Different Gain Stages Patents (Class 455/241.1)
  • Patent number: 10523251
    Abstract: A communications receiver with improved blocker performance including multiple gain tables selected based on a number of reductions or back offs from a maximum coarse gain setting. A receiver chain with multiple gain stages converts a received signal to a digital format, determines the power level of the received signal, and provides an overload indication. A first gain table maximizes SNR and SNDR for weak blockers and at least one additional gain table successively improves SNDR for stronger blockers. An AGC circuit initially sets the coarse gain setting to maximum, and backs off a number of coarse gain steps until the receiver chain is not overloaded. The number of back off steps is used to select a gain table, the power level is used to select an entry in the selected table, and the selected entry includes gain settings for the gain stages of the receiver chain.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: December 31, 2019
    Assignee: Silicon Laboratories Inc.
    Inventors: Abdulkerim L. Coban, Emmanuel Gautier, Fabrice Portier, Pascal Blouin, Wenhuan Yu
  • Patent number: 10027355
    Abstract: Modular gain control based on blocker signal detection is disclosed herein. In a multi-stage gain control scheme for a receiver, the input stage gain or the pre-mixing stage gain can be controlled for effective blocker rejection based on detecting a blocker signal at a mixer, and the output stage gain or the post-mixing stage gain can be controlled to restore and maintain an appropriate output level after pre-mixing gain reduction performed for blocker rejection. Accordingly, the RF communication systems herein can include multiple loops for providing AGC. In particular, an RF communication system can include a main loop and a blocker loop used to override the main loop when the blocker signal is detected. In certain configurations, the blocker loop reduces the gain of an RF VGA, while the main loop will increase the gain of an IF VGA to restore the output power.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: July 17, 2018
    Assignee: ANALOG DEVICES GLOBAL
    Inventor: Ahmed Mohammad Ashry Othman
  • Patent number: 9083284
    Abstract: A multi-stage Doherty power amplifier (“PA”) circuit which achieves superior efficiency over broadband range of frequencies is disclosed. Conventional multi-stage amplifiers may offer potential for efficiency enhancement but may suffer from cost penalties and severe bandwidth limitation in practice. Embodiments may employ a driver in the peaking arm which is biased in class C which may alleviate such limitations. The amplifier topology and associated circuitry described in embodiments may achieve high efficiency, smooth PA gain, and enhanced phase characteristics over a 15% fractional bandwidth with reduced costs.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: July 14, 2015
    Assignee: Intel Corporation
    Inventors: Nikolai Maslennikov, Ahmad Khanifar
  • Patent number: 8989684
    Abstract: A voltage regulator for a plurality of radio frequency subcircuits of a radio frequency circuit. A first transistor configured to receive, based on a comparison between a reference voltage signal and a feedback signal, a bias signal corresponding to a desired regulated voltage for the plurality of radio frequency subcircuits, output the bias signal, and generate the feedback signal according to the bias signal as output from the first transistor. A second transistor configured to receive the bias signal as output from the first transistor and provide, based on the bias signal, the desired regulated voltage to a respective first one of the plurality of radio frequency subcircuits. A third transistor is configured to receive the bias signal as output from the first transistor and provide, based on the bias signal, the desired regulated voltage to a respective second one of the plurality of radio frequency subcircuits.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 24, 2015
    Assignee: Marvell International Ltd.
    Inventors: Swee-Ann Teo, Lawrence Tse, Yonghua Song
  • Patent number: 8983416
    Abstract: A system and method employ an arbiter-based automatic gain control (AGC) for managing a series of power adjustment circuits, such as amplifiers and/or attenuators. A central arbiter is employed for managing each stage of a series of power adjustment circuits, rather than each stage solely managing itself via a localized control loop. In one embodiment, a system comprises a series of gain stages each having at least one power adjustment circuit, such as at least one attenuator or amplifier. A power detector may be implemented to detect the power level of the output signal of each gain stage, and communicate information about the detected power levels for each stage to a central arbiter. Based at least in part on the received information, the arbiter controls each of the gain stages in a coordinated fashion.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 17, 2015
    Assignee: CSR Technology Inc.
    Inventor: Ronald G. Spencer
  • Patent number: 8965317
    Abstract: Embodiments of the present invention may provide a signal processor with a wide gain range. The signal processor may comprise at least a discrete step gain stage and a continuous variable gain amplifier (VGA) stage. The discrete step gain stage may comprise a programmable gain amplifier (PGA) (e.g., low noise amplifiers 1 and 2 (LNA1 and LNA2)). The VGA stage may provide a continuous range to compensate the LNAs gain steps. In one embodiment, the AGC controller enables an inherent hysteresis with the AGC step change if required.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Reza Alavi, Saeed Aghtar, Christoph Steinbrecher, Arathi Sundaresan
  • Patent number: 8948322
    Abstract: A system provides closed-loop gain control in a WCDMA mode and open loop control in an EDGE/GSM mode. Gain control is distributed across analog devices and a digital scaler in a wireless receiver. In the WCDMA mode, a loop filter generates an error signal that is forwarded to analog and digital control paths. The analog control path includes a first adder, a programmable hysteresis element, and a lookup table. The analog control signal is responsive to thresholds, which when used in conjunction with a previous gain value determine a new gain value. The digital control path includes a second adder, a programmable delay element, and a converter. A control word is responsive to a difference of the error signal, a calibration value, and the analog control signal. Blocker detection is provided in the WCDMA mode of operation. A controller sets system parameters using a state machine.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: February 3, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jaleh Komaili, John E. Vasa, Thomas Obkircher
  • Patent number: 8934584
    Abstract: An automatic gain control (AGC) method and system for a radio receiver are proposed in which the ACG comprises two AGC loops; a first loop controlling signal gain in the analog portion of the radio receiver, a second loop controlling gain in the digital domain after digitization of the received signal. The analog AGC loop has a slower response time than the digital AGC loop. When applied to a multi-branch diversity receiver, each branch has its own digital AGC loop, but the analog gain can be common to all branches, based on measurement of the analog signal in each branch.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 13, 2015
    Assignee: Ericsson Modems SA
    Inventors: Jean-Marc Aznar, Stefania Sesia, Laurent Noel
  • Patent number: 8861659
    Abstract: A data receiving circuit and a data receiving method accurately acquire a data signal corresponding to information data from a high speed high density transmitted signal. An increase or a decrease of the level of one of a amplified data signal and a level converted data signal that is transmitted from one, referred to as one processing stage, of an amplification processing stage and a level converting processing stage, is fed back to a stage preceding the one processing stage. The amplification processing stage supplies, to a first line, an amplified data signal obtained by performing an amplification processing on a received data signal, and the level converting processing stage transmits, via a second line, a level converted data signal obtained by performing a level converting processing on the amplified data signal.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 14, 2014
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventors: Hideaki Hasegawa, Kouji Takeda, Toshio Itou, Yuuichi Ike
  • Patent number: 8811537
    Abstract: Provided are a receiving apparatus and method for a wireless communication system using multiple antennas. A receiving method for a wireless communication system using multiple paths, the receiving method comprising: receiving signals through a predetermined number of multiple paths; sensing a carrier according to saturation state degrees of the signals, and providing saturation state information; calculating automatic gain components of the received signals by using the received signals and the saturation state information of the received signals; and performing a noise matching process to amplify noises on the predetermined multiple paths according to the automatic gain components during a predetermined period.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: August 19, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Il-Gu Lee, Jung-Bo Son, Je-Hun Lee, Eun-Young Choi, Sok-Kyu Lee
  • Patent number: 8639201
    Abstract: A radio frequency transceiver for a wireless communications device transceiver comprising a plurality of subcircuits, a first regulator circuit, and a plurality of second regulator circuits. Each subcircuit is configured to perform an operation of the radio frequency transceiver in accordance with a corresponding regulated voltage. A first regulator circuit is configured to provide a bias signal based on a reference signal and a feedback signal indicative of the bias signal. The bias signal corresponds to a desired regulated voltage for the plurality of subcircuits. A plurality of second regulator circuits corresponding to respective ones of the plurality of subcircuits are each configured to provide the regulated voltage to the respective one of the plurality of subcircuits.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: January 28, 2014
    Assignee: Marvell International Ltd.
    Inventors: Swee-Ann Teo, Lawrence Tse, Yonghua Song
  • Patent number: 8615205
    Abstract: Techniques are provided for reducing mismatch between the in-phase (I) and quadrature (Q) channels of a communications transmitter or receiver. In an exemplary embodiment, separate voltages are applied to bias the gates or bulks of the transistors in a mixer of the I channel versus a mixer of the Q channel. In another exemplary embodiment, separate voltages are applied to bias the common-mode reference voltage of a transimpedance amplifier associated with each channel. Techniques are further provided for deriving bias voltages to minimize a measured residual sideband in a received or transmitted signal, or to optimize other parameters of the received or transmitted signal. Techniques for generating separate bias voltages using a bidirectional and unidirectional current digital-to-analog converter (DAC) are also disclosed.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: December 24, 2013
    Assignee: Qualcomm Incorporated
    Inventors: Ojas M. Choksi, Frederic Bossu
  • Patent number: 8577319
    Abstract: An automatic gain control loop disposed in a receiver is adapted to compensate for varying levels of out of band interference sources by adaptively controlling the gain distribution throughout the receive signal path. One or more intermediate received signal strength indicator (RSSI) detectors are used to determine a corresponding intermediate signal level. The output of each RSSI detector is coupled to an associated comparator that compares the intermediate RSSI value against a corresponding threshold. The take over point (TOP) for gain stages is adjusted based in part on the comparator output values. The TOP for each of a plurality of gain stages may be adjusted in discrete steps or continuously.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 5, 2013
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Madhukar Reddy, John Wetherell
  • Patent number: 8565358
    Abstract: A system provides closed-loop gain control in a WCDMA mode and open loop control in an EDGE/GSM mode. Gain control is distributed across analog devices and a digital scaler in a wireless receiver. In the WCDMA mode, a loop filter generates an error signal that is forwarded to analog and digital control paths. The analog control path includes a first adder, a programmable hysteresis element, and a lookup table. The analog control signal is responsive to thresholds, which when used in conjunction with a previous gain value determine a new gain value. The digital control path includes a second adder, a programmable delay element, and a converter. A control word is responsive to a difference of the error signal, a calibration value, and the analog control signal. Blocker detection is provided in the WCDMA mode of operation. A controller sets system parameters using a state machine.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: October 22, 2013
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jaleh Komaili, John E. Vasa, Thomas Obkircher
  • Patent number: 8514991
    Abstract: Disclosed is a radio frequency (RF) receiver for receiving a communication channel modulated on one or more carrier frequencies. The receiver may include a gain adjustable RF amplifier, a wideband signal power measurement circuit, and control logic. The control logic may be adapted to use outputs of one or more measurement circuits to classify interfering signals based on measured signal power and spectral proximity to the one or more channel carrier frequencies, and to adjust the gain of the radio frequency amplifier based on the classification.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: August 20, 2013
    Assignee: Siano Mobile Silicon Ltd.
    Inventors: Roy Oren, Noam Lavi
  • Patent number: 8514989
    Abstract: Disclosed is a radio frequency (RF) receiver for receiving a communication channel modulated on one or more carrier frequencies. The receiver may include a gain adjustable RF amplifier, a wideband signal power measurement circuit, and control logic. The control logic may be adapted to use outputs of one or more measurement circuits to classify interfering signals based on measured signal power and spectral proximity to the one or more channel carrier frequencies, and to adjust the gain of the radio frequency amplifier based on the classification.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 20, 2013
    Assignee: Siano Mobile Silicon Ltd.
    Inventors: Roy Oren, Noam Lavi
  • Patent number: 8498368
    Abstract: In some wireless local area networks (WLANs), signals of different modulation types and rates can be received. To operate optimally, the gain of an amplifier in a receiver can be set based on a specific modulation type and rate. For example, the gain of a receive path amplifier can be changed based on one or more unique identifying characteristics in a received data packet. Once the unique identifying characteristics are located, they can be analyzed to determine which modulation type and rate are represented. The appropriate gain of the amplifier can be set based on the modulation type and rate. Advantageously, subsequent data symbols can be amplified with the set gain, thereby ensuring that the receiver optimally receives those data symbols.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: July 30, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Paul J. Husted, William J. McFarland, Teresa H. Meng, John S. Thomson
  • Patent number: 8498366
    Abstract: A system and technique for providing to flexible, programmable frequency estimators and spectrum analyzers that can operate over extremely large bandwidths and yet provide high spectral resolution are described. The system and technique may include a cascaded super-heterodyne apparatus for estimating a frequency and a bandwidth of signals proximate in frequency to a desired signal, a tunable filter coupled to an input of a receiver, and a tuner which receives a signal from said cascaded super-heterodyne apparatus and tunes the filter to filter out unwanted signals from the receiver.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: July 30, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Soumyajit Mandal, Serhii M. Zhak, Rahul Sarpeshkar
  • Patent number: 8478221
    Abstract: A wireless communication receiver includes a multitude of look-up tables each storing a multitude of DC offset values associated with the gains of an amplification stage disposed in the wireless communication receiver. The entries for each look-up table are estimated during a stage of the calibration phase. During such a calibration stage, for each selected gain of an amplification stage, a search logic estimates a current DC offset number and compares it to a previous DC offset estimate that is fed back to the search logic. If the difference between the current and previous estimates is less than a predefined threshold value, the current estimate is treated as being associated with the DC offset of the selected gain of the amplification stage and is stored in the look-up table. This process is repeated for each selected gain of each amplification stage of interest until the look-up tables are populated.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 2, 2013
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Andy Lo, Tete Sedalo
  • Patent number: 8437719
    Abstract: An active splitter circuit arrangement includes a first amplification module having a number of first input ports and first output ports. The first amplification module is configured to provide first stage amplification to a received input signal and produce from the amplified input signal a number of output signals, each substantially matching the input signal. Also included is a first gain control device configured to control a gain of the first amplification module. Next, a number of second amplification modules corresponding to the number of output signals has a number of second input ports respectively coupled to the first output ports. Each second amplification module is configured to receive a control signal from the second gain control device, provide second stage amplification to a corresponding one of the number of output signals based upon the control signal and produce an amplified output signal.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 7, 2013
    Assignee: Broadcom Corporation
    Inventors: Adel Fanous, Leonard Dauphinee, Lawrence M. Burns, Donald McMullin
  • Patent number: 8428535
    Abstract: A controller in a receiver monitors RSSI and AGC gain levels to determine signal conditions and adjust filter performance accordingly to optimize power consumption while providing acceptable signal quality. When RSSI level is high and AGC gain is low, a strong signal-of-interest is present. In this case, adaptive filter bias currents may be reduced raise the noise floor and degrade intermodulation to reduce power consumption because the strong signal-of-interest can tolerate the higher noise and distortion. When the RSSI level is low and AGC gain is high, a weak signal is present a low noise mode may be effected by increasing bias current to filters used to lower the noise floor, but intermodulation effects may still be tolerated so those filters may be cut back. Other cases are supported. RSSI and AGC gain level thresholds may be dynamically altered based on relative RSSI and AGC levels.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: April 23, 2013
    Assignee: Marvell International Ltd.
    Inventors: David Cousinard, Patrick Clement, Cao-Thong Tu
  • Patent number: 8428536
    Abstract: A receiver (100) includes a first element (110) with a signal input, a control input, a signal output, and gain steps of a first magnitude, a signal processing circuit (120-168) with a signal input coupled to the first element, and a signal output, a second element (180) that has a signal input coupled to signal processing circuit, a control input, a signal output, and gain steps of a second magnitude smaller than the first magnitude, and a controller (180) that has a control output coupled to the first element (110), a control output coupled to the second element (180), and that adjusts receiver (100) gain by changing the first element (110) gain by a first magnitude, changing the second element (180) gain by substantially an inverse first magnitude, and subsequently changing the gain of the second element (180) by steps of the second magnitude to achieve a desired gain.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: April 23, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Ramin Khoini-Poorfard, Alessandro Piovaccari, David S. Trager
  • Patent number: 8374563
    Abstract: A gain control circuit of the wireless receiver comprises a plurality of stages-amplifier, an analog gain control circuit, and a digital gain control circuit, wherein the analog gain control circuit generates an analog controlling voltage for regulating the gain of the post-amplifier by an analog gain controlling process, and the digital gain control circuit is used for determining a plurality of gain curves for the pre-amplifier, and the gain curves are all operating between the first default voltage and second default voltage. While the analog controlling voltage is over the first default voltage or second default voltage, the gain curve will be switched, thereby, the analog gain controlling process can be with the digital gain controlling process therein for improving the linearity of the gain regulation and reducing the transient response during the gain switching process.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: February 12, 2013
    Assignee: Airoha Technology Corp.
    Inventors: Chan-Sheng Yang, Wen-Shih Lu, Yu-Hua Liu
  • Patent number: 8364109
    Abstract: A receiver including an amplifier module, a control unit, a mixer and an IF amplifier is provided. The amplifier module, including multiple amplifier units with different gains, amplifies an input signal. The control unit enables at least one of the amplifier units according to a gain control signal, wherein the enabled at least one amplifier unit generates an output RF signal in response to the input signal. The mixer coupled with each amplifier unit in series down-converts the output RF signal into an IF signal according to a local oscillation frequency. The IF amplifier having a variable gain is coupled to the mixer for amplifying the IF signal to an output signal according to the gain control signal. The control unit obtains the gain control signal according to the output signal and a reference signal.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: January 29, 2013
    Assignee: Industrial Technology Research Institute
    Inventor: Ching-Feng Lee
  • Patent number: 8331884
    Abstract: A voltage regulator for a radio frequency circuit including a master regulator circuit, a first slave regulator circuit, and a first radio frequency subcircuit. The master regulator circuit is configured to i) receive a reference voltage signal and a feedback signal and ii) output a control voltage signal based on the reference voltage signal and the feedback signal. The first slave regulator circuit is configured to i) receive the control voltage signal and ii) output a first regulated supply voltage signal based on the control voltage signal. The first radio frequency subcircuit is configured to receive the first regulated supply voltage signal. The control voltage signal corresponds to a desired supply voltage for the first radio frequency subcircuit.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 11, 2012
    Assignee: Marvell International Ltd.
    Inventors: Swee-Ann Teo, Lawrence Tse, Yonghua Song
  • Patent number: 8320864
    Abstract: An active splitter circuit arrangement includes a first amplification module having a number of first input ports and first output ports. The first amplification module is configured to provide first stage amplification to a received input signal and produce from the amplified input signal a number of output signals, each substantially matching the input signal. Also included is a first gain control device having a number of gain input ports respectively coupled to the first output ports and a gain output port coupled to at least one of the first input ports. The first gain control device is configured to control a gain of the first amplification module. Next, a number of second amplification modules corresponding to the number of output signals has a number of second input ports respectively coupled to the first output ports.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: November 27, 2012
    Assignee: Broadcom Corporation
    Inventors: Adel Fanous, Leonard Dauphinee, Lawrence M. Burns, Donald McMullin
  • Patent number: 8320865
    Abstract: The present invention relates to a method, an Automatic Gain Control control unit and a receiver for Noise change output signalling. It also relates to an Adjustment Unit, a receiver and a base band detector for adjustment of an Automatic Gain Control output signal on the basis of the Noise change output signalling. In a first step a receiver receives a communication input signal. In a second step at least one Automatic Gain Control attenuator or amplifier in the receiver attenuates the communication input signal. In a third step the receiver produces at least one AGC output signal. In a fourth step at least one AGC control unit in the receiver initiates a changed gain setting on the receiver, when the level of an AGC control unit input signal received by the unit has been below a first threshold level or above a second threshold level during a detection interval.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 27, 2012
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventor: Vimar Björk
  • Patent number: 8306162
    Abstract: A method for use in a digital communications receiver for controlling an input signal level (200) into an analog-to-digital converter (ADC) initially receives a sample sequence (201) where a threshold crossing rate is measured as a percentage samples of an input signal that exceed the threshold (203). The error between the measured threshold crossing rate and a desired reference threshold crossing rate is calculated (205) and an error signal is then utilized in a feedback loop to control the receiver gain such that the error is reduced (207).
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: November 6, 2012
    Assignee: Motorola Solutions, Inc.
    Inventors: Robert J. Corke, Daniel G. Prysby
  • Patent number: 8259878
    Abstract: Provided are apparatus and method for receiving signals in a wireless communication system.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 4, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chanho Yoon, Hun-Sik Kang, Eun-Young Choi, Sok-Kyu Lee
  • Patent number: 8238861
    Abstract: Techniques for performing automatic gain control (AGC) at a terminal in a wireless communication network are described. In an aspect, the terminal may use different receiver gain settings to receive different types of signals in different time intervals. The terminal may determine a receiver gain setting for each signal type and may use the receiver gain setting to receive signals of that signal type. In another aspect, the terminal may determine a receiver gain setting for a future time interval based on received power levels for peer terminals expected to transmit in that time interval. The terminal may measure received power levels of signals received from a plurality of terminals. The terminal may determine a set of terminals expected to transmit in the future time interval and may determine the receiver gain setting for the future time interval based on the measured received power levels for the set of terminals.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 7, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Junyi Li, Ying Wang, Thomas Richardson, Aleksandar Jovicic
  • Patent number: 8229381
    Abstract: A wireless communication receiver includes a multitude of look-up tables each storing a multitude of DC offset values associated with the gains of an amplification stage disposed in the wireless communication receiver. The entries for each look-up table are estimated during a stage of the calibration phase. During such a calibration stage, for each selected gain of an amplification stage, a search logic estimates a current DC offset number and compares it to a previous DC offset estimate that is fed back to the search logic. If the difference between the current and previous estimates is less than a predefined threshold value, the current estimate is treated as being associated with the DC offset of the selected gain of the amplification stage and is stored in the look-up table. This process is repeated for each selected gain of each amplification stage of interest until the look-up tables are populated.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: July 24, 2012
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Andy Lo, Tete Sedalo
  • Patent number: 8213891
    Abstract: A gain control apparatus in a receiver of multiband OFDM system includes: an amplifier amplifying a received signal based on a first auto gain control signal; an analog-to-digital converter for converting the amplified signal into a digital signal; band reception signal extractor for extracting a signal of a desired reception band from the converted digital signal for each reception band, and controlling gain of the extracted signal according to a second auto gain control signal; a reception power detector for detecting a reception power value of whole band from the converted digital signal; and a multiband integration baseband processor for generating the first auto gain control signal by using the detected reception power value of the whole band, and generating the second auto gain control signal to be provided to the band reception signal extraction units, resource allocation information for each band and a reception power for each reception band.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: July 3, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seong-Min Kim, Byung-Su Kang, Gweon-Do Jo, Jae-Ho Jung, Joon-Hyung Kim, Heon-Kook Kwon, Sung-Jun Lee, Kwang-Chun Lee
  • Patent number: 8135375
    Abstract: A gain-controllable stage (CLN, A1, A2 . . . , A7, ACC) comprises a reactive signal divider (CLN) followed by an amplifier arrangement (A1, A2 . . . , A7, ACC). The reactive signal divider (CLN) may be in the form of, for example, a capacitive ladder network. The gain-controllable stage (CLN, A1, A2 . . . , A7, ACC) has a gain factor that depends on a signal division factor that the reactive signal divider (CLN) provides. The reactive signal divider (CLN) forms part of a filter (LC). The signal division factor is adjusted on the basis of a frequency (F) to which the receiver is tuned and a signal-strength indication (RS).
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: March 13, 2012
    Assignee: NXP B.V.
    Inventor: Johannes Hubertus Antonius Brekelmans
  • Patent number: 8134410
    Abstract: Transceivers with multiple gain stages that include open loop and closed loop amplifiers are subject to differential non-linearity (DNL) errors in their total gain versus gain index curve due to the gain step variability of the open loop amplifiers. The initial and time varying DNL can be reduced by a control loop that uses the relative gain step precision of the closed loop amplifiers and of passive attenuators to establish a control loop to reduce the DNL of the total gain.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: March 13, 2012
    Assignee: PMC-Sierra, Inc.
    Inventor: Anthony Eugene Zortea
  • Patent number: 8063997
    Abstract: An integrated tuner is programmable to optimize its components for either analog signal reception or digital signal reception. Power to the components is increased for analog operation and decreased for digital operation. The tuner also includes a selectable and integrated low noise amplifier that may be selected for single-signal reception and bypassed for multi-signal reception.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: November 22, 2011
    Assignee: NXP B.V.
    Inventors: Mats Lindstrom, Glenn W. Eswein, Abdolreza Shafie, Mike A. Ploof, Ryuji Maeda, Manjit S. Gill, Eileen Carlson, Anthony R. Simon, Henry S. Lau
  • Patent number: 8050642
    Abstract: Provided are a variable gain amplifier and a receiver including the same. The variable gain amplifier includes: a gain controller generating a gain control voltage; a variable gain amplifier amplifying an input signal and a feedback signal by using a voltage gain that is linearly proportional to the gain control voltage, and converting the amplified signal into a predetermined magnitude of a signal; and an offset canceller removing an offset from an output signal of the variable gain amplifier and outputting the offset removed result as the feedback signal. The variable gain amplifier includes a plurality of operational transconductance amplifiers.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: November 1, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Ho Kim, Seok-Bong Hyun
  • Patent number: 7983642
    Abstract: A system and method is provided for reducing signal distortion and saturation within an RF receiver which may be operated in an environment under the presence of interfering signals such as in a WiMAX environment. In an embodiment, a first gain stage and a second gain stage are selectively lowered to predetermined lower levels, assuring that if there is a blocker present, it would not cause signal distortion and saturation in the receiver. The loss of the gain in the first gain stage and second gain stage is compensated by a third gain stage which selectively amplifies the signals of interest. If a blocker is not detected, the maximum allowable gain of the first gain stage and the second gain stage is set to a predetermined upper limit allowing for maximum receiver sensitivity. Accordingly, with this system and method a direct conversional receiver can operate in the presence of interfering signals without signal distortion and saturation.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 19, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Paul J. Da Graca, Alfred R. Mangino, Richard S. Camden
  • Patent number: 7974598
    Abstract: This disclosure discloses methods and apparatus for calibrating received signal strength indicators.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: July 5, 2011
    Assignee: Beken Corporation
    Inventors: Ronghui Kong, Dawei Guo
  • Patent number: 7962112
    Abstract: A heterodyne receiver comprising a gain controllable RF mixer (14) which has a first input connected to a first local oscillator (16) and a second input connected to an RF input. The receiver comprises a peak detector (38) which detects a peak value of an input signal at the second input of the HF mixer and generates a digital control signal if it is determined that the peak value of the input signal is above a predetermined level. A digital automatic gain control circuit (34) decreases upon reception of the digital control signal the gain of the RF mixer.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: June 14, 2011
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Harald Sandner, Ajaib Hussain
  • Patent number: 7949419
    Abstract: Methods and systems for processing audio signals are disclosed herein. Aspects of the method may comprise controlling gain during multipath, multi-rate audio processing by generating via a digital gain circuit, a digital signal that is a product of an input digital signal and a gain coefficient derived from a lookup table, and bit-shifted to generate a digital output signal. The gain coefficient may be partitioned into a number of gain blocks. The gain values in each of the gain blocks may be twice a corresponding value in each preceding gain block. The gain blocks may be partitioned into steps that represent particular gain values within a range associated with the gain block. The digital output signal may be ramped utilizing a linear interpolation of the gain coefficients one step apart over a number of samples of the digital input signal, where the number of samples is given as a power of two.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: May 24, 2011
    Assignee: Broadcom Corporation
    Inventors: Hongwei Kong, Nelson Sollenberger, Li Fung Chang
  • Patent number: 7920840
    Abstract: In a wireless receiver apparatus including a gain control amplifier for controlling a gain of a reception signal, a maintaining device compulsorily maintains the gain of the gain control amplifier at a predetermined fixed value only in a predetermined specified interval. The maintaining device includes a latch circuit for maintaining a gain set value immediately prior to the specified interval. A start timing of the specified interval is determined by an edge of a predetermined timer start signal, and a duration of the specified interval is determined on the basis of a count of a predetermined timer clock signal and a count of a predetermined timer count set bus signal.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Kouji Takahashi, Kosuke Ota
  • Patent number: 7885627
    Abstract: An OFDM wireless transceiver uses a digital automatic gain control (AGC) module. The digital AGC module is configured for setting a gain to an initial gain value for mapping a received wireless signal to a first power value for an input circuit having a prescribed input range. The initial gain value is set relative to the prescribed input range and a prescribed signal to noise ratio. If the digital AGC module determines that the first power value of the received wireless signal does not exceed the prescribed input range, the digital AGC module calculates an optimum gain for the received wireless signal relative to the initial gain value and the first power value; if the first power value exceeds the prescribed input range, the AGC module determines the optimum gain based on setting the gain to a minimum gain value.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: February 8, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christine Lee, Chien-Meen Hwang, Yong Li
  • Patent number: 7809339
    Abstract: A voltage regulator comprises a master regulator circuit that receives a reference signal and that generates a feedback signal and a master bias signal. The master bias signal is based on the reference signal and the feedback signal. N slave regulator circuits receive the master bias signal from the master regulator circuit and output N regulated output signals to N circuits, respectively, where N is an integer greater than one.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: October 5, 2010
    Assignee: Marvell International Ltd.
    Inventors: Swee-Ann Teo, Lawrence Tse, Yonghua Song
  • Patent number: 7792508
    Abstract: A radio frequency (RF) signal receiver for controlling a bias current and a method for controlling a bias current are provided. The RF signal receiver includes an antenna which receives an RF signal and an RF signal processing module which processes the received RF signal. The RF signal processing module includes an analog signal processing module which converts the received RF signal into an intermediate frequency (IF) signal and filters the IF signal to allow a frequency band corresponding to a user desired channel to pass and a digital signal processing module which demodulates the filtered signal and decodes the demodulated signal. The amplitude of a bias current required by the analog signal processing module is controlled by the digital signal processing module.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jeong-ho Lee
  • Patent number: 7778223
    Abstract: Whether the reception electric field level of the antenna #1 is higher than the predetermined level is judged. If the reception electric field level of the antenna #1 is not higher than the predetermined level, the communication mode is to be set to the multi-slot mode, and then whether the reception electric field level of the antenna #1 is higher is judged by comparison of the reception electric field level of the antenna #1 and the reception electric field level of the antenna #2. If the reception electric field level of the antenna #1 is higher, the call mode is to be set to the antenna #1 for executing transmission and reception, or if the reception electric field level of the antenna #1 is not higher, the communication mode is to be set to the antenna #2 for executing transmission and reception.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: August 17, 2010
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Shinichi Sakakibara
  • Patent number: 7774201
    Abstract: A purpose of the present invention is to provide an acoustic apparatus capable of automatically setting a gain which is suitable for both an averaged signal strength of input voice and an instantaneous signal strength thereof, capable of easily recognizing an effect by a user, which is achieved by switching a turn-ON and a turn-OFF of an automatic gain variable operation, and further capable of readily recognizing a change in gain values by the user. The acoustic apparatus is provided with a gain setting unit (20) for setting a gain from an averaged voice strength within a predetermined time period, and another gain setting unit (22) for setting a gain in response to an instantaneous signal strength thereof; and the acoustic apparatus adjusts a signal strength of an audio input signals (Si) based upon a gain “C” obtained by multiplying a gain “A” by another gain “B.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: August 10, 2010
    Assignee: Panasonic Corporation
    Inventor: Katsushi Yamada
  • Patent number: 7751787
    Abstract: A timing generator and methods thereof are provided. In a first example method, a timing control signal may be produced by generating a base clock signal and a higher delay resolution clock signal, a clock cycle of the higher delay resolution signal being less than a clock cycle of the base clock signal. A first control word output signal may be generated by synchronizing a control word with the base clock signal. A second control word output signal may be generated by synchronizing the first control word output signal with the higher delay resolution clock signal and generating at least one additional control word output signal based on the second control word output signal and the higher delay resolution clock signal, the first, second and at least one additional control word output signal each having different delay resolutions.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: July 6, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyoung-Man Kim
  • Patent number: 7746964
    Abstract: A signal processing apparatus includes a plurality of equalizer each used for a corresponding frequency band, controller for setting a gain value in each of the plurality of equalizer, and signal processor for processing an input signal by means of the plurality of equalizer. The controller determines a target gain value for each of the plurality of frequency bands, obtains a value of gain leakage from the first frequency band to a second frequency band adjacent to the first frequency band, updates a gain value set for the second frequency band, updates a gain value set for the first frequency band, repeats an update process for updating the gain value for each of the first frequency band and the second frequency band in an alternate manner until the gain value satisfies a predetermined condition, and sets the updated gain value for each of the frequency bands in the corresponding equalizer.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: June 29, 2010
    Assignee: Sony Corporation
    Inventor: Kenji Nakano
  • Patent number: 7697614
    Abstract: A system (500) and method (400) are presented for calibrating an analog signal path (200) associated with an Ultra Wideband (UWB) receiver (103). The analog signal path includes a plurality of analog gain stages (210, 212-214, 216), a local oscillator mixer stage (211), a compensation stage (218), and a converter stage (219). An information signal includes whitened symbols (306). When a predetermined number of whitened symbols are accumulated for one of a plurality of gain configurations, an arithmetic mean is calculated and used an offset value. The offset value is retrieved whenever the gain configuration is activated and applied at the compensation stage to reduce the offset.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 13, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bobby L. Barnes, Timothy R. Miller
  • Patent number: 7684772
    Abstract: A tuner down-converts a Radio Frequency (RF) wireless signal and outputs the converted signal. The tuner compensates for a TOP depending on a temperature and: detects a received signal strength depending on a RF output of the tuner and transmitting the detected strength to a gain control unit; measures an operating temperature of the tuner and transmits the measured temperature value; receives the measured temperature value to compare the received temperature value with a reference TOP value, compensating compensates for the TOP value depending on variation in temperature and outputting outputs the compensated value; and receives the compensated value to control the RF output based on the TOP value and the received signal strength.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: March 23, 2010
    Assignee: Integrant Technologies Inc.
    Inventors: Junghwan Lee, Bonkee Kim