Fluid Pressure Control Patents (Class 477/50)
-
Patent number: 11447264Abstract: A power generation controller of an aircraft includes a low-temperature start-up control section and a power generation control section. When it is determined that an oil temperature of a hydraulic actuator configured to change an operation position of a speed change element of a hydraulic transmission satisfies a predetermined low-temperature condition when starting up an aircraft engine, the low-temperature start-up control section sets a power generator to a power non-generating state and controls the hydraulic actuator such that the speed change element is positioned at an acceleration side of a median in a speed change range. When it is determined that the oil temperature satisfies a predetermined low-temperature start-up completion condition, the power generation control section sets the power generator to a power generating state and controls the hydraulic actuator in accordance with a rotational frequency of the aircraft engine.Type: GrantFiled: October 21, 2019Date of Patent: September 20, 2022Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHAInventors: Kenichi Nakashima, Satoshi Ootsuki, Shuma Kobayashi, Kippei Matsuda
-
Patent number: 10979662Abstract: A method and system for inhibiting shutdown of a mobile data recorder of a mobile digital audio/video recording (MDVR) system in a vehicle while a download is active. The method including identifying if a data download is currently in process and the vehicle is in an OFF powered state and ascertaining if at least one of whether the data download is complete, and a data network connection for conducting the download is not available, and executing a shutdown of the MDVR system. Otherwise, inhibiting shut down of the MDVR system, determining if a selected condition for maintaining the inhibiting is false and executing a shutdown of the MDVR system, and repeating the ascertaining, inhibiting, and determining.Type: GrantFiled: June 21, 2018Date of Patent: April 13, 2021Assignee: SEON DESIGN (USA) CORP.Inventor: Thomas J. Predmore, II
-
Patent number: 9371905Abstract: A torque sharing rate is set as a constraint of a motion equation of an automatic transmission by using a gear shift model in which gear shift target values are set by two values of a torque on a rotating member on an output shaft side and a rotation speed variation of a rotating member on an input shaft side. In addition, a first gear shift according to the gear shift control and a second gear shift that uses a gear shift model in which the gear shift target value is set using only the velocity variation of the rotating member on the input shaft side to enable a speedier gear shift than the first gear shift are selectively executed.Type: GrantFiled: January 13, 2014Date of Patent: June 21, 2016Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Keisuke Ota, Yoshio Hasegawa, Seiji Masunaga
-
Patent number: 9014934Abstract: A method of controlling a pump for a hybrid transmission includes commanding a first line pressure of the transmission and deriving a first torque value—an open-loop torque value—from the first line pressure command, and commanding the pump to operate at the first torque value. The method monitors actual speed of the pump and derives a second torque value—a closed-loop torque value—therefrom. A third torque value is derived from the first and second torque values, and the pump commanded to operate at the third torque value. A first speed value may be derived from the first line pressure command, and the second torque value derived from the difference between the monitored and the first speed values. Deriving the third torque value may include a substantially-linear combination of the first and second torque values.Type: GrantFiled: May 19, 2009Date of Patent: April 21, 2015Assignee: GM Global Technology Operations LLCInventor: Jy-Jen F. Sah
-
Patent number: 8958963Abstract: A method for controlling the pressure of hydraulic fluid supplied within a transmission of a work vehicle. The method may generally include receiving a signal associated with a load condition of the work vehicle, determining a desired pressure for the hydraulic fluid supplied within the transmission based on the load condition and controlling a valve such that hydraulic fluid is supplied within the transmission at the desired pressure, wherein the transmission includes an input shaft, a counter shaft and at least two driven shafts extending parallel to the input and counter shafts.Type: GrantFiled: March 15, 2013Date of Patent: February 17, 2015Assignee: CNH Industrial America LLCInventor: Yanming Hou
-
Patent number: 8892315Abstract: A method for controlling a continuously variable ratio transmission is described. The method may include controlling a continuously variable ratio unit (“variator”) having rotary input and output members through which the variator is coupled between an engine and a driven component, the variator receiving a primary control signal and being constructed and arranged to exert upon its input and output members torques which correspond directly to the control signal. The method may also include determining a target engine acceleration, determining settings of the variator's primary control signal and of an engine torque control for providing the required engine acceleration and adjusting the control signal and/or the engine torque control based on these settings, predicting a consequent engine speed change, allowing for engine and/or transmission characteristics, and correcting the settings of the control signal and engine torque based on a comparison of actual and predicted engine speeds.Type: GrantFiled: January 11, 2012Date of Patent: November 18, 2014Assignee: Torotrak (Development) LimitedInventors: Matthew Gibson Field, Stephen William Murray, Matthew Piers Burke
-
Patent number: 8855878Abstract: A system and method for controlling an accumulator in a transmission of a motor vehicle includes the steps of determining whether the motor vehicle has been turned off, sensing at least one operating condition of the motor vehicle, and comparing the at least one operating condition to a reference condition. If the at least one operating condition of the motor vehicle fulfills the reference condition and if the motor vehicle has been turned off then the accumulator is discharged.Type: GrantFiled: August 9, 2012Date of Patent: October 7, 2014Assignee: GM Global Technology Operations, LLC.Inventors: Paul G. Otanez, Zhen J. Zhang
-
Patent number: 8725373Abstract: A control apparatus of an automatic transmission including a start intended operation detecting unit detecting a vehicle starting operation; and a clutch control unit engaging the clutch from the clutch disengaged state and the automatic speed change mechanism is placed in a neutral state, when the vehicle starting operation is detected. The clutch control unit includes an initial engagement control unit performing initial engagement control that starts frictional contact of the clutch by supplying hydraulic pressure to a hydraulic servo of the clutch, and a slip start control unit establishing a speed ratio of the automatic speed change mechanism at the start by slip-controlling the clutch after the initial engagement control is terminated, thereby increasing output shaft rotational speed of the automatic speed change mechanism without reducing the input shaft rotational speed of the automatic speed change mechanism to less than the input shaft rotational speed at the end of initial engagement control.Type: GrantFiled: March 30, 2011Date of Patent: May 13, 2014Assignee: Aisin AW Co., Ltd.Inventors: Hiroshi Tsutsui, Yutaka Teraoka, Masatake Ichikawa, Shoji Omitsu
-
Patent number: 8600635Abstract: When a select lever is in a drive range, a microcomputer reads a value of an output voltage by a switch-operation-signal output circuit after detecting that both shift-up switch and shift-down switch are substantially simultaneously turned on, checks whether or not the output voltage by the switch-operation-signal output circuit is the output voltage indicating that the switch after a predetermined time has elapsed is in a normal condition, and only when the output voltage is such an output voltage, permits a manual mode of an automatic transmission and when the output voltage is not such an output voltage, cancels the manual mode.Type: GrantFiled: June 24, 2011Date of Patent: December 3, 2013Assignee: Honda Motor Co., Ltd.Inventors: Kazuyoshi Wakita, Yoshiyuki Nagayama
-
Patent number: 8489296Abstract: In a controller for a belt-type continuously variable transmission including a hydraulic actuator that changes a groove width of a primary pulley, a hydraulic actuator that changes a groove width of a secondary pulley, and a belt clamping pressure control solenoid that controls the hydraulic pressure supplied to the hydraulic actuator of the secondary pulley, a mechanism calculates a transmission ratio between the primary pulley and the secondary pulley and determines whether or not there is belt slippage based on that calculated transmission ratio, and a mechanism determines normalcy of the belt clamping pressure control solenoid. The input torque when belt slippage has actually occurred, i.e., when a failure has been determined, is used as a condition when performing the normalcy determination.Type: GrantFiled: December 10, 2008Date of Patent: July 16, 2013Assignee: Toyota Jidosha Kabushiki KaishaInventors: Naoto Tanaka, Shinya Toyoda, Akira Hino, Yasunari Matsui
-
Patent number: 8483898Abstract: A vehicle includes a clutch set, a tank with fluid, an auxiliary battery, an electric fuel pump, and a controller. The electric fluid pump delivers some of the fluid from the tank to a designated oncoming clutch of the clutch set. The controller calculates a predicted flow value for the oncoming clutch during the shift event, and selectively controls the speed of the pump using the predicted flow value during the shift event. The controller controls the pump using an actual flow value when the vehicle is not executing a shift event, i.e., when holding torque. The speed of the electric fluid pump is increased to a first calculated speed determined using the predicted flow value when the shift event is initiated and before filling of the oncoming clutch commences, and is reduced to a second calculated speed determined using the actual flow value when the shift event is complete.Type: GrantFiled: November 19, 2010Date of Patent: July 9, 2013Assignee: GM Global Technology Operations LLCInventors: Ali K. Naqvi, Jy-Jen F. Sah
-
Patent number: 8393999Abstract: In a hydraulic control system for a transmission, line pressure Pl is adjusted in accordance with a second solenoid pressure Psls if the ratio of a first sheave pressure Pin with respect to a second solenoid pressure Psls is equal to or less than the gain ?. If not so, the line pressure Pl is adjusted in accordance with the first sheave pressure Pin. Consequently, the gain ? of the first sheave pressure Pin with respect to a first solenoid pressure Pslp at a first sheave pressure adjustment valve 16 and the gain ? of a second sheave pressure Pout with respect to the second solenoid pressure Psls at a second sheave pressure adjustment valve 17 can be individually set while the line pressure Pl can be suppressed to the substantially requisite minimum in the entire control region.Type: GrantFiled: August 25, 2008Date of Patent: March 12, 2013Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yusuke Ogata, Ryoji Habuchi, Toshihiro Aoyama
-
Patent number: 8392077Abstract: A linear solenoid is configured with an electromagnetic coil and a label resistor that are integrated with each other; the label resistor has a resistance value corresponding to a correction coefficient based on the difference between the actual characteristic of the supply current vs. adjusted hydraulic pressure output of the electromagnetic coil and a standard characteristic; and data for correcting a characteristic variation in the command current vs. output current characteristic of an electromagnetic coil is preliminarily stored in a control module by use of an adjustment tool. When the operation is started, the resistance value of the label resistor is read and an output current corresponding to a utilized linear solenoid is supplied, so that a target adjusted hydraulic pressure is obtained.Type: GrantFiled: August 29, 2012Date of Patent: March 5, 2013Assignee: Mitsubishi Electric CorporationInventors: Shozo Kanzaki, Fumiaki Arimai, Hiroyoshi Nishizaki
-
Patent number: 8306708Abstract: A control device for a vehicular automatic transmission which can realize a shifting with quickened response with suppressing a turbine blow-up during the shifting is provided. When a response in hydraulic pressure control by a hydraulic pressure control circuit 42 fails to satisfy a preset predetermined determining criterion, a shifting response is prevented from improving, in comparison to a case where the determining criterion is satisfied. Under a relatively low response of the hydraulic pressure control by the hydraulic pressure control circuit 42 due to air mixture to working oil, a control to inhibit a high-response shifting or the like is performed, so that a turbine blow-up caused by a delayed response of hydraulic pressure can be prevented. Thus, the control device for the vehicular automatic transmission can be provided, which can realize the shifting with quickened response, with suppressing the turbine blow-up during the shifting.Type: GrantFiled: September 2, 2009Date of Patent: November 6, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Keisuke Ota, Hitoshi Matsunaga, Koji Oshima
-
Patent number: 8296024Abstract: The described system and method allow a controller to calibrate a transmission variator of a continuously variable transmission for torque control by obtaining static and dynamic qualities and parameters of the variator through an automated calibration procedure. The system and method employ a pair of transmission mode configurations and operational configurations in combination to obtain system-specific information. In this way, the system is able to calibrate out the system variations to provide effective feed forward torque control of the continuously variable transmission. In an embodiment, a first calibration operation is performed while the transmission is neutralized and a second calibration operation is performed while the transmission is engaged in a mode providing a fixed variator output speed.Type: GrantFiled: June 18, 2010Date of Patent: October 23, 2012Assignee: Caterpillar Inc.Inventors: Jason Stoller, Chad Brickner, Brian Lister
-
Patent number: 8287409Abstract: A hydraulic control system of continuously variable transmission includes: a first sheave pressure regulating valve (17) that regulates a line pressure (Pl), which is used for hydraulic control as a source pressure, to obtain a first sheave pressure (Pin); a fail-safe valve (19) that selects and outputs any one of the first sheave pressure (Pin) or a fail-safe hydraulic pressure (second sheave pressure Pout) that is applied to a drive pulley (21) at the time of a failure due to an excessive first sheave pressure (Pin) to the drive pulley (21); and a first regulator valve (12) and a second regulator valve (13) that regulate the line pressure (Pl). An output pressure (Psf) of the fail-safe valve (19) is supplied to the first and second regulator valves (12 and 13) in a feedback manner as a drive pulley (21) side hydraulic pressure to thereby regulate the line pressure (Pl).Type: GrantFiled: December 23, 2008Date of Patent: October 16, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yusuke Ogata, Toshihiro Aoyama
-
Patent number: 8241179Abstract: A hydraulic control apparatus of a continuously variable transmission of a hybrid vehicle may include a D-N control valve that converts a state, in which a hydraulic pressure is supplied from a line regulator valve to a solenoid feed valve through a second regulator valve according to changes of a driving pulley control pressure and a clutch lubrication control pressure with respect to driven pulley control pressure, and a state, in which the hydraulic pressure from the line regulator valve is directly supplied to the solenoid feed valve, into each other.Type: GrantFiled: October 23, 2009Date of Patent: August 14, 2012Assignee: Hyundai Motor CompanyInventor: Yonguk Shin
-
Patent number: 8226529Abstract: A sensor is placed in proximity to a chain of a continuously variable transmission, and a pulse is output by detecting pins. Moreover, there is provided a control section that determines theoretical speed of the chain from numbers of input and output rotations of the continuously variable transmission; that determines actual speed of the chain from an output from the sensor; that determines slippage from the speeds; and that controls clamping force of the continuously variable transmission so as to make slippage close to a reference value.Type: GrantFiled: October 19, 2007Date of Patent: July 24, 2012Assignee: JTEKT CorporationInventors: Yves Rothenbuhler, Shigeo Kamamoto
-
Patent number: 8202197Abstract: A hydraulic pressure control apparatus includes a primary regulator valve that regulates a pressure discharged from an oil pump to form a line pressure that is used as an original pressure for a hydraulic pressure that is supplied to each element, and a secondary regulator valve that regulates a hydraulic pressure downstream of the primary regulator valve to form a secondary pressure. Two pilot pressures (first modulator hydraulic pressure, control hydraulic pressure from a duty solenoid) are supplied to the secondary regulator valve. The secondary regulator valve is configured in such a manner that when one of the pilot pressures changes, a change in the one of the pilot pressures is absorbed by the other pilot pressure.Type: GrantFiled: April 24, 2009Date of Patent: June 19, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yusuke Ogata, Toshihiro Aoyama
-
Patent number: 8192326Abstract: Rotation-stop determining portion queries as to whether the first rotary element is lowered in a rotation speed to be stopped during an engine drive mode. If the answer is YES and differential-portion rotation speed determining portion makes a positive determination, then engaging-element control-executing portion executes engaging element control. This allows a third rotary element of the differential portion, connected to drive wheels via an engaging element of an automatic shifting portion, to approach a state available to freewheel. This prevents a second rotary element and a first electric motor from reaching high-speed rotations caused by a decrease in rotation speed of the first rotary element in a stop direction and a differential action of the differential portion. This enables the prevention of a durability decrease of a power distributing mechanism and the first electric motor.Type: GrantFiled: September 25, 2008Date of Patent: June 5, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata, Masakazu Kaifuku
-
Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission
Patent number: 8170762Abstract: A method for controlling a hydraulic flow within a powertrain comprising an electromechanical transmission mechanically-operatively coupled to an engine adapted to selectively transmit power to an output, wherein the transmission utilizes a hydraulic control system serving a number of hydraulic oil consuming functions includes monitoring minimum hydraulic pressure requirements for each of the functions, determining a requested hydraulic pressure based upon the monitoring minimum hydraulic pressure requirements and physical limits of the hydraulic control system including a maximum pressure, determining a desired flow utilizing a hydraulic control system flow model based upon the requested hydraulic pressure, and utilizing the desired flow to control an auxiliary hydraulic pump.Type: GrantFiled: October 13, 2008Date of Patent: May 1, 2012Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke AktiengesellschaftInventors: Michael D. Foster, Eric S. Tryon, Jy-Jen F. Sah, Ali K Naqvi -
Patent number: 8096906Abstract: When a vehicle decelerates rapidly, a lower limit secondary pulley pressure (Plmt) is calculated on the basis of a primary pulley rotation speed (Npri) detected by a primary pulley rotation sensor. When a deceleration speed (Gdata) is greater than a predetermined deceleration speed (G1) and a secondary pulley pressure (Psec) detected by a secondary pulley pressure sensor is lower than the lower limit secondary pulley pressure (Plmt), it is determined that slippage is about to occur in a V-belt 4 on a primary pulley side in particular, and therefore speed ratio fixing control is performed.Type: GrantFiled: December 13, 2007Date of Patent: January 17, 2012Assignee: Jatco LtdInventors: Takuichiro Inoue, Hiroki Iwasa, Hiroyasu Tanaka, Yoshihisa Kodama
-
Patent number: 8092341Abstract: A method of controlling a transmission (e.g., CVT) comprises dividing the entire range of an input torque to a transmission from an engine into a plurality of partial torque ranges; setting the maximum torque of the respective partial torque ranges as a representative torque of the respective partial torque ranges; and setting a target hydraulic pressure, which is to be provided to the transmission, according to the representative torque and a predetermined target speed ratio. The method allows a target hydraulic pressure for controlling a transmission to be maintained constant even though an input torque from an engine is changed, and allows the transmission to maintain a speed ratio constant, thereby ensure a stable and smooth ride.Type: GrantFiled: October 29, 2008Date of Patent: January 10, 2012Assignees: Kia Motors Corporation, Hyundai Motor CompanyInventor: Howook Lee
-
Patent number: 8088036Abstract: A vehicle drive control device includes a continuously variable transmission mechanism (hereinafter referred to as CVT (6) of a torque control type capable of continuously varying a transmission gear ratio, and a controller (34) which controls operations of the CVT (6) and an engine (2). The controller (34) includes a first control section (43; 43A) which controls a torque of the CVT (6) based on a target transmission input torque (TTRN,T), and a second control section (44) which controls a torque of the engine (2) based on a target engine rotation speed (?e,T).Type: GrantFiled: September 29, 2006Date of Patent: January 3, 2012Assignee: JTEKT CorporationInventors: Robert Fuchs, Yasuhiko Hasuda
-
Patent number: 8057354Abstract: Systems and methods for efficiently and effectively controlling the rate of change of ratio, not simply the ratio, in a CVT. By controlling the rate of change of ratio, the acceleration or deceleration of a vehicle can be controlled in an efficient manner. Furthermore, the rate of change of ratio can be controlled by controlling the clamping pressure of the pulleys and/or differential pressure between the pulleys with minimal slip by using a servo control mechanism adapted for control by a system controller based on equilibrium mapping and other control parameters.Type: GrantFiled: April 5, 2010Date of Patent: November 15, 2011Assignee: The Regents of the University of CaliforniaInventors: Andrew A. Frank, Thomas Dreumont
-
Patent number: 8056666Abstract: A vehicle powertrain includes an engine capable of being selectively turned on and turned off, a transmission operatively connected to the engine, and a hydraulic control system including a pump in fluid communication with the transmission. The pump is operatively connected to the engine for supplying fluid to the transmission when the engine is on, wherein the pump is idle when the engine is off. The hydraulic control system additionally includes an accumulator arranged to accumulate the fluid when the engine is on. The accumulator is also controlled to accumulate fluid when the engine is on, to retain the fluid when the engine is turned off, and to discharge the fluid to the transmission when the engine is restarted.Type: GrantFiled: April 22, 2009Date of Patent: November 15, 2011Assignee: GM Global Technology Operations LLCInventors: Micheal P. Portell, Daryl A. Wilton, Carlos E. Marin, Leonid Basin, Ajit S. Grewal
-
Patent number: 8016718Abstract: A vehicle drive unit is provided which includes a hydraulic circuit capable of efficiently supplying a hydraulic pressure from an accumulator to a hydraulic servo while minimizing the capacity of the accumulator. In a hydraulic circuit included in a continuously variable transmission, an accumulator is connected through an electromagnetic switch valve to an oil passage connecting a clutch pressure control valve and a manual valve, a one-way valve for allowing oil to flow only in the direction from the clutch pressure control valve toward the accumulator and the forward clutch is provided in the oil passage. The electromagnetic switch valve switches an oil passage to a communicating state when the oil pump is driven and switches the oil passage to a shut-off state when the oil pump is stopped.Type: GrantFiled: November 18, 2008Date of Patent: September 13, 2011Assignee: Aisin AW Co., Ltd.Inventors: Atsuya Ohshima, Shigeo Tsuzuki, Mitsugi Yamashita, Haruki Shirasaka
-
Patent number: 7935023Abstract: In the case where a belt return of a continuously variable transmission is not determined when the vehicle speed has become equal to or lower than a threshold value, control that causes a hydraulic actuator to have an intermediate pressure by setting a duty of a duty solenoid based on an input torque and an oil temperature and closing control are repeatedly performed, in accordance with the running and the stopping of the vehicle. As a result, it is possible to inhibit the continuously variable transmission from being shifted up due to a gradual increase in the hydraulic pressure in the hydraulic actuator caused by a line pressure seeping to the hydraulic actuator side through a small clearance in a spool of a flow rate control valve in a hydraulic circuit, and it is also possible to allow the continuously variable transmission to be shifted down.Type: GrantFiled: June 13, 2008Date of Patent: May 3, 2011Assignee: Aisin AW Co., Ltd.Inventors: Kiyoshi Kurita, Fumihiro Hazu
-
Patent number: 7917277Abstract: A control apparatus for a vehicular drive system including an electrically controlled differential portion having a differential mechanism, and an electric motor which is operatively connected to the differential mechanism and an operating state of which is controlled to control a differential state between input and output shaft speeds, and a transmission portion constituting a part of a power transmitting path between the differential portion and a vehicle drive wheel, the control apparatus including a differential-state switching portion for switching the differential portion between differential-state and non-differential states, a shifting control portion for controlling a shifting action of the transmission portion, and a learning control portion for effecting learning compensation of a control amount of a control element to be controlled during the shifting action, wherein the learning control portion includes a differential-state learning control portion operable to implement the learning compensationType: GrantFiled: March 12, 2008Date of Patent: March 29, 2011Assignee: Toyota Jidosha Kabushiki KaishaInventors: Atsushi Tabata, Tooru Matsubara, Yuji Iwase, Hiroyuki Shibata
-
Patent number: 7862473Abstract: An ECU executes a program including outputting, when the oil temperature THO of ATF<the threshold value THO (0), a control signal to the solenoid valve to control the solenoid valve to cause the lock-up relay valve to enter the state of resupplying the ATF discharged from the torque converter to the torque converter. In the state where the ATF discharged from the torque converter is being resupplied to the torque converter, the second oil path guiding the ATF discharged from the torque converter to the oil pan is disconnected from the torque converter.Type: GrantFiled: August 15, 2006Date of Patent: January 4, 2011Assignee: Toyota Jidosha Kabushiki KaishaInventors: Kazuaki Nakamura, Kazuyuki Watanabe
-
Patent number: 7835843Abstract: An ECU executes a program that includes a step of determining whether an output shaft rotation speed NOUT is equal to or greater than a reference rotation speed at which determining regions with all of the gear speeds in a stepped automatic transmission do not overlap, a step of determining that there is an abnormality in the gear speed by dividing the turbine rotation speed NT by the output shaft rotation speed NOUT if the output shaft rotation speed NOUT is not equal to or greater than that reference rotation speed, and a step of determining that there is an abnormality in the gear speed by subtracting a value, which is obtained by multiplying the output shaft rotation speed NOUT by the gear ratio, from the turbine rotation speed NT if the output shaft rotation speed NOUT is equal to or greater than that reference rotation speed.Type: GrantFiled: December 13, 2006Date of Patent: November 16, 2010Assignee: Toyota Jidosha Kabushiki KaishaInventors: Tatsuya Kawamura, Toshio Sugimura, Hideo Masaki
-
Patent number: 7774120Abstract: A control apparatus for an automatic transmission includes a control section having a normal control section configured to actuate the step motor at a first speed by using a feedback control including an integral control in accordance with the target pulley ratio and the actual pulley ratio, a high speed control section configured to actuate the step motor at a second speed higher than the first speed by an open loop control based on the target pulley ratio, a judgment section configured to judge whether there is a high speed operation request, and a switch section configured to select the normal control performed by the normal control section at a normal condition, and to switch to the high speed control when a switch start condition is satisfied, the switch start condition including a first condition that the judgment section judges there is the high speed operation request.Type: GrantFiled: October 30, 2006Date of Patent: August 10, 2010Assignee: JATCO LtdInventors: Midori Yamaguchi, Yoshihisa Kodama, Tatsuya Ozone, Toshiji Iida, Fumito Shinohara, Toshiyuki Shibuya, Atsufumi Kobayashi, Yusuke Kimura
-
Publication number: 20100162849Abstract: A piston actuated synchronizer system for a split torque transmission where the piston is attached directly to the synchronizer shift collar on the synchronizer centerline to provide the required actuation in a small volume of space and resolve fork and rod deflection issues seen on other synchronizers that use such a system. The piston is pressure applied and spring released. This design also uses a displacement sensor to monitor synchronizer engagement.Type: ApplicationFiled: December 31, 2008Publication date: July 1, 2010Inventors: Kraig M. Love, John M. Seipold, Glen P. Calvert
-
Patent number: 7713166Abstract: Systems and methods for efficiently and effectively controlling the rate of change of ratio, not simply the ratio, in a CVT. By controlling the rate of change of ratio, the acceleration or deceleration of a vehicle can be controlled in an efficient manner. Furthermore, the rate of change of ratio can be controlled by controlling the clamping pressure of the pulleys and/or differential pressure between the pulleys with minimal slip by using a servo control mechanism adapted for control by a system controller based on equilibrium mapping and other control parameters.Type: GrantFiled: July 30, 2007Date of Patent: May 11, 2010Assignee: The Regents of the University of CaliforniaInventors: Andrew A. Frank, Thomas Dreumont
-
Patent number: 7654935Abstract: A maximum flow calculating unit calculates a maximum amount of hydraulic fluid that can flow into or out of an input-side hydraulic cylinder when a shift control command signal is set to a reference DUTY value, based on an estimated valve pressure difference calculated by an estimated pressure difference calculating unit, and a post-guard target sheave position setting unit performs a guard process for restricting the amount of change of the sheave position, using a guard value calculated by a guard value calculating unit based on the maximum flow amount, so as to set a post-guard target sheave position. Since the thus set target sheave position does not undergo excessive large changes nor excessively small changes during shifting, a target value for shifting is set so that a feedforward controlled variable determined based on the amount of change of the target sheave position becomes an appropriate value.Type: GrantFiled: June 11, 2007Date of Patent: February 2, 2010Assignee: Toyota Jidosha Kabushiki KaishaInventors: Naoto Tanaka, Hiroji Taniguchi, Shinya Toyoda, Tadashi Tamura, Akira Hino, Yasunari Matsui
-
Publication number: 20100016118Abstract: A servo-assistance device (10) for a shift mechanism of a motor vehicle transmission, with which a characteristic curve can be produced which, as a function of a manual shifting force or a shift phase, has ranges of different gradients or proportionality to the manual shifting force. The servo-assistance device (10) includes an element (20) which is acted upon by the manual shifting force to be assisted. To produce the characteristic curve, the servo-assistance device (10) has components (42, 44, 50, 52) that are actuated by a servo-pressure (60) in such manner that the element (20) maintains its current position.Type: ApplicationFiled: October 2, 2007Publication date: January 21, 2010Applicant: ZF FRIEDRICHSHAFEN AGInventors: Dieter Fischer, Klaus Spath
-
Patent number: 7568995Abstract: A hydraulic control circuit that shuts off an oil passageway so that the ratio between the shift pressure and the belt clamping pressure is not caused to be in a predetermined relationship even when a speed change ratio control valve and/or a speed change ratio control valve are not supplying/discharging hydraulic oil. Therefore, even if the speed change ratio control valve and/or the speed change ratio control valve cease supplying/discharging the hydraulic oil, the action of a thrust ratio control oil pressure P? output from a thrust ratio control valve on a primary hydraulic cylinder is avoided. Thus, impairment of the continuity of control at the time of a shift of the continuously variable transmission is prevented.Type: GrantFiled: July 12, 2007Date of Patent: August 4, 2009Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yoshinobu Soga, Yusuke Ogata
-
Publication number: 20090143193Abstract: A vehicle drive unit is provided which includes a hydraulic circuit capable of efficiently supplying a hydraulic pressure from an accumulator to a hydraulic servo while minimizing the capacity of the accumulator. In a hydraulic circuit included in a continuously variable transmission, an accumulator is connected through an electromagnetic switch valve to an oil passage connecting a clutch pressure control valve and a manual valve, a one-way valve for allowing oil to flow only in the direction from the clutch pressure control valve toward the accumulator and the forward clutch is provided in the oil passage. The electromagnetic switch valve switches an oil passage to a communicating state when the oil pump is driven and switches the oil passage to a shut-off state when the oil pump is stopped.Type: ApplicationFiled: November 18, 2008Publication date: June 4, 2009Applicant: AISIN AW CO., LTD.Inventors: Atsuya Ohshima, Shigeo Tsuzuki, Mitsugi Yamashita, Haruki Shirasaka
-
Patent number: 7540825Abstract: A drive system of a working vehicle including a main engine drivingly connected to a hydraulic pump. The hydraulic pump is connected to first and second hydraulic motors. When an undesirable operating condition is detected, a control device shifts an actuator associated with at least one of the wheels, to reduce the displacement volume of the hydraulic motors driving that wheel. In addition, shifts are made in the actuator of the respective other hydraulic motor and/or in the actuator of the hydraulic pump, in order to maintain a constant speed of travel. The control device shifts the actuator of the hydraulic motor of the other wheel toward greater displacement, and if that shift is insufficient to compensate for the undesirable operating condition, the control device will shift the actuator of the hydraulic pump in the direction of reduced displacement volume.Type: GrantFiled: April 26, 2007Date of Patent: June 2, 2009Assignee: Deere & CompanyInventor: Jürgen Hofer
-
Publication number: 20090088290Abstract: A vehicle drive apparatus is disclosed having a differential mechanism and an electric motor provided in the differential mechanism for miniaturizing the drive apparatus or improving fuel consumption while suppressing the occurrence of shifting shocks. A switching clutch C0 or switching brake B0 is provided for placing a shifting mechanism 10 in a continuously variable shifting state and a step variable shifting state, enabling the drive apparatus to have combined advantages including a fuel economy improving effect of a transmission, enabled to electrically change a speed ratio, and a high transmitting efficiency of a gear type transmitting device enabled to mechanically transmit drive power.Type: ApplicationFiled: May 19, 2006Publication date: April 2, 2009Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Atsushi Tabata, Yuji Inoue, Atsushi Kamada
-
Patent number: 7387589Abstract: A shift control apparatus of a belt type continuously variable transmission is comprised of a controller which is arranged to set a first hydraulic pressure controlled variable based on a first target transmission ratio determined based on a vehicle traveling condition, to set a second hydraulic controlled variable based on a second target transmission ratio determined based on a predetermined transfer characteristic, to steplessly control the transmission ratio by controlling hydraulic pressures of primary and secondary pulleys hydraulic based on the first and second hydraulic pressure controlled variables, to detect at least one of the hydraulic pressures of the primary and secondary pulleys, and to correct the second target transmission ratio based on the detected hydraulic pressure.Type: GrantFiled: March 29, 2006Date of Patent: June 17, 2008Assignee: Jatco LtdInventors: Tsuyoshi Suzuki, Masaaki Uchida
-
Patent number: 7377878Abstract: A method for determining a slip value describing the reliability of torque transmission between two conical disk pairs of a continuously variable transmission. The conical disk pairs are frictionally engaged by an endless torque-transmitting component. The contact pressure between at least one conical disk pair and the endless torque-transmitting component is modulated, and the slip value is determined from the difference in rotational speeds of the conical disk pairs upon modulation of the contact pressure. The pressure modulation is carried out at a modulation frequency that is above the transmission ratio adjustment frequency of the transmission and at a predetermined amplitude.Type: GrantFiled: June 5, 2007Date of Patent: May 27, 2008Assignee: LuK Lamellen und Kupplungsbau Beteiligungs KGInventor: Michael Reuschel
-
Patent number: 7371204Abstract: A method and a system for reducing a jerk produced by the range shift of a transmission with a power division arrangement. The transmission includes a variable speed drive in the form of a continuously variable transmission, and a pair of planetary gear sets and a pair of shift clutches to enable power to be divided between two branches within the transmission. During a range shift between two operating ranges the variable speed drive is acted upon by a short-term transmission ratio adjustment impulse in such a way that a cancellation jerk caused thereby the adjustment impulse weakens the jerk caused by the range shift.Type: GrantFiled: March 21, 2005Date of Patent: May 13, 2008Assignee: LuK Lamellen und Kupplungsbau Beteiligungs KGInventors: Michael Reuschel, Martin Vorhnehm, Christian Lauinger, Bernhard Walter
-
Patent number: 7356399Abstract: There is provided a failure determination system for a continuously variable transmission of a belt type, which is capable of determining failure of control valves for performing speed varying operation, and enhancing maintainability. An ECU controls a transmission ratio of the transmission to a fixation-determining LOW-side range when the vehicle is standing. When the transmission ratio during stoppage of the vehicle is within a stop-time OD-side range if engine torque?OD-time DR-side reference torque and at the same time the transmission ratio<DN-side reference value hold, the ECU determines that the DR solenoid valve is faulty, and if the throttle valve opening?OD-side reference value, the transmission ratio?DN-side reference value, and at the same time a vehicle speed<OD-side reference value hold, the ECU determines that the DN solenoid valve is faulty.Type: GrantFiled: January 28, 2004Date of Patent: April 8, 2008Assignee: Honda Motor Co., Ltd.Inventors: Takahiro Eguchi, Ukyo Ogata, Takahiro Matsuda
-
Patent number: 7354377Abstract: A belt continuously variable transmission includes a primary pulley (1), a secondary pulley (2), a belt (3), a hydraulic pump (21), a speed ratio control valve (13) that regulates hydraulic pressure from the hydraulic pump (21) and supplies the hydraulic pressure to the primary pulley (1) and the secondary pulley (2), a motor (14) that drives the speed ratio control valve (13), a controller (11) that controls the motor (14), and an oil temperature sensor (26) that detects the temperature of a working fluid. The controller (11) stops energization to the motor (14) when the temperature of the working fluid becomes greater than a first predetermined temperature while the vehicle is at rest in an idling state.Type: GrantFiled: March 21, 2005Date of Patent: April 8, 2008Assignee: Jatco LtdInventors: Tetsuya Izumi, Hironori Nihei
-
Publication number: 20080058155Abstract: In a continuously variable transmission apparatus, by adjusting the transmission ratio of a toroidal continuously variable transmission, an output shaft can be stopped while an input shaft is left rotating in one direction by a drive source. And, when, while the vehicle is running, a select lever is operated to a select position in the reverse direction to the vehicle running direction, in a state where a clutch device is connected, the speed ratio of the continuously variable transmission apparatus is changed from a value corresponding to the vehicle running state to a value 0 capable of realizing the above-mentioned stopping state along a preset condition.Type: ApplicationFiled: May 21, 2007Publication date: March 6, 2008Applicant: NSK LTD.Inventor: Takumi SINOJIMA
-
Patent number: 7326147Abstract: A continuously variable transmission apparatus includes a toroidal continuously variable transmission, a planetary gear transmission and a clutch apparatus that connects the toroidal continuously variable transmission and the planetary gear transmission. The clutch apparatus includes: a low speed clutch a high speed clutch and a controller. The controller controls the transmission ratio of the toroidal continuously variable transmission so that rotational speeds of members connected via the clutch apparatus equals with each other, and then disengages the one of the low speed clutch and the high speed clutch after engaging the other, whereby an instance of simultaneously transmitting the power by the two clutches is set during a time period until disconnecting the other clutch after starting to transmit the power by the one clutch.Type: GrantFiled: March 9, 2005Date of Patent: February 5, 2008Assignee: NSK Ltd.Inventors: Takashi Imanishi, Eiji Inoue, Takumi Sinojima, Toshirou Toyoda
-
Patent number: 7261672Abstract: Systems and methods for efficiently and effectively controlling the rate of change of ratio, not simply the ratio, in a CVT. By controlling the rate of change of ratio, the acceleration or deceleration of a vehicle can be controlled in an efficient manner. Furthermore, the rate of change of ratio can be controlled by controlling the clamping pressure of the pulleys and/or differential pressure between the pulleys with minimal slip by using a servo control mechanism adapted for control by a system controller based on equilibrium mapping and other control parameters.Type: GrantFiled: March 19, 2004Date of Patent: August 28, 2007Assignee: The Regents of the University of CaliforniaInventors: Andrew A. Frank, Thomas Dreumont
-
Patent number: 7207920Abstract: A control device for controlling a V-belt CVT (Continuously Variable Transmission) which is connectible to a vehicle engine and comprises a primary variator and a secondary variator. The control device has a plurality of sensors which generate electronic measured values, comprising an engine speed sensor which generates a first measured value, and a power sensor which generates a second measured value which is related to the torque of an output drive shaft connected to the secondary variator. The control device further comprises an electronic control unit which is adapted to control the V-belt CVT based on said measured values. A V-belt CVT having a control device as stated above, and a method for controlling such a V-belt CVT are also provided.Type: GrantFiled: October 1, 2004Date of Patent: April 24, 2007Assignee: Pivario ABInventors: John Jonsson, Rolf Jonsson
-
Patent number: 7179196Abstract: A transmission controller commands a demand torque of an engine to an engine controller according to an actual secondary pulley pressure that is detected by a secondary pulley pressure sensor when a vehicle speed is 0 km/h and a state wherein gear ratio is equal to or higher than a predetermined gear ratio is continued for a first predetermined time or more. Thereby, since an input torque corresponding to a secondary pulley pressure which is actually generated is inputted to a primary pulley even when a failure occurs in the secondary pulley rotation sensor, engine performance of a vehicle can be ensured.Type: GrantFiled: March 29, 2005Date of Patent: February 20, 2007Assignee: Jatco LtdInventors: Hideki Oshita, Hiroyasu Tanaka, Takuichiro Inoue, Masahiro Yamamoto, Kousuke Abe