Signal Strength Patents (Class 455/226.2)
  • Patent number: 9439162
    Abstract: A method and apparatus for generating reference signatures for use in geolocation in a cellular wireless communication system is provided. A first signature for a mobile communication unit comprises location information, a timestamp, and radio frequency measurement information obtained by a mobile communication unit at a location, but does not contain identification information for the mobile communication unit. The first signature is compared to signatures in a database, to identify a second signature that has a timestamp and radio frequency measurement information that correspond to those of the first signature. A reference signature is created by combining at least a part of the first signature with at least a part of the second signature. Repetition of the comparison and combination steps creates a database of reference signatures, for use in geolocating other received call signatures.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: September 6, 2016
    Assignee: Viavi Solutions UK Limited
    Inventors: Christopher Murphy, Michael Joseph Flnagan, Peter Kenington
  • Patent number: 9338604
    Abstract: A method and system for verifying a location value reported by an electronic device. The reported location value and spectrum sensing data containing signal strength measurements for each channel of plural channels are received from the electronic device. A predicted RF footprint for the reported location is generated. The predicted RF footprint includes signal strength values for each of the plural channels. Each signal strength value is representative of RF energy that the electronic device ought to detect if the electronic device is actually present in the reported location and each signal strength value is determined as a function of known characteristics of radio devices with known locations. A determination is made as to whether the received signal strength measurements and the predicted RF footprint sufficiently correlate to validate that the electronic device made the signal strength measurements at the reported location.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 10, 2016
    Assignee: Spectrum Bridge, Inc.
    Inventors: Peter Stanforth, Jeffrey C. Schmidt
  • Patent number: 9332492
    Abstract: The disclosure relates to a transmission scheme for nodes in a network. More specifically, the disclosure relates to an acknowledgment scheme that minimizes energy requirements for an acknowledgment of a transmission between nodes. The disclosure describes that an energy constrained node may transmit to other nodes in a network and may only require that an acknowledgment of that transmission is received from at least one of the proximal recipients, which may or may not be the ultimate target. In order to minimize the complexity of the receiver in a node and its energy requirements, the acknowledgment scheme may employ simple on-off keying (OOK) irrespective of the modulation technique of the sending transmission. The acknowledgment comprises a series of OOK pulses sent at a specified time after receipt of the transmission. In addition, simultaneously received acknowledgments can be processed and verified without confusion.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 3, 2016
    Assignee: Google Inc.
    Inventor: Michael Sleator
  • Patent number: 9237564
    Abstract: Aspects of the disclosure provide a solution that a user equipment (UE) can avoid unnecessary transmission of uplink radio link control (RLC) protocol data units (PDUs) and transition between Radio Resource Control states in a Universal Mobile Telecommunications System (UMTS) network, thereby reducing signaling and power consumption overhead and latency at the UE.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: January 12, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Yi Zhang, Sitaramanjaneyulu Kanamarlapudi, Liangchi Hsu
  • Patent number: 9236959
    Abstract: Disclosed are a method and system for testing the isotropic sensitivity of a terminal, comprising: testing the received signal strength of a terminal at every theta/phi angle and antenna polarization direction, and generating a received signal strength pattern and a table of the correspondence between base station power and the received signal strength of the terminal; finding the best theta/phi angle and antenna polarization direction and testing the corresponding effective isotropic sensitivity; calculating the effective isotropic sensitivity at other theta/phi angles and polarization directions and integrating these to obtain the isotropic sensitivity of the terminal. The present invention thereby effectively reduces testing time and improves testing efficiency.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: January 12, 2016
    Assignee: Huizhou TCL Mobile Communication Co., Ltd.
    Inventor: Jian Bai
  • Patent number: 9215122
    Abstract: Until when a desired signal is received in a reception mode, a level comparator extracts a portion of a frequency-domain signal output from a Fourier transformer, the portion matching with the frequency of the desired signal, and, when the reception level of the extracted portion matching with the frequency of the desired signal is higher than a predetermined threshold value, determines that an interference signal exists. An LO frequency controller sets the frequency of a local signal (LO) based on the determination result in the level comparator such that the frequency of intermodulation distortion caused by the interference signal becomes an intermediate frequency of the frequency band of the desired signal. When it is determined that the interference signal exists, an RX controller changes gain settings of a low-noise amplifier circuit and gain settings of a variable gain amplifier circuit and changes the cutoff frequency of a filter circuit.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: December 15, 2015
    Assignee: Panasonic Corporation
    Inventors: Makoto Ohba, Kouji Takahashi, Yoshito Hirai
  • Patent number: 9209913
    Abstract: Embodiments of the present invention provide a temperature compensation method and apparatus for a received signal strength indicator. The apparatus comprises a temperature sensor configured to measure a current temperature; and a digital compensation module configured to select a temperature compensation coefficient from prestored temperature compensation coefficients corresponding to a normal temperature, a low temperature and a high temperature according to the current temperature, and perform temperature compensation on output signals of the RSSI according to the selected temperature compensation coefficient. With the method and apparatus of the embodiments of the present invention, the accurate power values of the input signals of the RSSI under any temperatures can be obtained by measuring the characteristics of the RSSI under the predefined three temperatures, and using an interpolation method to compensate for the temperature characteristics of the RSSI.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 8, 2015
    Assignee: FUJITSU LIMITED
    Inventors: Hui Li, Takanori Iwamatsu, Jianmin Zhou
  • Patent number: 9112783
    Abstract: A wireless base transceiver station that transmits and receives data to and from an external device via fixed-line communication and transmits and receives data to and from a mobile station via radio communication. The wireless base transceiver station includes a radio communication unit configured to measure radio quality in a radio zone based on an error rate of data received from the radio zone, and a fixed-line communication unit configured to measure the amount of data flow in a fixed-line zone to perform flow control on data in the fixed-line zone. The wireless base transceiver station includes a control unit configured to control the flow control performed by the fixed-line communication unit, based on the amount of data flow in the fixed-line zone and the radio quality in the radio zone that have been measured by the fixed-line communication unit and the radio communication unit.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: August 18, 2015
    Assignee: FUJITSU LIMITED
    Inventor: Teruyoshi Watanabe
  • Patent number: 9065923
    Abstract: A device and method for displaying a signal quality indicator representation on a mobile device is disclosed. Signal quality values for two different wireless networks is determined. The signal quality indicator is displayed in a banner area on a display of the mobile device providing a graphic representation displaying both of the signal quality values. One of the signal quality values is associated with a first color and the other value is associated with a second color. Where portions of the first signal quality values overlap, a combined representation associated with a third color is displayed. The signal quality indicator is at least one bar of a plurality of graduated bars.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: June 23, 2015
    Assignee: BlackBerry Limited
    Inventors: Edgar Vaclav Tomek, Jin Kim
  • Patent number: 9065586
    Abstract: A wireless communication apparatus is arranged to detect, among a plurality of modulated carrier signals of different frequencies, at least one of the modulated carrier signals modulated with a tone burst. A receiver provides a composite signal comprising the plurality of modulated carrier signals received simultaneously. An ADC generates samples of the composite signal, and the samples of the composite signal are divided into a plurality of blocks. The samples of each block are transformed into frequency domain components, and the frequency domain components of each block are divided into a plurality of groups, each group corresponding to a range of frequencies occupied by a different one of the modulated carrier signals. Tone burst detection is performed on each group, and it is determined which of the modulated carrier signals is modulated with the tone burst, according to which of the groups the tone burst is detected in.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: June 23, 2015
    Assignee: ST-Ericsson SA
    Inventors: Naveen Jacob, Sajal Kumar Das, Ravi Jandial, Ivine Kuruvila
  • Patent number: 9042823
    Abstract: Method, apparatus, and computer program product example embodiments enable devices to disconnect a communication connection. In an example embodiment, a method includes measuring, by an apparatus, a power level of one or more wireless communication messages received from a selected wireless device over a wireless communication connection, after an interval following an establishment of the wireless communication connection; and disconnecting, by the apparatus, the wireless communication connection with the selected wireless device, if the one or more wireless communication messages received over the wireless communication connection, has a measured power level greater than a threshold value.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: May 26, 2015
    Assignee: Nokia Corporation
    Inventors: Arto Palin, Vesa Luukkala
  • Patent number: 9031612
    Abstract: Described are techniques for managing the interference produced by D2D (device-to-device) transmissions that may be used in conjunction with transmit power control but operate independently. In one technique, interference between D2D transmissions and cellular uplink transmissions using common resources as received at a base station is managed by opportunistic interference alignment and clustering of D2D devices. In another technique, interference between different D2D devices using the same resources is mitigated by base-station aided space-time interference alignment.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 12, 2015
    Assignee: Intel Corporation
    Inventors: Shilpa Talwar, Namyoon Lee, Kerstin Johnsson
  • Patent number: 9031527
    Abstract: Apparatus, systems, and methods implementing techniques for calibrating a filter circuit. A comparator generates an output based on a filter output amplitude signal and a reference amplitude signal. A calibration logic unit receives the comparator output and produces a component code that is used by the filter circuit to adjust one or more component values.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 12, 2015
    Assignee: Marvell International Ltd.
    Inventors: King Chun Tsai, Sang Wong Son, Wayne A. Loeb
  • Publication number: 20150118985
    Abstract: A system comprising one or more interior antenna(s) positioned within an at least partially enclosed operator area of a human operated machine and one or more exterior antenna(s) positioned on an external portion of the human operated machine, with a radio frequency shield positioned between the interior antenna(s) and the exterior antenna(s), is usable with a processing module electrically connected with the antennas for analyzing signals received from the antennas to determine whether a radio frequency generating device is active within the at least partially enclosed operator area.
    Type: Application
    Filed: February 14, 2014
    Publication date: April 30, 2015
    Applicant: INTHINC, INC.
    Inventor: Stephen M. Lawrence
  • Patent number: 9008599
    Abstract: A method of listening to radio broadcast in a portable terminal includes reproducing radio broadcasts on a frequency selected by a user; determining a change in a value of a received signal strength indication (RSSI) of the selected frequency and analyzing a pattern of the change; and providing a complementary service based on the analyzed pattern when the radio broadcast over the selected frequency is not feasible.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Doo-Yong Park
  • Patent number: 9001942
    Abstract: One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: April 7, 2015
    Assignee: Starkey Laboratories, Inc.
    Inventor: Jeffrey Paul Solum
  • Patent number: 9002374
    Abstract: A method of obtaining and using access point signal information includes: receiving signals at a mobile device from a first set of access points during a passive measurement; and performing a first active measurement at the mobile device for the first set of the access points, including: sending at least one first communication each sent toward a respective one of the access points of the first set; and receiving at least one second communication each corresponding to, and responsive to, one of the at least one first communication and received from a corresponding one of the access points of the first set; where the passive measurement and the first active measurement is each performed repeatedly with the first set of the access points being reestablished at each repeat performance of the passive measurement, and with the passive measurement being performed less often than the first active measurement.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 7, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Vinay Sridhara, Rajarshi Gupta, Gengsheng Zhang
  • Patent number: 9000969
    Abstract: A received plurality of signals may be filtered to select an in-band signal and/or an out-of-band. A signal strength of the selected signal(s) may be measured. A resolution of an analog-to-digital converter may be controlled based on the measured signal strength(s). The selected in-band signal may be converted to a digital representation via the analog-to-digital converter. The resolution may be decreased when the strength of the in-band signal is higher, and increased when the strength of the in-band signal is lower. The resolution may be increased when the strength of the out-of-band signal is higher, and decreased when the strength of the out-of-band signal is lower. A signal-to-noise ratio and/or dynamic range of the selected signal(s) may be determined based on the measured signal strength(s), and may be utilized to adjust the resolution of the analog-to-digital converter.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: April 7, 2015
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza Rofougaran
  • Patent number: 8995942
    Abstract: There is provided a radio communication device including a radio receiving unit to receive a radio signals, a synchronization unit to detect synchronization based on a result of a correlation for received signals output from the radio receiving unit, and a signal strength output unit to output, as signal strength of the received signals that is RSSI (Received Signal Strength Indicator) value, a level of a correlation signal that is output as a result of the correlation by the synchronization unit.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: March 31, 2015
    Assignee: Sony Corporation
    Inventor: Katsumi Watanabe
  • Patent number: 8995926
    Abstract: Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Thomas E. Biedka, Ming-Ju Tsai, Liang Han, Xu Han, Anand Lakshmanan, Nanbo Jin, Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Jayesh Nath, Yijun Zhou, Hao Xu, Yuehui Ouyang, Nirali Shah, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 8971380
    Abstract: A machine-implemented system and method are described for removing interference between adjacent distributed-input-distributed-output (DIDO) clusters comprising. For example, a method according to one embodiment comprises: detecting signal strength at a first client from a main DIDO cluster; detecting interference signal strength at the first client from an interfering DIDO cluster; if the signal strength from the main DIDO cluster reaches a specified value relative to the value of the interference signal strength from the interfering DIDO cluster, then generating channel state information (CSI) defining channel state between one or more antennas of the first client and one or more antennas of the interfering DIDO cluster; transmitting the CSI from the first client to a base transceiver station (BTS) in the interfering DIDO cluster; and implementing DIDO precoding with inter-DIDO-cluster interference (IDCI) cancellation at the BTS in the interfering DIDO cluster to avoid RF interference at the first client.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: March 3, 2015
    Assignee: Rearden, LLC
    Inventors: Antonio Forenza, Stephen G. Perlman
  • Patent number: 8965295
    Abstract: Systems and methods for suppressing interference from a data signal received at a receiving device, where the receiving device has two or more receive antennas, are provided. Characteristics of a channel are estimated, the channel being a channel through which the data signal was transmitted by a transmitting device to the receiving device. A spatial correlation of interference and noise received at the two or more receive antennas of the receiving device is determined based on the estimated characteristics of the channel. The spatial correlation indicates how the interference and noise received at a particular one of the receive antennas is related to the interference and noise received at another one of the receive antennas. The spatial correlation of the interference and noise is used to suppress interference and noise from the data signal received at the receiving device.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: February 24, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Raphael Cendrillon, Yakun Sun, Jiwoong Choi, Hui-Ling Lou
  • Publication number: 20150044980
    Abstract: The invention generally relates to a method of indicating signal quality at an input to a radio receiver, and to a radio receiver. In particular, such a method is described, wherein a receiver comprises first (RF) and second (IF) gain control loops respectively using first and second gain control signals, and comprising indicating signal quality dependent on said first gain control signal and said second gain control signal. In an embodiment, a difference between the first and second gain control signals is used to indicate presence of interference and/or received signal strength.
    Type: Application
    Filed: February 21, 2013
    Publication date: February 12, 2015
    Inventor: David Eddowes
  • Patent number: 8954011
    Abstract: Aspects of a method and system for a wireless integrated power test and measurement are provided. In this regard, concurrently with receiving a first signal via a first antenna, a second signal that indicates received signal strength of the first signal may be generated and transmitted via a second antenna. The second signal may be utilized to determine performance of the first antenna. A frequency of the generated second signal may be controlled so as to mitigate interference between the transmitted second signal and the received first signal. The first signal may be formatted in accordance with one or more first wireless standards and the second signal may be formatted in accordance with one or more second wireless standards. The received signal strength of the first signal may be determined via an analog-to-digital converter and the second signal may be updated at the sample rate of the analog-to-digital converter.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 10, 2015
    Assignee: Broadcom Corporation
    Inventors: Franco De Flaviis, Thomas Baker
  • Publication number: 20150038097
    Abstract: A method of estimation of harmonic distortion level for a radio receiver operative in a cellular communication system enabled to receive signals from transmitters of one or more cells is disclosed. The method comprises measuring, within a bandwidth of operation, a total received signal power; measuring, within the bandwidth of operation, a received signal power of signals received from the one or more cells, respectively; and estimating a level of harmonic receiver distortions by: determining whether a fraction of the total received signal power and a theoretical noise floor is below or above a first threshold; or determining whether a remaining part of the total received signal power, said remaining part not including said fraction, is above or below a second threshold. A such radio receiver, and a computer program for implementing the method are also disclosed.
    Type: Application
    Filed: June 13, 2012
    Publication date: February 5, 2015
    Applicant: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Bengt Lindoff, Fredrik Tillman
  • Patent number: 8948764
    Abstract: The present invention relates to methods and devices for mobility management in a cellular communications system. A user equipment maintains (21) at least two sets of mobility trigger parameters. Each set of mobility trigger parameters corresponds to a predetermined user equipment speed range. The user equipment determines (22) a speed range that the speed of the user equipment falls into and selects (23), based on the determined speed range, at least one set of mobility trigger parameters to be used for performing mobility-based decisions. If the user equipment is in connected mode a network base station may select a set of mobility trigger parameters to be used for performing handover decisions based on a determined speed range of the user equipment. Advantages are that ping-pong mobility decisions may be avoided and it is sufficient to determine a range for the UE speed, which is less complicated than determining an accurate speed of the UE particularly in idle mode.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: February 3, 2015
    Assignee: Optis Wireless Technology, LLC
    Inventors: Konstantinos Dimou, Muhammad Kazmi, Walter Müller, Zhiyi Xuan
  • Patent number: 8948717
    Abstract: A receiver includes an antenna configured to receive a set of RF signals, and a low-noise amplifier (LNA) coupled to the antenna and amplify the set of RF signals to generate a set of amplified signals. The receiver further includes a down-conversion mixer configured to down convert the set of amplified signals to baseband frequencies. The receiver further includes a low-pass filter configured to filter from the set of amplified signals to baseband frequencies an out-of-band signal. The receiver further includes a high-pass filter configured to reverse the filtering of the low-pass filter. The receiver further includes a peak detector configured to determine whether the LNA is operating at saturation; and an automatic-gain controller configured to decrease a gain of the LNA based on the determination of the peak detector.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 3, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Renaldi Winoto, Jinho Park
  • Patent number: 8938038
    Abstract: Techniques for expanding the set of addressable interfering signals in an interference cancelling receiver are described, where the task of control message detection from interfering cells is integrated in an iterative receiver process where increasingly better a priori information on the received data signals from the previous iteration is used to detect additional control messages and successively grow the set of interfering signals included in the receiver's interference mitigation processing. In an example method, first estimated symbols for a desired signal are generated. A control channel corresponding to a first interfering signal is detected, where said detecting is based on the first estimated symbols. Signal characteristics information for the first interfering signal is then derived from the detected control channel signal, and used to generate second estimated symbols for the desired signal, using an interference-mitigation technique to mitigate the effects of the interfering signal.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: January 20, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Andres Reial, Anders Wallén
  • Patent number: 8934852
    Abstract: A wireless communication apparatus is provided that includes a plurality of antennas and at least one receive or transmit circuit. The apparatus further includes a controller configured to: determine one or more performance characteristics associated with a first antenna while the circuit is connected to the first antenna; switch the circuit from the first antenna to a second antenna; determine one or more performance characteristics associated with the second antenna after the switch; compare the performance characteristics associated with the antennas; determine whether to maintain the switch to the second antenna or to switch the circuit back to the first antenna; and determine a duration of time to maintain a connection between the selected antenna and the circuit based, at least, on one or more performance characteristics. Other aspects, embodiments, and features are also claimed and described.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 13, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Hongbo Yan, Daniel Fred Filipovic
  • Patent number: 8923368
    Abstract: A radio frequency transceiver which can support various frequency conversion schemes is provided. The radio frequency transmitter includes a first low pass filter, a second low pass filter, a first filter input port connected to an input terminal of the first low pass filter, a second filter input port connected to an input terminal of the second low pass filter, a first filter output port connected to an output terminal of the first low pass filter, a second filter output port connected to an output terminal of the second low pass filter, an I/Q modulator, an I input port connected to an I input terminal of the I/Q modulator, a Q input port connected to a Q input terminal of the I/Q modulator; and a Radio Frequency (RF) output port connected to an output terminal of the I/Q modulator.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ikgon Kim, Kihwa Choi
  • Patent number: 8923779
    Abstract: Systems and methods for tuning an antenna for a frequency modulation (FM) transceiver are provided. A representative system includes: a network of electrical adjustable passive components that receives and sends radio frequency (RF) signals to a receiver circuitry via the network of electrical adjustable passive components. The receiver circuitry determines the received signal strength indication (RSSI) of the RF signal. The system further includes a transmitter circuitry that transmits RF signals via the network of electrical adjustable passive components, and a peak detector circuitry that receives and determines a voltage output of the RF signals from the variable capacitors. An auto-tune circuitry receives the RSSI and output value from the receiver circuitry and the peak detector circuitry, respectively.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: December 30, 2014
    Assignee: CSR Technology Inc.
    Inventors: Noshir Dubash, Thomas E. Ricks, Jr., Richard J. McConnell
  • Patent number: 8909267
    Abstract: Embodiments herein include a method implemented by a wireless device for detecting requests to connect to a wireless communications network. The method includes determining a receiver sensitivity that is sufficient, given channel conditions at the device, for the device to detect connection requests. The method then entails dynamically selecting, from among different receiver sensitivity configurations of the device, a configuration that has a receiver sensitivity at least as good as the determined sensitivity and that has less energy consumption than at least one other configuration. Finally, the method includes using the selected configuration for request detection. A wireless device herein thereby reduces its energy consumption when it is disconnected from the network, but intelligently limits the extent of that energy consumption reduction in order to maintain an ability to detect network connection requests.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 9, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Leif Wilhelmsson, Bengt Lindoff, Thomas Olsson, Anders Wallén
  • Patent number: 8904212
    Abstract: Methods and apparatuses for power management are disclosed. In one example, proximity of link status of a wireless communication device is used to determine whether a power conservation mode is implemented.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: December 2, 2014
    Assignee: Plantronics, Inc.
    Inventors: Jeffrey Siegel, Douglas K Rosener
  • Patent number: 8903340
    Abstract: Embodiments of a radio frequency (RF) receiver implementing one or more forms of protection to protect devices of the RF receiver from in-band interferers is provided. The RF receiver includes an integrated circuit terminal configured to couple a RF signal received at an antenna to a RF signal path, and a low noise amplifier (LNA) coupled to the RF signal path and configured to amplify the RF signal to provide an amplified RF signal. To protect the LNA from in-band interferers, the RF receiver can further include one or more clamping circuits and/or an over-voltage detector to determine if a peak of the RF signal exceeds an acceptable level.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 2, 2014
    Assignee: Broadcom Corporation
    Inventors: Yuyu Chang, Hooman Darabi
  • Patent number: 8897343
    Abstract: A diversity receiver comprises a plurality of receiving paths connected to a receiver circuit. Each of the receiving paths comprises an antenna receiving a signal, connected to a matching network connected to a receive amplifier. The receiver circuit is connected to a signal level comparison circuit for providing a relative comparison value indicating one of the receiving paths receiving the signal with a relative maximum strength. The signal level comparison circuit comprises a comparator circuit connected to the receiver circuit receiving a currently received signal level, and to a logic control unit being arranged to select one of the receive paths to provide the currently received signal to the receiver circuit.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Laurent Gauthier
  • Patent number: 8897796
    Abstract: There is disclosed a system and method for improving wireless system capacity by reducing collisions where the Signal to Interference Ratio (SIR) is high in systems having a channel reuse of 1. By ordering the channel assignment in each of the interfering cells according to a pattern, for example, according to the distance from a base station (determined by power levels), the mobile stations will become paired on the same channel in a manner to reduce interference between them. In one embodiment, this intelligent assignment is accomplished by assigning mobile stations in one cell such that the mobile station having the strongest signal is assigned channel A while in the interfering cell the mobile station with the weakest signal is assigned to channel A. In another embodiment, certain preferred mobile stations are assigned either interference-free channels or channels paired with weak interference mobile stations.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: November 25, 2014
    Assignee: Microsoft Corporation
    Inventor: Douglas O. Reudink
  • Patent number: 8892133
    Abstract: Apparatus comprising a first antenna configured to receive alignment signalling from a first transmitter over a first communication channel, the first communication channel having a first set of characteristics, and a second antenna configured to exchange data with a second transmitter over a second communication channel, the second communication channel having a second different set of characteristics. The apparatus also comprising a processor configured to process the alignment signalling received from the first antenna and determine the location of the second transmitter relative to the apparatus; and generate control signalling representative of the determined location of the second transmitter relative to the apparatus.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: November 18, 2014
    Assignee: Nokia Corporation
    Inventors: Timo Petteri Karttaavi, Likka Hemanni Hakala, Mauri Honkanen, Aarno Tapio Parssinen
  • Patent number: 8886146
    Abstract: An IR receiver having a decision logic circuit for activating or deactivating a squelch. Activation or deactivation of the squelch is effected in dependence on a mean value of the frequency, a variance of the receiver intermediate frequency, a mean value of the audio amplitude, a variance of the audio amplitude and/or a signal strength of the receiver intermediate circuit frequency.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: November 11, 2014
    Assignee: Sennheiser electronic GmbH & Co. KG
    Inventors: Joerg Andres, Dirk Reymann
  • Patent number: 8885453
    Abstract: Enhanced stomp-and-restart techniques are provided. At a plurality of antennas of a wireless communication device, energy is received in a channel in which one or more frames may be transmitted to the wireless communication device from any one of a plurality of other wireless communication devices. A first frame is acquired from the received energy. Channel state information is computed for the first frame and the channel state information associated with the first frame is stored. Interference suppression parameters are computed for the first frame from the channel state information. It is determined whether a stronger second frame is being received by the wireless communication device. The received energy associated with the first frame is nulled-out using the interference suppression parameters when the stronger second frame is determined to be received so that start-of-packet processing and decoding is performed on the stronger second frame.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 11, 2014
    Assignee: Cisco Technology, Inc.
    Inventor: Paul J. Stager
  • Patent number: 8879998
    Abstract: Disclosed is a device and method to automate the process of measuring RF noise, correlating measured noise with known sources, and making adjustments to the noise-measuring and reporting process. A wireless communication device is coupled to equipment at a fixed location, and transmits data about the operation of the equipment back to an operator, via a provider's network. Examples include fixed wireless terminals. A management entity aboard the wireless communication device performs the measurements via a transceiver and performs remedial actions when required, without requiring an onsite technician or remote assistance. The management entity may include a spectrum analyzer.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: November 4, 2014
    Assignee: AT&T Mobility II LLC
    Inventor: Scott D. Prather
  • Publication number: 20140315508
    Abstract: In one embodiment, a method includes receiving a radio frequency (RF) signal; synchronizing the received RF signal with a preamble to determine a time base; determining a first energy value of the received RF signal by averaging received signal strength indication (RSSI) values of the received RF signal over a first period of time; determining a second energy value of the received RF signal over a second period of time; determining a difference value between the first energy value and the second energy value; comparing the difference value with a predetermined energy threshold value; determining a quality value of the received RF signal; comparing the quality value of the received RF signal with a predetermined quality threshold value; and, if the difference value exceeds the predetermined energy threshold value or the quality value is below the predetermined quality threshold value, then erasing the time base.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 23, 2014
    Inventors: Tilo Ferchland, Rolf Jaehne, Frank Poegel, Eric Sachse
  • Patent number: 8868017
    Abstract: A received signal strength indicator is provided. The received signal strength indicator includes a plurality of differential amplifiers forming an amplifier chain for amplifying differential signals and a plurality of rectifiers for rectifying signals output from the plurality of differential amplifiers and the differential signals, and a low pass filter for combining the signals rectified by the plurality of rectifiers to output received signal strength. Each rectifier includes a class AB voltage-current converter for converting a differential voltage into a current, and two triode transistors.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: October 21, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hoyong Kang, Nguyen Trung Kien, Se Han Kim, Tae Joon Park, Wun-Cheol Jeong, Chang Sub Shin, In Hwan Lee, Cheol Sig Pyo
  • Patent number: 8867656
    Abstract: When a determination is made that communication by an SM scheme is suitable, a setting unit performs switching from a communication level by an STC scheme to the communication level by the SM scheme, between the communication level at a first level of MCS by the space-time coding scheme and the communication level at a second level of MCS by the SM scheme. When a determination is made that communication by the SM scheme is unsuitable, the setting unit performs switching from the communication level by the STC scheme to the communication level by the spatial multiplexing scheme, between the communication level at a third level of MCS, which is higher than the first level, by the space-time coding scheme and a fourth level of the modulation scheme and the coding rate, which is higher than the second level, by the SM scheme.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 21, 2014
    Assignee: KYOCERA Corporation
    Inventor: Takeo Miyata
  • Patent number: 8861659
    Abstract: A data receiving circuit and a data receiving method accurately acquire a data signal corresponding to information data from a high speed high density transmitted signal. An increase or a decrease of the level of one of a amplified data signal and a level converted data signal that is transmitted from one, referred to as one processing stage, of an amplification processing stage and a level converting processing stage, is fed back to a stage preceding the one processing stage. The amplification processing stage supplies, to a first line, an amplified data signal obtained by performing an amplification processing on a received data signal, and the level converting processing stage transmits, via a second line, a level converted data signal obtained by performing a level converting processing on the amplified data signal.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 14, 2014
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventors: Hideaki Hasegawa, Kouji Takeda, Toshio Itou, Yuuichi Ike
  • Patent number: 8849187
    Abstract: An amplifier for controlling or reducing broadband noise is disclosed. An amplifier determines whether a useful signal is being amplified and controls the gain of the amplifier at least when useful signals are not being amplified to prevent or minimize the amplification of noise.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: September 30, 2014
    Assignee: Wilson Electronics, LLC
    Inventors: Vernon A. Van Buren, Patrick L. Cook, Christopher K. Ashworth, Richard M. Kline
  • Patent number: 8849288
    Abstract: An exemplary method comprises positioning a first antenna to receive a first signal from a second antenna, the second antenna comprising energy absorbing material that functions to expand beamwidth, receiving the first signal from the second antenna, detecting a plurality of gains based on the first signal, repositioning the first antenna relative to the second antenna to a position associated with an acceptable gain based on the first signal, removing at least some of the energy absorbing material from the second antenna to narrow the beamwidth of the second antenna, receiving, by the first antenna, a second signal from the second antenna, detecting a plurality of gains based on the second signal, and repositioning the first antenna relative to the second antenna to a position associated with an increased gain of the plurality of gains based on the second signal, the increased gain being greater than the acceptable gain.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 30, 2014
    Assignee: Aviat U.S., Inc.
    Inventor: Robert Vilhar
  • Patent number: 8843094
    Abstract: Aspects of a method and system for integrated blocker detection and automatic gain control are provided. In this regard, a communication device may generate one or more first signal strength indications based on a strength of a received signal at a first point in the analog front-end of the communication device. The communication device may generate one or more second signal strength indications based on a strength of the received signal at a second point in a digital processing module of the communication device. The first point in the analog front-end may be an input or an output of a down-conversion mixer. The second point in the digital processing module may be an output of an analog-to-digital converter or an output of a channel selection filter. The communication device may control, utilizing the first signal strength indication(s) and the second signal strength indication(s), a gain of one or more components of the communication device.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 23, 2014
    Assignee: Broadcom Corporation
    Inventors: Walid Ahmed, John Leung, Theodoros Georgantas, Morten Damgaard, Nelson Sollenberger
  • Patent number: 8831593
    Abstract: Certain aspects are directed to a configuration sub-system for telecommunication systems. The configuration sub-system can include a test signal generator, a power measurement device, at least one additional power measurement device, and a controller. The test signal generator can be integrated into components of a telecommunication system. The test signal generator can provide a test signal to a signal path of the telecommunication system. The power measurement device and the additional power measurement device can respectively be integrated into different components of the telecommunication system. The power measurement device and the additional power measurement device can respectively measure the power of the test signal at different measurement points in the signal path. The controller can normalize signals transmitted via the telecommunication system by adjusting a path gain for the signal path based on measurements from the power measurement device and the additional power measurement device.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: September 9, 2014
    Assignee: Andrew Wireless Systems GmbH
    Inventors: Matthew Thomas Melester, Stefan Eisenwinter, Ahmed H. Hmimy, Massimiliano Mini, Joerg Stefanik, Alfons Dussmann
  • Publication number: 20140248845
    Abstract: A system and method of manufacturing the same adapted for use with an electromagnetic receiver or transceiver system comprising at least one antenna, wherein the electromagnetic receiver or transceiver system is adapted to measure signal levels for in situ antenna pattern or link budget measurements using at least one signal measurement probe placed in the signal receive path without affecting said antenna's emission pattern or receiver performance. The system further includes an output section adapted to send results from said in situ antenna pattern or link budget measurements to a remote location away from said receiver or transceiver system for recording and/or analysis.
    Type: Application
    Filed: October 16, 2013
    Publication date: September 4, 2014
    Inventors: Nixon A. Pendergrass, Gregory D. Hughes, David R. Emerson
  • Publication number: 20140242932
    Abstract: The invention relates to a multichannel radio-frequency receiver for electromagnetic waves, having a radio-frequency analogue section, which has an input for an electrical signal from a reception device, and having a lower-frequency section, which is connected downstream of the radiofrequency analogue section and has a plurality of parallel channels (6b, 6c; 7b, 7c) for in each case different signal levels and an evaluation circuit, in which, in the radiofrequency analogue section in order to split the signal in accordance with a predeterminable division ratio into signal elements which can be supplied to radio-frequency analogue channels (6a, 7a), downstream from which the channels (6b, 6c; 7b, 7c) of the lower-frequency section are respectively connected, and the channels (6b, 6c; 7b, 7c) of the lower-frequency section each have an evaluation circuit for detection of the phase and amplitude of the respective signal element.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: SELEX ES GmbH
    Inventors: Frank Gekat, Dieter Ruhl