Control By Sensed Ambient Condition, Pattern Indicia, External Signal, Or Temperature Patents (Class 477/97)
  • Patent number: 8977454
    Abstract: A system and method are provided for grade-based anti-hunt shift control of an automatic transmission powering a machine. A shift controller determines a recommended gear in which to operate the transmission and sets an anti-hunt timer upon recommending a shift from a first gear to a second gear. The anti-hunt timer prevents a subsequent shift back to the first gear while the anti-hunt timer is running. A grade-based controller is configured to track machine operation and to determine when the machine operational factors change such that an estimated steady state gear differs from the second gear. When such a change is encountered, the grade-based controller clears the anti-hunt timer and sets a secondary timer. The clearing of the anti-hunt timer allows a downshift to accommodate the detected grade while the setting of the secondary timer prevents a subsequent clearing of the anti-hunt timer while the secondary timer is running.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 10, 2015
    Assignee: Caterpillar Inc.
    Inventors: Scott A. Tipton, James W. Landes, Justin L. Steinlage
  • Patent number: 8882635
    Abstract: A method for controlling a vehicle on an uphill incline includes automatically shifting a transmission to first gear, automatically stopping the engine, using wheel torque to maintain a one-way clutch engaged and to hold a transmission component against rotation, preventing vehicle rollback by automatically engaging a target gear and tying-up the transmission automatically restarting the engine, and automatically reengaging first gear.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: November 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Davor D. Hrovat, Steven G. Thomas, Alex O. Gibson, Roger L. Huffmaster
  • Patent number: 8849532
    Abstract: A method of managing clutch thermal loads in a multi-speed dual-clutch transmission (DCT) that is paired with an engine in a vehicle. The method includes assessing whether the vehicle is being accelerated and identifying a DCT clutch slipping during the acceleration. The method also includes determining vehicle parameters, determining an amount of time remaining for the clutch to stop slipping using the determined vehicle parameters, and determining an amount of time remaining until the clutch reaches a threshold temperature. The method additionally includes comparing the determined amount of time remaining for the clutch to stop slipping with the determined amount of time remaining until the clutch reaches the threshold temperature. Furthermore, the method includes activating an indicator if the determined amount of time remaining until the clutch reaches the threshold temperature is less than the determined amount of time remaining for the clutch to stop slipping.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Joseph B. Burtch
  • Patent number: 8849531
    Abstract: A method of managing clutch thermal loads in a multi-speed dual-clutch transmission (DCT) paired with an engine in a vehicle includes assessing whether the vehicle is being accelerated and ascertaining whether a position of a vehicle accelerator during the acceleration is maintained within a predetermined range. The method also includes identifying a DCT clutch that is being slipped during the acceleration, determining an amount of time remaining until the clutch stops slipping, and comparing a first preset time span indicative of the time remaining until the clutch reaches a threshold temperature with the amount of time remaining until the clutch stops slipping. The method additionally includes setting a time delay for activating an indicator if the amount of time remaining until the clutchs stops slipping is greater than the first preset time span. Furthermore, the method includes activating the indicator after the time delay.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Joseph B. Burtch
  • Publication number: 20140214295
    Abstract: A manner of managing operation of a machine is described for preventing damage/wear to movable machine components arising from operation of the machine/parts at excessive speed while the machine is traveling down a steep incline. The managing of the machine operation includes determining a downhill slope value in a machine direction of travel and then establishing a maximum commanded transmission output speed in accordance with the determined downhill slope value. Thereafter a maximum commanded gear ratio is established, for a transmission having a variable gear ratio, based upon the maximum commanded transmission output speed and a current engine speed. A controller compares the maximum commanded variable gear ratio to an operator requested gear ratio, and a target gear ratio is established for the variable gear ratio of the transmission based upon a minimum of the compared commanded variable gear ratio and the operator requested gear ratio.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: CATERPILLAR INC.
    Inventor: Christopher Elliott
  • Patent number: 8781695
    Abstract: A method and apparatus to control the pickup on an uphill slope of an automotive vehicle provided with an automatic or robotized gearbox provide the definition of a control strategy of the gear box operation, also according to the gradient of the uphill slope, which is preferably calculated based on a longitudinal acceleration value of the automotive vehicle, and based on the altitude at which the automotive vehicle can be found, which is preferably calculated based on a detected atmospheric pressure value. In this way, it is also possible to consider the reduction in the engine torque due to the reduction in the air density with altitude.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: July 15, 2014
    Assignee: Fiat Group Automobiles S.p.A.
    Inventors: Andrea Bianco, Claudio Cervone, Giuseppe Gatti, Giuseppe Lorusso, Euplio Pagliarulo, Francesco Cimmino
  • Patent number: 8753246
    Abstract: A method and a device are described for starting an internal combustion engine of a hybrid drive train, having an internal combustion engine and at least one additional machine, in particular an electric machine, a separating clutch, which is situated between the internal combustion engine and the additional machine, and a crankshaft angle sensor for detecting the instantaneous crankshaft angle of the internal combustion engine being provided.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: June 17, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Huber, Michael Lehner, Oliver Kaefer, Anja Winter-Mann
  • Publication number: 20140155223
    Abstract: A shift control device for a continuously-variable transmission has operation condition detecting means, which detect the operation conditions of a vehicle, a control means, which controls the transmission ratio of the continuously-variable transmission based on the operation conditions, an acceleration demand identifying means, which identifies whether acceleration is demanded by the driver, a linear mode setting means, which, based on the demand for acceleration, sets a linear mode, which provides the transmission ratio such that the input revolution speed of the continuously-variable transmission becomes high compared to a normal mode at the same vehicle speed, a front/rear G detecting means, which detects the front/rear G of the vehicle, and a linear mode cancelling means, which, when it is identified that acceleration is not demanded based on the front/rear G during drive in the linear mode, cancels the linear mode even under conditions to carry out the linear mode.
    Type: Application
    Filed: June 11, 2012
    Publication date: June 5, 2014
    Inventor: Tomoyuki Suzuki
  • Patent number: 8744703
    Abstract: A method, a system, a computer program and a computer program product for determining one or more shift points for a gearbox in a motor vehicle which comprises an engine connected to, in order to drive the gearbox. A shift point is defined by an engine speed at which the gearbox effects a downshift or upshift. The method uses one or more shift points determined on the basis of a change in road gradient.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: June 3, 2014
    Assignee: Scania CV AB
    Inventors: Fredrik Swartling, Mikael Wågberg, Mikael Öun
  • Patent number: 8731793
    Abstract: A mobile machine includes a propulsion system. The propulsion system may include a prime mover, a traction device, and a clutch operable to transmit power produced by the prime mover to the traction device. The propulsion system may also include propulsion-system controls operable to control the clutch. The propulsion-system controls may include at least one information processor configured to estimate a temperature of the clutch based at least in part on an estimated slippage of the clutch and a fluid temperature.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 20, 2014
    Assignee: Caterpillar Inc.
    Inventors: Mirko V. Barbir, Stacy Linn Grove, Yun Liu, Gerry Owen McCann, John Dewey Gates
  • Publication number: 20140128221
    Abstract: Methods and systems are provided for performing a multiple gear downshift of a transmission gear by transiently operating in an intermediate gear. In response to ambient humidity and a condensate level in a charge air cooler, the transmission gear may be downshifted from a higher gear to an intermediate gear, and then to a requested lower gear. Downshifting through an intermediate gear may also be controlled based on the gear shift request.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Chris Paul Glugla, Shuya Shark Yamada
  • Patent number: 8700253
    Abstract: A system is provided for collecting defect data of components in a passenger cabin of a vehicle that includes, but is not limited to a component identification device for identifying an affected component, and a malfunction selection device, connected to the component identification device, for selecting a malfunction of the identified component from a predefined quantity of component-specific malfunctions. The system includes, but is not limited to a locating device for acquiring a position of the affected component in the passenger cabin, with the aforesaid being connected to the component identification device. In this manner, by means of devices that are very simple to use, imprecise positioning information, component information and malfunction information can be avoided.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 15, 2014
    Assignee: Airbus Operations GmbH
    Inventor: Daniel Fischer
  • Patent number: 8690729
    Abstract: A device for controlling ISG logic is mounted in a vehicle equipped with an ISG system. The device includes a brake pedal switch, a shift lever switch that shows the current state of a gear of the vehicle, an inclination sensor that is mounted in the vehicle and measures the inclination of a road where the vehicle is positioned, a controller that internally controls the vehicle to an N (Neutral) state, regardless of the gear range shown by the shift lever switch, for the vehicle on a downhill, in accordance with the measured inclination, and an engine unit that performed idle stop when the brake pedal becomes ON, with the gear of the vehicle at a D (Drive) sate, and restarts the stopped engine when the brake pedal becomes OFF, with the gear of the vehicle at the D state.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: April 8, 2014
    Assignee: Hyundai Motor Company
    Inventors: Chongah Gwon, Sejun Kim, Jiyong Yu, Junghwan Bang
  • Publication number: 20140080668
    Abstract: A method for enacting DFSO in a motor vehicle having an engine and a transmission. The method includes, during a condition of normal engine-braking efficiency, disabling the DFSO below a higher gear of the transmission. During a condition of reduced engine-braking efficiency, by contrast, the DFSO is disabled below a lower gear of the transmission.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 20, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Jeffrey Allen Doering, Bradley Dean Riedle, Diana Yanakiev, Gregory Michael Pietron, Hong Jiang, Joseph F. Kucharski
  • Patent number: 8676433
    Abstract: A control device for a vehicle hydraulic control circuit having a hydraulic switch disposed on a hydraulic control circuit of an automatic transmission, includes: a malfunction detecting portion configured to detect a malfunction of the hydraulic switch; and a malfunction removing portion configured to execute an operation for restoring a contact of the hydraulic switch when a malfunction of the hydraulic switch is detected.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: March 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroatsu Endo, Masatoshi Ito
  • Patent number: 8676459
    Abstract: A system and method for controlling a powertrain of a vehicle having an engine configured to output a variable torque, can include a transmission with a plurality of gear ratios and selectively driven by the variable torque, and a pair of wheels selectively driven by the transmission. The system can include a longitudinal acceleration sensor and a controller. The controller can be in electrical communication with the longitudinal acceleration sensor. The controller can be configured to determine an inertial value of the vehicle based on data from the longitudinal acceleration sensor prior to a shift from one of the plurality of gear ratios to another of the plurality of gear ratios.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 18, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Darren F. Stursa, Joshua D. Sigmund
  • Patent number: 8670908
    Abstract: An automatic transmission including an input shaft connected to a drive source; an output shaft connected to a driving wheel; a one-way clutch; friction engagement elements which establish speeds by changing a transmission path between the input shaft and the output shaft based on the application state of the friction engagement elements and application of the one-way clutch, one of the friction engagement elements being a brake that is applied when coasting in a take-off speed. The automatic transmission also includes a controller that determines whether it is possible to initially establish the take-off speed using the one-way clutch based on a predetermined condition, and, if not possible, then the controller establishes the take-off speed by applying the brake.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 11, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Tetsuya Shimizu, Kenichi Tsuchida, Akitomo Suzuki, Kazunori Ishikawa, Masamichi Yamaguchi
  • Patent number: 8660766
    Abstract: A clutch unit (47) comprises a wet friction clutch for controllable transmission of a torque from an input element (41) to an output element (45), housing that contains the friction clutch and oil for cooling the friction clutch, and an actuator (51) for actuating the friction clutch. The actuator is attached to the housing in a thermally conductive way and has a temperature sensor (108) for sensing a temperature of the actuator. In order to computationally determine the oil temperature (TÖl) in the clutch unit (47), a thermal input power to the clutch unit is determined as a function of at least a speed of the input element and/or of the output element. The difference between the thermal input power and the thermal output power is determined, and the oil temperature is determined as a function of the difference that was determined.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 25, 2014
    Assignee: Magna Powertrain AG & Co KG
    Inventors: Ender Ergun, Manfred Gollner, Martin Parigger
  • Patent number: 8649951
    Abstract: A shifting apparatus includes an actuator to direct a travel range setting of a vehicle transmission, a selector to indicate a desired travel range setting, a transmission controller to move the actuator into the travel range setting in response to the desired travel range setting of the selector, and a restrictor to restrict an output of a drive motor if the vehicle transmission is in a travel range setting other than the desired travel range setting. A method to control a vehicle transmission includes detecting a travel range setting of the vehicle transmission, detecting a desired travel range setting of a selector, and entering a limp-home mode if the detected travel range setting is different from the desired travel range setting and a detected vehicle travel direction corresponding to the detected travel range setting is the same as a desired travel direction corresponding to the desired travel range setting.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: February 11, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hidekazu Funakoshi, Hiroaki Akazawa
  • Patent number: 8634995
    Abstract: A voting strategy is used to determine the mode state of a transmission when a vehicle is restarted. A Powertrain Control Module, a Transmission Range Control Module, and a Gear Shift Module communicate through a communication network during execution of the voting strategy. Each module stores a remembered mode state (Normal, Neutral Hold, Neutral Tow, etc.) of the transmission in non-volatile memory. Upon module initialization, the Powertrain Control Module will compare its own remembered mode state of the transmission with the remembered mode state reported by the other two modules. A basic voting strategy is that if two of the three modules report the same remembered mode state then the Powertrain Control Module changes the transmission to that same mode state.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 21, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Brian J Deurloo, Mark Edward Zyskowski, Christopher Lee Danks, Richard Reynolds Hathaway, Jeffrey James Tumavitch
  • Patent number: 8600635
    Abstract: When a select lever is in a drive range, a microcomputer reads a value of an output voltage by a switch-operation-signal output circuit after detecting that both shift-up switch and shift-down switch are substantially simultaneously turned on, checks whether or not the output voltage by the switch-operation-signal output circuit is the output voltage indicating that the switch after a predetermined time has elapsed is in a normal condition, and only when the output voltage is such an output voltage, permits a manual mode of an automatic transmission and when the output voltage is not such an output voltage, cancels the manual mode.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: December 3, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuyoshi Wakita, Yoshiyuki Nagayama
  • Patent number: 8571748
    Abstract: A method is provided for estimating a propulsion-related operating parameter of a vehicle for a road segment, and for determining routes based on the estimate. The method may be employed, for example, in a vehicle navigation system. In one example method, at least one operating parameter of the vehicle is estimated for the road segment based on information corresponding to the road segment. The propulsion-related operating parameter is estimated for the road segment using the at least one estimated operating parameter and at least one vehicle specific parameter. The at least one vehicle specific parameter is determined by acquiring driving data to determine a plurality of vehicle operating parameters while the vehicle is in operation. At least two of the determined vehicle operating parameters are used in a predetermined relationship that includes the at least one vehicle specific parameter.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: October 29, 2013
    Assignee: Harman Becker Automotive Systems GmbH
    Inventors: Sebastian Kluge, Alexey Pryakhin, Peter Kunath
  • Patent number: 8560186
    Abstract: A method for identifying a driving resistance of a motor vehicle includes the steps of recording values of control and/or state variables of the vehicle during a driving state of the vehicle when a control route is covered, adapting parameters of a vehicle model and/or a model of the area surrounding the vehicle on the basis of the values of the recorded control and state variables, identifying the driving resistance on the basis of the adapted vehicle model and/or the surrounding area model, wherein the parameters of the vehicle model and/or the surrounding area model are adapted on the basis of a distinction between driving states, wherein these driving states include a driving state of a closed drive train with a positive driver demand torque, a driving state of a closed drive train without a positive driver demand torque, and/or and a driving state with an open drive train.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: October 15, 2013
    Assignee: Dr. Ing. h.c.F. Porsche Aktiengesellschaft
    Inventors: Martin Roth, Klaus Bastian, Tobias Radke, Peter Megyesi
  • Patent number: 8545365
    Abstract: An apparatus comprises a changeover mechanism which is able to change a connection state of an electric motor output shaft to any one from alternatives consisting of “an IN-Connection State” in which a power transmission path is provided between a transmission input shaft and the electric motor output shaft, “an OUT-Connection State” in which a power transmission path is provided between the transmission output shaft and the electric motor output shaft, and “a neutral connection state” in which no transmission path therebetween is provided. The changeover is carried out based on a combination (area) of a vehicle speed V and a required driving torque T. As for the changeover, an (first, second) IN-connection area is more enlarged and the OUT-Connection area and the neutral connection area are more narrowed, as a temperature of a lubricating oil is lower.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 1, 2013
    Assignee: Aisin AI Co., Ltd.
    Inventors: Takeshige Miyazaki, Hiroki Hatori, Kan Sasaki, Toshio Tanba, Yousuke Hayashi
  • Publication number: 20130252785
    Abstract: There is provided a shift-by-wire control system including a range switching device that switches engagement or disengagement of a forward engagement element and a reverse engagement element by using an actuator, a range switching operation unit by which a driver inputs a range switching operation, and a range switching control unit that controls the actuator of the range switching device on the basis of the state of the range switching operation unit. The shift-by-wire control system further includes vehicle start preparation state determination units for determining a vehicle start preparation state. When the vehicle start preparation state determination unit determines that the vehicle start preparation state is incomplete, the range switching control unit executes running prohibition control by which the forward engagement element and the reverse engagement element are all disengaged, regardless of the state of the range switching operation unit.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 26, 2013
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Takahiro Kinoshita, Koichi Inoue
  • Publication number: 20130244832
    Abstract: A powertrain control system is disclosed for use with a mobile machine. The powertrain control system may have an engine, and a continuously variable transmission operatively coupled to the engine. The powertrain control system may also have an operator input device configured to generate a signal indicative of a desired speed of the engine, a feature selector usable by an operator to select activation of a powertrain control feature, and a controller in communication with the engine, the continuously variable transmission, the operator input device, and the feature selector. The controller may be configured to make a determination that the operator has selected activation of the powertrain control feature via the feature selector, lock a speed of the engine based on the determination and the signal, and lock a torque output of the continuously variable transmission based on the determination and the locked speed of the engine.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Inventors: SriVidya Lavanya KAMISETTY, Michael Anthony Spielman, JR.
  • Publication number: 20130225367
    Abstract: The invention concerns a method for setting shift points in an automated shift transmission or an automatic transmission of a vehicle driven by a motor, whereas the shift points can be displaced towards higher engine rotational speeds by activation of a kick-down function.
    Type: Application
    Filed: May 17, 2011
    Publication date: August 29, 2013
    Inventor: Bernd Dietzel
  • Patent number: 8504262
    Abstract: A control apparatus for an automatic transmission includes a torque calculator configured to calculate a torque required during a speed change for a hydraulic clutch at a target speed stage based on an output torque of an engine. A supply fluid pressure calculator is configured to obtain, from the calculated torque, a supply fluid pressure to be supplied to the hydraulic clutch by using a clutch friction coefficient. A fluid supplier is configured to supply the obtained supply fluid pressure to the hydraulic clutch to perform the speed change for an output of the engine through a gear corresponding to the target speed stage. A clutch plate temperature estimating device is configured to estimate a plate temperature of the hydraulic clutch. A fluid pressure correcting device is configured to correct the supply fluid pressure based on the estimated plate temperature.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: August 6, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuma Sasahara, Takashi Maehara, Makoto Kobayashi
  • Patent number: 8494714
    Abstract: Disclosed herein are stability display apparatus and methods. One apparatus comprises a driving state detection unit configured to detect a driving state of a vehicle in operation; a controller comprising an instability estimation unit configured to estimate an instability index indicating driving instability of the vehicle based on the driving state of the vehicle detected by the driving state detection unit and configured to determine changes in the instability index; and a display unit configured to display the instability index estimated by the instability estimation unit in a display region within a range less than or equal to an upper limit that is a limit of display and configured to display in the display region a representation of the changes of the instability index when the instability index is beyond the upper limit.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: July 23, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Nobuyuki Kuge, Takayuki Kondoh, Yoshiki Yasuno
  • Publication number: 20130102438
    Abstract: A method of controlling an engine and a transmission coupled to the engine. The method including the steps of receiving and proceeding. The receiving step receives a signal value from a sensor. The signal value is representative of a desired ground engaging device speed of a vehicle. The proceeding step proceeds along a shift path defined by a one-to-one correspondence between the signal value and the ground engaging device speed. The proceeding step includes the steps of controlling a speed of the engine and selecting of a gear of the transmission along the shift path dependent upon the signal value.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 25, 2013
    Inventors: Carroll C. Kellum, Hadeel Taha
  • Patent number: 8406968
    Abstract: A control system and method for a vehicle having an engine and a transmission with an autoshift function comprises a processor coupled to the engine and the transmission of the vehicle and adapted to control the power output of said engine and, in an autoshift mode of operation, the upshifting and downshifting of the transmission. The control system further comprises user interface means (10) coupled to said processor and including a first manual control means (14) being operable to be set to a first engine speed, and a second manual control means (16) being operable to be set to a second engine speed. The interface means (10) provides signals representing the setting of said first and second manual control means (14, 16) to said processor; and said control system has a plurality of modes of operation selectable by the relative settings of said first and second manual control means.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: March 26, 2013
    Assignee: CNH America LLC
    Inventors: Karl Huber, Burkhard Reichl, Maximilian Ostheimer
  • Patent number: 8311712
    Abstract: A method of operating of a drivetrain, having at least a drive motor and an automatic transmission with at least five shift elements, to improve a shift speed such that during a first upshift or a first downshift, at least one required shift element is prepared such that, when a synchronization point is reached, the successive upshift or the successive downshift can be immediately carried out. The method comprises the steps of requiring, at most, two of the at least five shift elements be disengaged and a remainder of the shift elements be disengaged for each gear for transferring one of torque and force; and one of increasing and decreasing a torque of the drive motor, relative to a torque of the drive motor derived from a driver's wish, during one of the first upshift or downshift and the successive upshift or downshift to assist with an overlapped implementation of the successive upshifts or the successive downshifts.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 13, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Klaus Steinhauser, Christian Popp
  • Patent number: 8303464
    Abstract: An apparatus comprises a changeover mechanism which is able to change a connection state of an electric motor output shaft to any one of states including, “an IN-Connection State” in which a power transmission path is provided between a transmission input shaft and the electric motor output shaft, “an OUT-Connection State” in which a power transmission path is provided between the transmission output shaft and the electric motor output shaft, and “a neutral connection state” in which no transmission path therebetween is provided. The changeover is carried out based on a combination (area) of a vehicle speed V and a required driving torque T. As for the changeover, an IN-connection area, in which an electric-motor-driving-wheels-maximum-torque is larger than in an OUT-Connection State and in a neutral connection area, is enlarged.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Aisin AI Co., Ltd.
    Inventors: Takeshige Miyazaki, Hiroki Hatori, Kan Sasaki, Toshio Tanba, Yousuke Hayashi
  • Publication number: 20120253619
    Abstract: A method for driving a vehicle which has a gearbox connected to a combustion engine and the gearbox is capable of being set to a number of different transmission ratios in order to deliver motive force to a driveshaft for propulsion of the vehicle. The vehicle is arranged for driving in at least a first mode and a second mode, such that in the first mode the gearbox is switched to a low transmission ratio and in the second mode the combustion engine is disconnected from the at least one driveshaft. When the vehicle is being driven in a situation where there is or will within a specific time be a reduced need for motive force for the vehicle, the method determines whether the vehicle should be driven according to the first mode or the second mode, on the basis of an ambient parameter.
    Type: Application
    Filed: December 16, 2010
    Publication date: October 4, 2012
    Inventor: Anders Jensen
  • Patent number: 8277361
    Abstract: A control apparatus of a transmission for a vehicle, which includes an electric generator provided between an engine and the transmission and regenerating electricity when torque is transmitted from a drive shaft of the vehicle via the transmission in a braking condition, includes a releasing speed measuring unit, an up-shifting operation allowing unit and an up-shifting operation restraining unit. The releasing speed measuring unit measures a releasing speed of an accelerator pedal. The up-shifting operation allowing unit is applied to allow an up-shifting operation under the accelerator pedal being released when a releasing speed of the accelerator pedal is lower than a first threshold value. The up-shifting operation restraining unit is applied to restrain the up-shifting operation under the accelerator pedal being released when the releasing speed of the accelerator pedal is equal to or lower than the first threshold value.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: October 2, 2012
    Assignees: Aisin Seiki Kabushiki Kaisha, Hino Motors, Ltd.
    Inventors: Suguru Futamura, Ryutaro Hosoya, Satoru Sibata
  • Publication number: 20120220422
    Abstract: A method of controlling a rolling or coasting function of a vehicle with a drive train having a drive motor, an automatic or automated transmission, a controllable shifting means, a brake device and a drive speed control device. The vehicle speed is regulated by the drive speed control device and the braking device is activated, as needed, when driving on a downhill gradient section. To effectively and reliably use the rolling or coasting function in suitable driving situations, taking into account the influence of the driving speed control device, a rolling or a coasting condition for a downhill gradient taper is checked, when driving on the downhill gradient section, and, when the rolling or coasting condition is satisfied, the transmission controls interrupt the flow of power in the drive train before the vehicle entering a flat area, and/or before the driving speed control device generates an engine torque request.
    Type: Application
    Filed: October 13, 2010
    Publication date: August 30, 2012
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Maik Wurthner, Ingo Sauter, Joachim Staudinger, Johannes Kemler
  • Patent number: 8246512
    Abstract: In a control device for a vehicular power transmitting device, if engine torque TE generated with using a fuel other than a basic fuel by an internal combustion engine (8) connected to a shifting mechanism (10) for power transmitting capability, exceeds torque TES generated with using a basic fuel, a downshift is initiated at a lower accel-opening than that at which the downshift is initiated with using the basic fuel. That is, the shifting is performed at a shift point enabling the suppression of a torque increase in consideration of an increase in engine torque TE generated by the internal combustion engine, thereby preventing rotary elements of the shifting mechanism (10) from reaching high-speed rotations during a transition in downshift. This minimizes a drop in durability of the shifting mechanism (10).
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: August 21, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Tooru Matsubara, Hiroyuki Shibata, Kenta Kumazaki
  • Patent number: 8246513
    Abstract: A method and apparatus for controlling transmission functions in a transmission of a motor vehicle by an electromagnetically actuated control valve. The control valve is controlled by a control device that includes a stored valve characteristic curve to provide a temperature-dependent and a target-current-dependent overlay, so that a symmetrical target value oscillation around a target current value is achieved. The characteristic curve for controlling the control valve is adapted at least partially as a function of a current value and a temperature.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: August 21, 2012
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Mario Schaufler
  • Patent number: 8224539
    Abstract: A powertrain system includes an engine coupled to a transmission operative in one of a plurality of operating range states to transfer power between the engine and an output member. A method for controlling the powertrain system includes monitoring an operator torque request, monitoring barometric pressure and engine input speed to the transmission, determining an achievable range of input power transferable from the engine to the transmission based upon the barometric pressure and the engine input speed, and determining a preferred operating range state for the transmission and a preferred engine operating point at the preferred operating range state based upon the operator torque request and the achievable range of input power.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: July 17, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Anthony H. Heap
  • Publication number: 20120166054
    Abstract: A method, a system, a computer program and a computer program product for determining one or more shift points for a gearbox in a motor vehicle which comprises an engine connected to, in order to drive the gearbox. A shift point is defined by an engine speed at which the gearbox effects a downshift or upshift. The method uses one or more shift points determined on the basis of a change in road gradient.
    Type: Application
    Filed: September 10, 2010
    Publication date: June 28, 2012
    Inventors: Fredrik Swartling, Mikael Wågberg, Mikael Öun
  • Patent number: 8165766
    Abstract: A method for controlling a vehicles drivetrain including an engine and automatic transmission, such that transmission ratios are shifted within a range of transmission ratios in a continuous and/or stepped manner as function of preset target speeds that are adjustable via a vehicle speed control and actual vehicle inclinations in relation to the vehicles longitudinal axis. When the actual speed of the vehicle differs from a preset threshold speed, a request to change an actual ratio of the transmission is generated, if it has been determined that the output torque is smaller than a threshold value or an output torque required to adjust the preset threshold speed of the vehicle. The ratio of the transmission is shifted so the torque applied to the output is modified toward the output torque required to adjust the threshold speed.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 24, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Norbert Müller, Franz-Josef Schuler, Clemens Kuhn
  • Patent number: 8128530
    Abstract: A method of automatically controlling a neutral position and parking lock of an motor-vehicle transmission to immobilize the vehicle depending on a drive position of the transmission selected by the driver with a selector device and subject to other operating parameters of the motor vehicle. Only when simultaneously the vehicle is essentially stationary, an ignition circuit is electrically interrupted and the selector device is in a “Neutral” position, can an Neutral-holding phase be activated, in which the transmission is in a non-frictionally engaged neutral position as long as the parking lock of the transmission has not yet been engaged. If the Neutral-holding phase has not been activated, the transmission remains non-frictionally connected in the Neutral position until the driver at least intends to exit the vehicle, at which time the parking lock of the transmission is automatically engaged.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 6, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Walter Hecht, Armin Gierling, Klaus Steinhauser, Frank Worms, Bernd Zänglein, Stéphane Klein
  • Patent number: 8105202
    Abstract: To automatically shift the shift position of an automatic transmission depending on whether or not the rider is seated or the side stand is retracted. When the vehicle is at a stop with an engine running, and it is detected that the rider is not sitting on a rider seat, an automatic transmission is automatically shifted to the neutral range while maintaining the operation of the engine. Further, when the vehicle is at a stop with the engine running, and the automatic transmission has been in the drive range continuously for a predetermined period of time, provided that the rider is not sitting on the rider seat, the automatic transmission is automatically shifted to the neutral range. Further, when, in a state with a side stand retracted, the throttle opening is equal to or smaller than a predetermined opening, the automatic transmission is automatically shifted to the drive range.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 31, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Kojima, Yoshiaki Nedachi
  • Patent number: 8099220
    Abstract: A powertrain control includes monitoring map preview information, determining a road gradient factor based upon the map preview information, and adapting a transmission shift schedule based upon the road gradient factor.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: January 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Daekyun Kim, Kumaraswamy V. Hebbale, Chunhao J. Lee
  • Patent number: 8083642
    Abstract: A transmission apparatus includes a wet rotary clutch configured to transmit power from an input to an output when in an engaged position, a clutch lubricator to supply a lubricating oil to the wet rotary clutch, a synchromesh configured to perform a meshing operation while the wet rotary clutch is in the disengaged position, and a controller configured to increase a revolution speed of the input of the wet rotary clutch before the synchromesh begins the meshing operation.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: December 27, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Takashi Senoo
  • Patent number: 8075445
    Abstract: In a driving force control apparatus and a driving force control method, a curve ahead of a vehicle is detected; a target vehicle speed is set to pass the curve; a starting-point shift speed is set to pass the starting point of the curve; and an end-point shift speed is set to pass the end point of the curve. After a shift speed is changed to the starting-point shift speed, it is determined whether an additional engine brake is required at the starting-point shift speed. If it is determined that the engine brake is not required, the shift speed is changed to the end-point shift speed. Alternatively, if a vehicle speed is lower than or equal to a value corresponding to the target vehicle speed after the shift speed is changed to the starting-point shift speed, the shift speed is changed to the end-point shift speed.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: December 13, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuyuki Shiiba, Kunihiro Iwatsuki, Shinya Iizuka
  • Patent number: 8056332
    Abstract: A method for controlling an actuating device in an automated shifting system of a motor vehicle. The position of the actuating device is determined by a path measurement system. The actuating device can be controlled by a pressure regulation device, including a pressure medium reservoir, at least two pressure lines and a switching valve for connecting a first pressure line to a pressure medium line leading to the pressure chamber of the actuating device, and a pressure regulating device for adapting the pressure level of the main pressure line to the control pressure level of the actuating device. By appropriately controlling the pressure regulation device before the piston of the actuating device moves in the intended direction, it is moved in the direction opposite to the intended movement direction. When this movement direction is registered the movement direction is changed to the intended movement direction.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: November 15, 2011
    Assignee: ZF Friedrichshafen AG
    Inventors: Bernd Doebele, Martin Miller
  • Patent number: 8024097
    Abstract: Provided is an automobile operation apparatus and method designed for detecting failure of a drive gear selector of an automatic transmission having a normal mode constituted by P, R, N and D gears, and a sport mode. The automobile operation apparatus includes up/down switches for shifting a gear of the automatic transmission up or down when a gearshift lever is shifted from the normal mode to the sport mode, a detection means for detecting whether the gearshift lever is shifted to the sport mode, and a control means for controlling a D gear operation at the up/down switches when the D gear is abnormal and the detection means detects a mode change. Therefore, an automobile can be driven, even when a D gear for forward driving malfunctions, by a virtual drive mode switch that is equivalent to the D gear in an emergency.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 20, 2011
    Assignee: Delphi Technologies, Inc.
    Inventor: Mulshi Kim
  • Patent number: 8016719
    Abstract: A method for selecting a neutral position of a transmission and for selecting a parking device intended for immobilizing a vehicle, wherein the neutral position and the parking device can be engaged or actuated as a function of a position chosen by the driver on a selector device and as a function of other vehicle operating parameters. It is proposed that only if the vehicle has come approximately to a stop and simultaneously an ignition circuit acting on a driving motor of the vehicle is electrically interrupted and simultaneously a “Neutral” position is specified by way of the selector device, an N-holding phase, in which the transmission is in a neutral position having no frictional connection, can be activated by way of a separate control device provided in addition to the selector device, as long as an energy management system of the motor vehicle allows the activation of the N-holding phase.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: September 13, 2011
    Assignee: ZF Friedrichshafen AG
    Inventors: Walter Hecht, Armin Gierling, Klaus Steinhauser, Frank Worms, Bernd Zänglein, Stéphane Klein
  • Patent number: 8014925
    Abstract: A control apparatus for an automatic transmission includes an operational condition detecting unit for detecting a vehicle operational condition, a slope detecting unit for detecting a road surface slope, and a shift characteristic selecting unit for selecting one of a plurality of shift maps preliminarily set according to the road surface slope. The control apparatus further includes an acceleration/deceleration calculating unit for calculating an acceleration or deceleration from the degree of increase or decrease in vehicle speed per unit time, a deceleration shift characteristic for deciding a gear position according to the deceleration and the vehicle speed, and a brake detecting unit for detecting a brake operation. When the road surface slope is determined to be a downhill slope and the brake operation is detected, the selected shift map is changed to the deceleration shift characteristic and the gear position is decided according to the deceleration shift characteristic.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: September 6, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiharu Saitou, Ryuji Murata