, by appropriately controlling a phase of each component that is to be mixed, the local oscillator signal may have a frequency that is the sum of a frequency of the first signal and a frequency of the second signal, or a difference of the frequency of the first signal and the frequency of the second signal.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 28, 2010
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza Rofougaran
  • Patent number: 7848435
    Abstract: An N×N multiple-input multiple-output (MIMO) transceiver is provided. The transceiver includes a plurality of transceivers, each including at least one transceiver circuit; an oscillation unit which is configured to generate a differential signal which is supplied to the at least one transceiver circuit; a plurality of buffers, which are mounted in a bypass line between the at least one transceiver circuit and the oscillation unit and are configured to amplify and bypass the differential signal or input and amplify the differential signal; and a buffer control unit which is configured to control the plurality of buffers to bypass or input the differential signal.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: December 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-yoon Jeon, Hee-mun Bang, Sung-jae Jung, Heung-bae Lee
  • Patent number: 7848719
    Abstract: Variable phase ring oscillators are described that provide a linear phase progression between adjacent elements in an antenna array by providing a symmetric ring configuration of tuned amplifiers and a single phase shifter. The ring topology is coupled to a single PLL that allows for direct modulation and demodulation of arbitrary waveforms without using RF up/down converting mixers. The PLL distributes the transmit waveforms to all antenna elements in the transmit mode and combines the received waveforms in the receive mode without any complicated power distribution network. Ultra-wideband architectures and methods are described that utilize a first reference signal source, a VPRO, and a second reference signal source. Related methods are controlling an array and beam steering are also described.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: December 7, 2010
    Assignee: University of Southern California
    Inventors: Harish Krishnaswamy, Hossein Hashemi
  • Patent number: 7840199
    Abstract: Embodiments of the present disclosure allow for a linear phase progression between adjacent elements in array by providing a symmetric ring configuration of tuned amplifiers and a single phase shifter. This ring topology is coupled to a single phase locked loop (“PLL”) that allows for direct modulation and demodulation of arbitrary waveforms without using RF up/down converting mixers. In addition, the PLL distributes the transmit waveforms to all antenna elements in the transmit mode and combines the received waveforms in the receive mode without any complicated power distribution network.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: November 23, 2010
    Assignee: University of Southern California
    Inventors: Harish Krishnaswamy, Hossein Hashemi
  • Patent number: 7792510
    Abstract: A multi-mode PLL frequency synthesizer of a wireless multi-mode transceiver is provided which includes a reference frequency source providing an oscillator signal with a constant reference frequency, a first frequency synthesizer subunit for converting the signal into carrier signals with frequencies in the range of a first frequency band, a second frequency synthesizer subunit for transforming the oscillator signal into carrier signals having frequencies in the range of a second frequency band, and a third frequency synthesizer subunit for converting the oscillator signal into an auxiliary signal with a fixed frequency. The auxiliary signal is used together with the carrier signals of the second frequency band to generate carrier signals with frequencies in the range of a third and fourth frequency band.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: September 7, 2010
    Assignee: Sony Ericsson Mobile Communications AB
    Inventors: Alexander Pestryakov, Alexej Smirnov
  • Patent number: 7787836
    Abstract: A wireless communication device to transmit and receive signals of two or more wireless networks is disclosed. The wireless communication device includes a first radio to transmit a first type of modulated signals in at least first and second frequency bands and a second radio to transmit a second type of modulated signals in at least third and forth frequency bands. The wireless communication device further includes a first front end module to transmit simultaneously the first and the third frequency bands of the first and second radio through two or more antennas utilizing multiple input multiple (MIMO) output transmission scheme and a second front end module to transmit simultaneously the second and the fourth frequency bands of the first and second radio through two or more antennas utilizing multiple input multiple (MIMO) output transmission scheme.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 31, 2010
    Assignee: Intel Corporation
    Inventors: Melanie Daniels, Peter D. Mueller
  • Patent number: 7783275
    Abstract: A direct conversion satellite tuner is fully integrated on a common substrate. The integrated tuner receives an RF signal having a plurality of channels and down-converts a selected channel directly to baseband for further processing. The integrated tuner includes on-chip local oscillator generation, tunable baseband filters, and DC Offset cancellation. The integrated tuner can be implemented in a completely differential I/Q configuration for improved electrical performance. The entire direct conversion satellite tuner can be fabricated on a single semiconductor substrate using standard CMOS processing, with minimal off-chip components. The tuner configuration described herein is not limited to processing TV signals, and can be utilized to down-convert other RF signals to an IF frequency or baseband.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: August 24, 2010
    Assignee: Broadcom Corporation
    Inventors: Myles Wakayama, Dana Vincent Laub, Frank Carr, Afshin Mellati, David S. P. Ho, Hsiang-Bin Lee, Chun-Ying Chen, James Y. C. Chang, Lawrence M. Burns, Young Joon Shin, Patrick Pai, Iconomos A. Koullias, Ron Lipka, Luke Thomas Steigerwald, Alexandre Kral
  • Patent number: RE41583
    Abstract: A transceiver configuration has an integrated circuit (IC) with an A/D and/or D/A converter, a VCO with a reference oscillator, which provides a sampling clock for the A/D and/or D/A converter, and a digital data processing circuit. The IC is connected to a radio-frequency section, the frequency converter stage of which is operated with a beat frequency derived from the controllable oscillator frequency foz. A capacitive resonant element of the reference oscillator is disposed outside of the IC.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: August 24, 2010
    Assignee: Infineon Technologies AG
    Inventors: Markus Doetsch, Peter Jung, Joerg Plechinger, Peter Schmidt