Tank Patents (Class 48/179)
  • Publication number: 20090000193
    Abstract: A quasi-liquid of gas in bubbles of nanometer-scale, and devices and processes for making the quasi-liquid. A device comprises a channel plate (30) through which an operating gas flows to form micrometer-sized bubbles in a liquid. The bubbles are compressed to nanometer scale by action of cooling and pressure in a hydrophobic liquid (20) or are further fragmented to nanometer scale by a laser. Alternatively, a device has vertical water column having a bottom insertion tube, a bottom exit port, a top extraction port, and a water inflow tube; and, a centrifuge adjoining the top extraction port. A storage gas is diffused into pores of a low-density, solid-content material such as aerogel. The material is then introduced through the bottom insertion tube into an underwater environment creating cavities and a quasi-liquid.
    Type: Application
    Filed: February 20, 2007
    Publication date: January 1, 2009
    Applicant: HCE, LLC
    Inventor: Udo Von Wimmersperg
  • Patent number: 5632788
    Abstract: A hardened asbestos-free, porous, calcium silicate filler material for an acetylene storage vessel is made by mixing quicklime with water to form a first mixture and at the same time mixing water, synthetic silica, cellulose fibers and ground quartz silica to form a second mixture. The first mixture is then added to the second mixture to form a third mixture. The third mixture is homogenized. Then a suspending agent is dispersed in the third mixture to form a fourth mixture. The fourth mixture is transferred into a cylinder to be filled and is cured under saturation steam pressure. Thereafter, the cylinder is dried. A gas storage cylinder so formed has a monolithic dry mass filling a metal shell. The mass has a porosity of about 88 to 91% and a density in the range of 250 g/l to 270 g/l.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: May 27, 1997
    Assignee: Worthington Acetylene Cylinder, Inc.
    Inventor: Michael S. Rabren
  • Patent number: 5626637
    Abstract: A process is disclosed for storing gaseous hydrocarbon fuel in storage containers under relatively low pressure by including in the cylinders highly microporous carbons prepared by further chemical activation of activated carbon comprising activation an active carbon precursor material with an alkali solution, predrying the blend to below about 25% moisture content, heat treating this blend at from about 652.degree. to about 1100.degree. C., and acid washing and drying the microporous activated carbon product, which is characterized by greater than 50% of its total pore volume comprising pores of from above 8 .ANG. to 20 .ANG. in width and greater than 70% of its total pore volume comprising pores of less than 20 .ANG. in width and greater than 95% of its total pore volume comprising pores of less than 50 .ANG. in width.
    Type: Grant
    Filed: March 14, 1995
    Date of Patent: May 6, 1997
    Assignee: Westvaco Corporation
    Inventor: Frederick S. Baker
  • Patent number: 5152452
    Abstract: A sheet of work-hardenable, non-heat-treatable, corrosion-resistant steel is cold rolled into a tube (12) and welded (10). The cold rolling strengthens the material. The welding causes the weld area (10) to revert to its annealed condition, but the ends (24, 30) of the tube (12) are then swaged into open domes (14, 16) to form a symmetrically-swaged tube having further work-hardened ends which overcome the apparent weakness of the weld (10). A spherical disk (20) is then welded on to one end to form a bottom and a port section (26) is welded on to the other end to complete the bottle construction.
    Type: Grant
    Filed: March 10, 1992
    Date of Patent: October 6, 1992
    Assignee: York Industries, Inc.
    Inventor: Edwin Fendel
  • Patent number: 4600529
    Abstract: Alkali metal carbonates have been found to be effective catalysts for dehydrogenation of primary and secondary alcohols. The dehydrogenated products may be either predominantly ketones and aldehydes, depending on whether the feed alcohol is secondary or primary, or may be fuel gases. Lower reaction temperatures, in the neighborhood of 600.degree. C., tend to produce high yields of liquid products. Higher temperatures encourage production of fuel gases of high calorific value. When fuel gases are a desired product, a feedstock containing water, in addition to the alcohol, produces increased yields due to the simultaneous catalysis of the water-gas shift reaction.
    Type: Grant
    Filed: September 19, 1983
    Date of Patent: July 15, 1986
    Assignee: Gas Research Institute
    Inventors: Richard T. Hallen, L. John Sealock, Jr.