Condition Responsive Control Patents (Class 477/174)
  • Patent number: 9002600
    Abstract: An example method of operation comprises, selectively shutting down engine operation responsive to operating conditions and without receiving an engine shutdown request from the operator, maintaining the automatic transmission in gear during the shutdown, and during an engine restart from the shutdown condition, and with the transmission in gear, transmitting reduced torque to the transmission. For example, slippage of a forward clutch of the transmission may be used to enable the transmission to remain in gear, yet reduce torque transmitted to the vehicle wheels.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: April 7, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Peter John Grutter, Roger Lyle Huffmaster, Felix Nedorezov
  • Publication number: 20150065298
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline disconnect clutch operation is adjusted in response to vehicle mass so that the vehicle may operate similarly at lower and higher vehicle masses.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Gregory Michael Pietron, James William Loch McCallum, Yuji Fujii
  • Publication number: 20150051045
    Abstract: Systems and methods for improving hybrid vehicle torque control are presented. The system and methods included may estimate driveline torque via springs of a dual mass flywheel. The estimated driveline torque may provide feedback for adjusting operation of a driveline disconnect clutch and/or engine torque.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 19, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Alex O`Connor Gibson, Jeffrey Allen Doering, Seung-Hoon Lee, Yuji Fujii, James William Loch McCallum, William Russell Goodwin
  • Patent number: 8958964
    Abstract: Methods and systems for providing vacuum to a vehicle are described. In one example, a method adjusts an application force of a transmission clutch in response to a request for additional vacuum.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: February 17, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Ross Dykstra Pursifull
  • Publication number: 20150005136
    Abstract: The invention relates to a method for permitting adaptation of the clutch torque of a proportional clutch in parallel hybrid vehicles, wherein given certain peripheral conditions the method is triggered automatically by a control device and the internal combustion engine rotates but is not ignited (phantom start).
    Type: Application
    Filed: October 24, 2012
    Publication date: January 1, 2015
    Inventors: Kaspar Schmoll Genannt Eisenwerth, Manuel Schnitzer, Fabio Iacona, Mykhaylo Klymenko
  • Patent number: 8924115
    Abstract: The disclosure describes, in one aspect, a control system for controlling a braking system. The control system includes a parking brake operatively to at least one wheel, a park brake override mechanism operatively associated with the parking brake, an inching pedal operatively coupled to a transmission, a shift lever operatively coupled to the transmission, at least one sensor operatively coupled to the parking brake to detect when the parking brake is engaged, at least one sensor operatively coupled to the inching pedal to detect a depression of the inching pedal, and at least one sensor operatively coupled to the shift lever for detecting at least one of a forward or reverse gear selection. The control system further includes a controller operatively coupled to the at least one sensors to receive corresponding signals and adapted to control the engagement of the parking brake when the inching pedal is depressed and the at least one of the forward or reverse gear selections is desired.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 30, 2014
    Assignee: Caterpillar Inc.
    Inventors: Mohammad Rahman, Mark Behn, Aaron Gnagey, James Roal, Kirk Shively, Cory Smith
  • Publication number: 20140378276
    Abstract: A method for controlling a clutch which pertains to a vehicle and which is operated by means of a vehicle control system. The vehicle is provided with an engine, and a driver of the vehicle requests propulsive force from the engine. A first propulsive force requested by the driver and transmitted via a clutch involves determining whether the clutch slips while transmitting the first propulsive force. When the clutch slips during transmission of the first propulsive force, the propulsive force transmitted by the clutch increases. The invention relates also to a system and a vehicle.
    Type: Application
    Filed: December 19, 2012
    Publication date: December 25, 2014
    Inventors: Mikael Wågberg, Mats Llwell
  • Patent number: 8888658
    Abstract: A control system (100) for an all-wheel-drive torque transfer case (102) coupling of a motor vehicle (104) including a power unit (130) having a centrifugally governed fluid pump (132) and a flow valve (134) movable between recirculation and diverter positions (134a, 134b). A control valve (136) located between the fluid pump (132), the all-wheel-drive clutch assembly (112), and the range shift assembly (120). The control valve (136) operable between a first position (136a) allowing fluid flow between the pump (132) and the clutch assembly (112), and a second position (136b) allowing fluid flow between the pump (132) and the range shift assembly (120). At least one range shift valve (138; 152, 154) located between the control valve (136) and the range shift assembly (120).
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: November 18, 2014
    Assignee: BorgWarner, Inc.
    Inventor: Larry A. Pritchard
  • Patent number: 8888653
    Abstract: A system and method for operating a vehicle powertrain are described. In one example, a torque converter that has a variable K factor is adjusted to improve vehicle operation. The system and method may improve vehicle launch and vehicle operation at lower vehicle speeds.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: November 18, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Ralph Wayne Cunningham
  • Patent number: 8880311
    Abstract: A method and device are provided for controlling disengagement of an automated vehicle master clutch arranged in a vehicle drivetrain between a vehicle propulsion unit and a step geared transmission. The method includes the steps of determining a first output torque of the propulsion unit prior to initiation of a master clutch disengagement procedure, computing a second output torque of the propulsion unit in dependence of at least the first output torque, and where the second output torque is closer to zero torque than the first output torque, initiating the master clutch disengagement procedure by initiating an oscillation in drive shafts by abruptly altering propulsion unit output torque from the first to the second output torque, and disengaging the master clutch when the oscillation has reached a first oscillation turning point. Benefits can include faster gear shifting and better comfort with maintained transmission durability.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 4, 2014
    Assignee: Volvo Lastvagnar AB
    Inventors: Behrooz Razaznejad, Henrik Ryberg
  • Publication number: 20140323266
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an engine may be operated at an idle speed while a driveline disconnect clutch separating the engine from a driveline is open in response to a reduction in driver demand torque. Engine torque may be applied to the driveline by simply closing the driveline disconnect clutch.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Dennis Craig Reed, Alex O'Connor Gibson, Jeffrey Allen Doering, Adam Nathan Banker, Seung-Hoon Lee
  • Patent number: 8862353
    Abstract: The invention relates to a process for detecting tuning measures through which the actual output power of an internal combustion engine of a motor vehicle is increased relative to design output power value, whereby, to detect the tuning measures, deviations of actual output power value from a nominal output power value are evaluated, the latter being provided by a control device. The invention is distinguished in that measures are initiated to protect a clutch device from overload as soon as torque to be transmitted by the clutch device exceeds a critical value.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: October 14, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Michael Reuschel
  • Patent number: 8862344
    Abstract: A clutch actuator and to a method for the control thereof. The actuator actuates a multi-disk clutch, and to do so has actuator modules. The number of which corresponds to the number of the friction clutches. The modules have separate control units and electric motors, which are controlled by the control units and act on the friction clutches by a disengaging mechanism. In order to counter block the partial drive trains disposed downstream of the friction clutches, particularly automatically closed friction clutches during a malfunction of an actuator module, the actuator modules are connected among each other to a data line, which allows monitoring of the actuator modules and counter-measures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 14, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Martin Zimmermann, Matthias Gramann, Juergen Gerhart, Martin Rapp, Wolfgang Hill, Michael Menzel, Wai-Wai Buchet
  • Patent number: 8855878
    Abstract: A system and method for controlling an accumulator in a transmission of a motor vehicle includes the steps of determining whether the motor vehicle has been turned off, sensing at least one operating condition of the motor vehicle, and comparing the at least one operating condition to a reference condition. If the at least one operating condition of the motor vehicle fulfills the reference condition and if the motor vehicle has been turned off then the accumulator is discharged.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: October 7, 2014
    Assignee: GM Global Technology Operations, LLC.
    Inventors: Paul G. Otanez, Zhen J. Zhang
  • Publication number: 20140296032
    Abstract: A hydraulic control device includes an accumulator configured to accumulate oil supplied by a mechanical pump and supply the accumulated oil to a C1 control system (clutch) by discharging the accumulated oil; a first oil passage connected to the hydraulic route (clutch oil passage) on an upstream side of a SLC linear solenoid; a second oil passage connected to the hydraulic route on a downstream side of the manual valve; and connection control unit (a switching valve and a pressure accumulation control valve) configured to control the connection between the accumulator and the hydraulic route so that the accumulator is in communication with one of the first oil passage and the second oil passage.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 2, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuro Morino, Shuji Moriyama, Yoshio Ito
  • Patent number: 8849529
    Abstract: A method for determining the contact point for a clutch in a vehicle comprising an engine, a clutch, powered wheels and a gearbox. The gearbox has a first gearbox component which is connected to the clutch and disconnectable from the powered wheels. The method steps include estimating (405) a friction torque for the first gearbox component, whereby the torque transmitted by the clutch is a function of estimated friction torque, closing (407) the clutch, whereby a representation of a torque transmitted by the clutch is determined for a plurality of positions for the clutch, determining (409) the contact point by means of the determined representation of torque transmitted, and the further step (402), before the closure of the clutch, of accelerating the first gearbox component if its rotation speed is below a certain value. Also a system and a vehicle for performing the method are disclosed.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 30, 2014
    Assignee: Scania CV AB
    Inventor: Peter Juhlin-Dannfelt
  • Patent number: 8849532
    Abstract: A method of managing clutch thermal loads in a multi-speed dual-clutch transmission (DCT) that is paired with an engine in a vehicle. The method includes assessing whether the vehicle is being accelerated and identifying a DCT clutch slipping during the acceleration. The method also includes determining vehicle parameters, determining an amount of time remaining for the clutch to stop slipping using the determined vehicle parameters, and determining an amount of time remaining until the clutch reaches a threshold temperature. The method additionally includes comparing the determined amount of time remaining for the clutch to stop slipping with the determined amount of time remaining until the clutch reaches the threshold temperature. Furthermore, the method includes activating an indicator if the determined amount of time remaining until the clutch reaches the threshold temperature is less than the determined amount of time remaining for the clutch to stop slipping.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Joseph B. Burtch
  • Patent number: 8849531
    Abstract: A method of managing clutch thermal loads in a multi-speed dual-clutch transmission (DCT) paired with an engine in a vehicle includes assessing whether the vehicle is being accelerated and ascertaining whether a position of a vehicle accelerator during the acceleration is maintained within a predetermined range. The method also includes identifying a DCT clutch that is being slipped during the acceleration, determining an amount of time remaining until the clutch stops slipping, and comparing a first preset time span indicative of the time remaining until the clutch reaches a threshold temperature with the amount of time remaining until the clutch stops slipping. The method additionally includes setting a time delay for activating an indicator if the amount of time remaining until the clutchs stops slipping is greater than the first preset time span. Furthermore, the method includes activating the indicator after the time delay.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Joseph B. Burtch
  • Patent number: 8838366
    Abstract: A hybrid drive apparatus includes an input member that is drivingly connected to a rotary electric machine and drivingly connected via an input clutch to an internal combustion engine, an output member that is drivingly connected to the input member and transmits rotation of the input member to wheels, and a control device that controls the rotary electric machine. The control device is capable of performing valve opening/closing phase control that advances or retards opening/closing phases of valve elements provided in the internal combustion engine via a valve opening/closing phase adjusting mechanism and, with the internal combustion engine in a stopped state before starting a vehicle, advances the opening/closing phases of the valve elements to bring the opening/closing phases of the valve elements into an advanced phase state relative to predetermined reference phases, thus starting the vehicle with torque of the rotary electric machine in the advanced phase state.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: September 16, 2014
    Assignees: Aisin Aw Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Daiki Suyama, Toshihiko Kamiya
  • Patent number: 8827868
    Abstract: A method of cooling a multi-speed dual-clutch transmission (DCT) that is paired with an internal combustion engine in a vehicle includes detecting operation of the vehicle. The method also includes sensing an increase in temperature of a subsystem of the DCT while the vehicle is operating. The method also includes selecting a remedial action in response to the sensed temperature. The method aditionally includes activating the selected remedial action such that the temperature of the subsystem is reduced.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Xuefeng Tim Tao, John William Boughner, Alfonso G. Hysko, Jonathan P. Kish, Matthew D. Whitton, Fei An, Steven P. Moorman
  • Patent number: 8821346
    Abstract: A clutch actuator unit is provided that includes a housing having a mounting space and a penetration aperture for receiving an operating rod. A slide pad and slider are disposed along an inner side surface of the mounting space, and are configured to move back and forth within the housing. An operating rod that is connected to the slider through the penetration aperture is moved back and forth, along with the slider and slide pad, through the aperture via a drive portion. A stopper is also integrally formed along the front surface of the slide pad to limit the movement of the slider accordingly. In doing so, the disclosed actuator is able to dynamically locate certain stroke positions and provide an improved shifting operation.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 2, 2014
    Assignees: Hyundai Motor Company, Pyeong Hwa Valeo Co., Ltd., Motonic Corporation, Keyang Electric Machinery Co., Ltd.
    Inventors: Taewon Kim, Yeonho Kim, Hee Ra Lee, Baekyu Kim, Junglyung Choi, Myung-Kweon Kang, Wookyo Jang, Yoon-Sub So, Jinho Jang, Namhun Lee, Man-Dae Hur, Hongcheol Moon, Chang-Hwa Kim
  • Patent number: 8818600
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an engine may be operated at an idle speed while a driveline disconnect clutch separating the engine from a driveline is open in response to a reduction in driver demand torque. Engine torque may be applied to the driveline by simply closing the driveline disconnect clutch.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: August 26, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Dennis Craig Reed, Alex O'Connor Gibson, Jeffrey Allen Doering, Adam Nathan Banker, Seung-Hoon Lee
  • Patent number: 8801574
    Abstract: A powertrain system includes an internal combustion engine, a multi-mode transmission having a plurality of torque machines, and a driveline. A method for deactivating a torque transfer clutch of the multi-mode transmission includes imposing prioritized clutch torque constraints to an off-going clutch. The constraints include minimum and maximum long-term desired clutch torque constraints that are superseded by minimum and maximum soft clutch torque constraints that are superseded by minimum and maximum short-term desired clutch torque constraints that are superseded by minimum and maximum hard clutch torque constraints. The off-going clutch is controlled in response to the prioritized clutch torque constraints.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: August 12, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Sean W. McGrogan, Krunal P. Patel
  • Patent number: 8784263
    Abstract: A hybrid driving apparatus includes a diesel engine outfitted with an exhaust brake, and a clutch between the diesel engine and a hybrid motor. The exhaust brake is shiftable between an operational state and a non-operational state, and a switch is operable to change the exhaust brake from the non-operational state to the operational state. The switch is configured to automatically change the exhaust brake which is in the operational state while the vehicle is turned on to the non-operational state when the vehicle is turned off. The clutch is automatically changed from an engaged condition, in which the diesel engine and the hybrid motor are connected, to the disengaged condition, in which the diesel engine and the hybrid motor are disconnected, when the vehicle decelerates while the exhaust brake is in the non-operational state.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 22, 2014
    Assignees: Aisin Seiki Kabushiki Kaisha, Aisin Technical Center of America, Inc.
    Inventors: Tomoya Takahashi, Kazuhiro Irie, Kazushi Konno
  • Patent number: 8777814
    Abstract: A torque transfer device (34) for a motor vehicle includes a clutch (50) for transferring torque between first and second shafts (76, 78). An electromagnetic actuator (98, 102) includes an axially moveable armature (102) for applying an application force to the clutch (50). An actuator control system includes a position sensor (118c) operable to output a signal indicative of a position of the armature (102). The control system determines a target torque to be transferred by the clutch (50) and a target armature position based on a previously determined clutch torque vs. armature position relationship. The control system varies an electrical input to the electromagnetic actuator (98, 102) to perform closed loop control of the armature position.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: July 15, 2014
    Inventors: Timothy M. Burns, Hsing-Hua Fan
  • Patent number: 8781695
    Abstract: A method and apparatus to control the pickup on an uphill slope of an automotive vehicle provided with an automatic or robotized gearbox provide the definition of a control strategy of the gear box operation, also according to the gradient of the uphill slope, which is preferably calculated based on a longitudinal acceleration value of the automotive vehicle, and based on the altitude at which the automotive vehicle can be found, which is preferably calculated based on a detected atmospheric pressure value. In this way, it is also possible to consider the reduction in the engine torque due to the reduction in the air density with altitude.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: July 15, 2014
    Assignee: Fiat Group Automobiles S.p.A.
    Inventors: Andrea Bianco, Claudio Cervone, Giuseppe Gatti, Giuseppe Lorusso, Euplio Pagliarulo, Francesco Cimmino
  • Patent number: 8777813
    Abstract: A method of controlling a DCT (double clutch transmission) of a vehicle to conduct a series of downshifting operations from a preceding gear to a subsequent gear via a current gear in response to deceleration of the vehicle may include slip-controlling, continuously, a clutch which has been in an engaged state in the preceding gear, at least until a shift gear of the subsequent gear is engaged, wherein the slip-controlling includes maintaining the engaged state of the clutch with the current gear.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 15, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventors: Joung Chul Kim, Jong Sool Park, Byeong Wook Jeon
  • Patent number: 8777807
    Abstract: A method for releasing a tooth-on-tooth position of an interlocking shift element (6) of a transmission (5) or an interlocking shift element between two transmissions, such that the tooth-on-tooth position is released by using an actuator, in particular by using a transmission brake (8) or a drive clutch (7), and when a tooth-on-tooth position to be released is recognized, then depending on a drive-side or input-side rotational speed of the interlocking shift element (6), depending on a synchronous speed of the same and as a function of the actuators (3, 7, 8) available for releasing a tooth-on-tooth position, at least one actuator is selected, by using which the drive-side or input-side speed of the interlocking shift element (6) is approximated to its synchronous speed.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 15, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Florian Schneider, Mario Steinborn
  • Patent number: 8775039
    Abstract: A motorized vehicle includes a transmission system and an inch/brake device providing at least two ranges of motion. An engagement force of the transmission system is provided in a first range of motion of the inch/brake device, and a braking force of the motorized vehicle is provided in a second range of motion of the inch/brake device. An accelerator device moves between two or more positions, wherein moving the accelerator device from one position to another position causes an amount of overlap between the first and second ranges of motion of the inch/brake device to vary.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: July 8, 2014
    Assignee: NMHG Oregon, LLC
    Inventors: Chenyao Chen, Kristian Ressler
  • Patent number: 8775036
    Abstract: When a capacity coefficient (Cre) of a torque converter is larger than or equal to a predetermined threshold (CreA), a speed ratio (e) is calculated on the basis of an actual power transmission efficiency (?) by referring to a predetermined unique relationship between a power transmission efficiency (?) and a speed ratio (e). Therefore, even in a second speed ratio variation range (R2) in which the capacity coefficient (Cre) is larger than or equal to the threshold (CreA) and the speed ratio (e) is not uniquely determined for the capacity coefficient (Cre), the speed ratio (e) is calculated using the unique relationship between the speed ratio (e) and the power transmission efficiency (?), so the speed ratio (e) may be calculated in all the speed ratio variation range of the torque converter.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 8, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Daisuke Inoue
  • Patent number: 8744653
    Abstract: A control apparatus for controlling a transmission apparatus that includes: an input member that is drivably connected to a rotating electrical machine being capable of generating regenerative torque based on an engine and a deceleration request of a vehicle; an output member that is drivably connected to wheels; and a speed change mechanism that has a plurality of friction engagement elements that are controlled to be engaged and released so as to switch a plurality of shift speeds, and that shifts a rotation speed of the input member at one of gear ratios set for the shift speeds and outputs the shifted speed to the output member.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 3, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Shigekazu Hase, Hiroya Ueno, Kohei Tsuda, Eiji Moriyama, Hiroshi Tsutsui
  • Patent number: 8740748
    Abstract: A hydraulic control system and method for controlling a dual clutch transmission includes a plurality of pressure and flow control devices and logic valve assemblies in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the pressure control solenoids and the flow control solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: June 3, 2014
    Assignee: GM Global Technology Operations, LLC
    Inventors: Steven P. Moorman, Philip C. Lundberg, John R. Czoykowski, Bret M. Olson, Christopher Jay Weingartz
  • Patent number: 8734282
    Abstract: A method of operating at least one form-locking shifting element of an automatic transmission integrated in a drivetrain which comprises an oil pump that can be driven mechanically by an internal combustion engine and an auxiliary oil pump that can be electrically driven, before start-up of the internal combustion engine. The method including the steps of recognizing the start-up of the combustion engine and, when a start-up of the combustion engine is recognized, controlling the electrically driven auxiliary oil pump and the at least one form-locking shifting element such that, directly after the generation of a defined rotational speed difference of the at least one form-locking shifting element by the internal combustion engine, the at least one form-locking shifting element is engaged.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: May 27, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Ruben Cuppers, Thilo Schmidt
  • Publication number: 20140141935
    Abstract: A vehicle includes a clutch that couples an engine to a transmission via a flywheel, a clutch actuator, and a controller configured to receive an obstructed launch command, elevate an engine operation, for a fixed period of time, beyond a typical launch operation upon receipt of the obstructed launch command, and engage the clutch against the flywheel for at least a portion of the fixed period of time.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: Eaton Corporation
    Inventor: Gregory D. Huff
  • Patent number: 8731793
    Abstract: A mobile machine includes a propulsion system. The propulsion system may include a prime mover, a traction device, and a clutch operable to transmit power produced by the prime mover to the traction device. The propulsion system may also include propulsion-system controls operable to control the clutch. The propulsion-system controls may include at least one information processor configured to estimate a temperature of the clutch based at least in part on an estimated slippage of the clutch and a fluid temperature.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 20, 2014
    Assignee: Caterpillar Inc.
    Inventors: Mirko V. Barbir, Stacy Linn Grove, Yun Liu, Gerry Owen McCann, John Dewey Gates
  • Patent number: 8702564
    Abstract: A hydraulic control system and method for controlling a dual clutch transmission includes a plurality of pressure and flow control devices and logic valve assemblies in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the pressure control solenoids and the flow control solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven P. Moorman, Philip C. Lundberg, John R. Czoykowski, Bret M. Olson, Christopher Jay Weingartz
  • Patent number: 8700279
    Abstract: A method for optimizing a shift event in a vehicle includes designating a clutch to be used as an oncoming clutch or an offgoing clutch in the shift event before executing the shift event, and processing a plurality of input values through a state observer to thereby determine, as an output value of the state observer, an estimated slip speed of the designated clutch. The method includes using a proportional-integral control module for the designated clutch (a clutch PI) to close the control loop on the estimated slip speed from the state observer, thereby smoothing a switching between state space equations in the state observer, and executing the shift event. A vehicle includes a transmission, an engine, at least one traction motor, and a control system configured for executing the above method.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: R. Anthony Hansen, Robert L. Morris
  • Patent number: 8696518
    Abstract: A method for controlling a transmission includes using signals of first solenoids to control first and second clutches, servos of first gears and servos of second gears, using signals of a second solenoid to establish a flow rate to cool the clutches and to actuate the servo that is associated with a selected gear, and using signals of a third solenoid to direct the flow rate to one of the clutches and to engage the selected gear.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 15, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Steven A. Frait, Steven G. Thomas
  • Patent number: 8694219
    Abstract: The invention relates to a process of ending a clutch protection function against overload of an automated clutch. The clutch protection function is ended when, by actuating the gas- and brake pedals, an absolute value of a brake pedal signal falls below a default threshold value and the time derivative of the brake pedal signal is negative.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: April 8, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Michael Bechmann
  • Publication number: 20140094344
    Abstract: A system and method for selectively opening a drivetrain of a vehicle is described. In one example, an electrically operated clutch is opened during selected driving conditions to conserve kinetic energy of the vehicle. The method may reduce fuel consumption during selected conditions.
    Type: Application
    Filed: December 3, 2013
    Publication date: April 3, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Chris Edward Pedlar, Urs Christen, Rainer Busch, Chris Connelly, Ingo Lenz, Harry Cho
  • Publication number: 20140088842
    Abstract: A system and method are provided for controlling an automatic engine stop-start in conjunction with a transmission having one or more latching valves. The system and method is configured to determine whether conditions are met for an autostop, and if so, to latch or unlatch the latching valve(s) by changing clutch pressure.
    Type: Application
    Filed: August 9, 2013
    Publication date: March 27, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Craig S. Ross
  • Publication number: 20140080673
    Abstract: Embodiments of the present invention provide a motor vehicle having: a prime mover; first and second groups of one or more wheels; and a driveline to connect the prime mover to the first and second groups of one or more wheels such that the first group of one or more wheels and not the second group may be driven by the prime mover when the driveline is in a first mode of operation and both the first and second group of one or more wheels may be driven by the prime mover when the driveline is in a second mode of operation, the driveline including an auxiliary portion comprising a first releasable torque transmitting means, a prop shaft and a second releasable torque transmitting means, the first releasable torque transmitting means being operable to connect a first end of the prop shaft to the prime mover, the second releasable torque transmitting means being operable to connect a second end of the prop shaft to the second group of one or more wheels, the vehicle further comprising control means operable to co
    Type: Application
    Filed: February 20, 2012
    Publication date: March 20, 2014
    Inventors: Pete Stares, Ian Beverley, Brett Hallam, Shaun Wick, Russell Osborn, Mark Rathbone
  • Patent number: 8668623
    Abstract: A continuously variable transmission (CVT) system including a primary clutch assembly with an engine braking assembly is provided. The primary clutch assembly includes first and second sheave assemblies, a cylindrical sleeve coupler and an engine braking assembly. The first sheave portion has a centrally extending post. The cylindrical sleeve coupler is rotationally mounted on a portion of the post. The sleeve coupler has an engaging surface that is configured to engage an inner face of a drive belt. The second sheave portion has a central passage that is rotationally mounted on the sleeve coupler.
    Type: Grant
    Filed: June 5, 2010
    Date of Patent: March 11, 2014
    Assignee: TEAM Industries, Inc.
    Inventors: Zoran Vuksa, Bruce A. Nelson, Shane C. Okeson
  • Patent number: 8666618
    Abstract: A machine control system for use with a machine having a power source and a transmission is disclosed. The machine control system may have a clutch configured to connect an output of the power source with an input of the transmission. The machine control system may also have a sensors configured to generate signals indicative of machine operations, and a controller in communication with the clutch and the sensors. The controller may be configured to determine the current machine application based on the signals, and vary an actuating force of the clutch based on the type of machine application.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: March 4, 2014
    Assignee: Caterpillar Inc.
    Inventors: Hong-Chin Lin, Rami Nabil Nasrallah
  • Patent number: 8652003
    Abstract: A transmission configured with a speed change control unit which, when upshifting the speed in an accelerator on condition, executes an engagement control including a torque phase control after executing a filling control, which controls the hydraulic control unit in such a way that a hydraulic servo of the engagement side frictional engagement element is filled with hydraulic oil, and a standby control, which controls the hydraulic control unit in such a way that hydraulic pressure for the hydraulic servo is maintained at a preset standby pressure. A correction unit is configured to correct at least one of an execution time of the filling control and the standby pressure to an increment side when a fluctuation in a rotational acceleration of the input shaft exceeding a preset determination reference is detected after the standby control.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: February 18, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Shigekazu Hase, Nobuhiro Iwai, Hiroshi Tsutsui
  • Patent number: 8655560
    Abstract: A control apparatus and a control method for a vehicular drive apparatus that includes a driving power source, and a power transmission device that transmits power from the driving power source to a drive wheel are provided. It is determined that a malfunction occurs in the power transmission device, when a comparison value remains equal to or above a predetermined value for a predetermined period. The comparison value is obtained by making a comparison between an actual value and a theoretical value that relate to a rotational speed of a predetermined rotational member that constitutes at least a part of the vehicular drive apparatus. The predetermined period is set according to an operating state of the power transmission device. Thus, it is possible to reduce the possibility that it is erroneously determined that a malfunction occurs, and to quickly determine that a malfunction occurs.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tooru Matsubara, Atsushi Tabata, Masakazu Kaifuku, Hidenori Katoh
  • Patent number: 8641579
    Abstract: A method is proposed for controlling a through-connection clutch of a vehicle, in which an interlocking portion of the clutch is opened when the drive-train is virtually free from torque, a shifting operation is then carried out, and after the shifting operation the clutch is closed again. According to the invention, the torque transmitted by the interlocked connection in the clutch is influenced by controlling the motor in order to produce a torque-free condition at the interlocked connection in the clutch, in such manner that the interlocked connection is pre-stressed before the torque-free condition has been reached and separated immediately only when the torque-free condition is reached.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 4, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Rainer Petzold, Peter Herter, Mario Steinborn, Franz Bitzer
  • Publication number: 20140005000
    Abstract: The invention relates to a method for controlling a friction clutch in a drive train of a motor vehicle by means of a clutch actuator on the basis of a clutch model, in which method a nominal characteristic curve of the clutch moment which is transmitted via the friction clutch is adapted continuously to actual operating parameters. In order to counteract a loss of comfort of the motor vehicle, which is caused by the running-in behavior, for example, of the friction linings of the friction clutch, the friction clutch is operated by way of different sets of operating parameters during a running-in phase and in a run-in phase of the friction clutch.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 2, 2014
    Applicant: Schaeffler Technologies AG & Co., KG
    Inventors: Ekkehard Reibold, Georg Goeppert, Loyal George MacMillian
  • Patent number: 8615349
    Abstract: A method of detecting filling of a hydraulic cylinder and incipient full engagement of a hydraulically operated clutch of a vehicular transmission utilizes a pressure sensor disposed in a hydraulic line to the clutch cylinder which provides a signal that the hydraulic pressure has dropped as the clutch cylinder begins to fill and also that the pressure has returned to a substantially normal level. The pressure sensor may be a continuously variable output device such as an analog sensor, pulse width modulation (PWM) sensor, a similar device or, less desirably, a two state sensor. An iterative algorithm utilizes data from the sensor and a timer to determine when clutch fill is complete.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: December 24, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Vijay A. Neelakantan, Bret M. Olson
  • Patent number: 8585550
    Abstract: A coast stop vehicle includes a hydraulic pressure supplying unit which supplies a hydraulic pressure to the transmission while the engine is stopped, a coast stop start condition judging unit which judges whether or not a coast stop start condition holds, a coast stop control unit which stops the engine when the coast stop start condition is judged to hold by the coast stop start condition judging unit and starts the engine when receiving an acceleration request from a driver during the coast stop, a transmission control unit which causes a downshift of the transmission when receiving the acceleration request from the driver during the coast stop, and a hydraulic control unit which supplies the hydraulic pressure to an after-shift frictional engagement element which realizes a gear position after the downshift of the transmission during the coast stop.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 19, 2013
    Assignee: Jatco Ltd
    Inventors: Shinichiro Watanabe, Keichi Tatewaki, Naohiro Yamada, Noritaka Aoyama