With Means For Indicating, Inspecting, Measuring, Signaling Or Testing Patents (Class 494/10)
  • Patent number: 8894559
    Abstract: The spinning disc centrifuge rotor includes a sample holder formed from a cylindrical disc body and a cover plate that are made from a transparent material, such as polycarbonate. The disc-shaped body has two concentric or coaxial recesses defined therein. The first recess forms a cylindrical well or sample chamber for receiving a generally cylindrical rock sample. The second recess has a larger diameter than the first recess, and is shallower, forming a fluid collection area above the sample well, the second recess forming an annular ring extending around the top edge or rim of the sample well. An O-ring snugly within the outer wall of the second recess and forms a seal between the cover plate and the floor of the second recess, preventing fluid leakage. A rotor shaft extends from the bottom face of the cylindrical disc.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: November 25, 2014
    Assignee: Kuwait University
    Inventor: Osamah Ali Alomair
  • Patent number: 8876683
    Abstract: A blood processing centrifuge comprising: a rotor having an axis of rotation and being controllably spun around the axis, a mechanism for processing whole blood within the rotor while spinning, a computer controlling blood processing operations, the computer being mounted to the rotor and spinning therewith.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: November 4, 2014
    Inventor: Jacques Chammas
  • Patent number: 8870733
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: October 28, 2014
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher, Douglas G. Evans
  • Patent number: 8870734
    Abstract: The invention relates to a cartridge (1) for accommodating blood bags (35), which is provided for the separation of blood components for the application in a centrifuge. The cartridge (1) has a partition wall (3) which separates a blood bag section (5) positioned radially inside from a product section (7) positioned radially outside, and a cover (9) disposed in a mounting position above the blood bag section (5). The cover (9) is connected to the partition wall (3) pivotally in a first point (11) and detachably in a second point (13), so that the blood bag section (5) is freely accessible by means of laterally pivoting the cover (9) out of the way. The cartridge is applicable in the rotor of a centrifuge.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: October 28, 2014
    Assignees: Terumo BCT, Inc., Andreas Hettich GmbH & Co. KG
    Inventors: Klaus-Günter Eberle, Roland Biset
  • Patent number: 8852069
    Abstract: A centrifuge includes a vacuum pump machine configured of an auxiliary vacuum pump and an oil diffusion pump for exhausting gas inside a rotary chamber to outside, in which a rotor rotates at high speed. In the centrifuge, a thermistor for detecting a temperature of oil and an oil surface inside a boiler of the oil diffusion pump is provided inside the boiler, and power of a heater is adjusted with the temperature detected by the thermistor, so that a degree of vacuum inside the rotary chamber is stably reduced from atmospheric pressure to a high vacuum state. Besides, when the heater does not heat, a current is carried through the thermistor for self-heating, and it is determined from variation in a resistance value whether the oil exists or not at a position at which the thermistor 8 is placed.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 7, 2014
    Assignee: Hitachi Koki Co., Ltd.
    Inventors: Shinichi Haruki, Hiroyuki Takahashi
  • Publication number: 20140287903
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Application
    Filed: June 3, 2014
    Publication date: September 25, 2014
    Applicant: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8840535
    Abstract: Method and apparatus for centrifugal blood component separation including temperature sensing in each of a plurality of separation cells. The temperature of unit of bloods over time is recorded. If the temperature of any of the units exceeds a pre-determined maximum, portions of the blood separation device may be cooled. A controller may determine which of the units to process first, generally proceeding from the warmest unit to the coolest. The order of unit processing may be changed during processing. The detected temperature may be used to calibrate a pressure sensor used to predict the volume of a component separated from a composite fluid by predicting the volume of the composite fluid from sensed pressure and predicting the volume of other separated components from sensed movement of the other components to collection bags.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 23, 2014
    Assignee: Terumo BCT, Inc.
    Inventor: Victor D. Dolecek
  • Publication number: 20140235421
    Abstract: A centrifuge device displays a workflow diagram during operation. The workflow diagram includes a loading step-indicator, a running step-indicator, and an unloading step-indicator. The loading step-indicator is displayed when the centrifuge device is operating in a loading mode. The running step-indicator is displayed when the centrifuge device is operating in a running mode. The unloading step-indicator is displayed when the centrifuge device is operating in the unloading mode. A centrifuge system includes the centrifuge device and a handheld device operable remote from the centrifuge device, which displays a status of the centrifuge device. Methods of operating a centrifuge device and a centrifuge system are also disclosed.
    Type: Application
    Filed: September 21, 2012
    Publication date: August 21, 2014
    Inventors: Brian A. Rogers, Larry Mcintyre, Gerald R. Kowalski, Tom Nguyen
  • Publication number: 20140235420
    Abstract: A torque sensing device capable of measuring the force exerted by a torque arm on a lever is positioned between the torque arm and the lever. The torque arm is connected to the pinion of a planetary gearbox for rotating the bowl and screw conveyer of a decanter centrifuge at different speeds. The torque sensing device measures the torque between the pinion gear and the planetary gearbox. The sensor can be connected to a controller which can reduce the flow of the liquid/solid mixture to the decanter centrifuge thereby/reducing the torque and avoiding substantial damage to the planetary gearbox.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: HilFlo, LLC
    Inventor: Jeffrey L. Hilpert
  • Patent number: 8795143
    Abstract: A spinning force system and methods of operation are provided for measuring a characteristic of a sample. The system includes a detection module having a light source for illuminating the sample and an objective being aligned to the light source to define a light path for producing an image of the sample. A rotor is mechanically coupled to the detection module and configured to rotate the light path for applying a force to the sample. The force may include a centrifugal force and other forms of force (such as a viscous drag force) resulted from the rotation. In some examples, the force is applied in a direction that is not parallel to a surface of the sample.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: August 5, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Wesley Philip Wong, Kenneth Anders Halvorsen
  • Patent number: 8747289
    Abstract: An apparatus and method for purifying and harvesting certain cell populations in blood or bone marrow by depleting at least one of red blood cells, granulocytes, or platelets from a sample comprising blood, bone marrow, or stromal vascular fraction cells separated from adipose tissue is disclosed. The apparatus comprises a sterile, single use rigid, self-supporting cartridge within which the automated depletion, purification and harvesting of target cell populations occurs and all components may be distributed.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: June 10, 2014
    Assignee: SynGen Inc.
    Inventor: Philip H. Coelho
  • Patent number: 8747291
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other facts. Highs speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 10, 2014
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8747290
    Abstract: The invention relates to a centrifuge for separating a sample into at least two components, comprising a chamber for receiving a sample to be centrifuged. According to the invention, the centrifuge further comprises a means for controlling the progress of the sample separation is located at the chamber.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: June 10, 2014
    Assignee: Miltenyi Biotec GmbH
    Inventors: Stefan Miltenyi, Winfried Schimmelpfennig, Holger Lantow, Niklas Elmar Neuschäfer, Martin Biehl, Eiad Kabaha, Jürgen Schulz
  • Patent number: 8727132
    Abstract: The invention relates to a system, comprising: a) a sample processing unit, comprising an input port and an output port coupled to a rotating container having at least one sample chamber, the sample processing unit configured provide a first processing step to a sample or to rotate the container so as to apply a centrifugal force to a sample deposited in the chamber and separate at least a first component and a second component of the deposited sample; and b) a sample separation unit coupled to the output port of the sample processing unit, the cell separation unit comprising separation column holder (42), a pump (64) and a plurality of valves (1-11) configured to at least partially control fluid flow through a fluid circuitry and a separation column (40) positioned in the holder, the separation column configured to separate labeled and unlabeled components of sample flowed through the column.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: May 20, 2014
    Assignee: Miltenyi Biotec GmbH
    Inventors: Stefan Miltenyi, Winfried Schimmelpfennig, Holger Lantow, Elmar Niklas Neuschäfer, Martin Biehl, Eiad Kabaha, Jürgen Schulz
  • Patent number: 8702576
    Abstract: Device for monitoring and adjusting, in particular for fixing and securing, the radial position of an interface layer in a nozzle centrifuge for separating a light phase having a relatively low density and a heavy phase having a relatively high density from a mixture containing these two liquids and a solid, the nozzle centrifuge including a rotor 1-3 which is rotatable around a rotational axis R and which forms an inlet 9 for said mixture, a separating chamber 7 communicating with said inlet 9 and having a radially inner part 7a and a radially outer part 7b, nozzles 12 at the separating chamber distributed around the rotational axis R for throwing out the heavy phase and the solid, an outlet 13a, 13b, 14 for discharging the light phase, an overflow outlet 19 being radially delimited by a cover or level ring 20 for discharging the heavy phase, and an inlet 9; 25, 26 for supplying additional heavy phase to the centrifuge, characterized in that a sensor 24 is arranged in the flow path of the heavy phase 23 leav
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: April 22, 2014
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Karlsson
  • Publication number: 20140057771
    Abstract: An optical monitoring system is provided for use with a blood processing system. The system includes a light source configured to illuminate a disposable flow circuit received in a centrifuge and a light detector configured to receive an image of the disposable flow circuit. A controller combines two or more of the images received by the light detector to generate a two-dimensional output. The output is used to control the separation of blood within the disposable flow circuit. The monitoring system may also be used to verify that the disposable flow circuit is suitable for use with the centrifuge or that the disposable flow circuit is properly aligned within the centrifuge. The monitoring system may be positioned outside of the centrifuge bucket which receives the centrifuge.
    Type: Application
    Filed: September 25, 2012
    Publication date: February 27, 2014
    Applicant: Fenwal, Inc.
    Inventors: Brian C. Case, Steven R. Katz, William H. Cork, Jonathan Prendergast
  • Publication number: 20140057770
    Abstract: In one nonlimiting example, an automated system is provided for separating one or more components in a biological fluid, wherein the system comprises: (a) a centrifuge comprising one or more bucket configured to receive a container to effect said separating of one or more components in a fluid sample; and (b) the container, wherein the container includes one or more shaped feature that is complementary to a shaped feature of the bucket.
    Type: Application
    Filed: July 18, 2013
    Publication date: February 27, 2014
    Applicant: Theranos, Inc.
    Inventors: Elizabeth A. Holmes, Daniel Young, Timothy Smith, Scott Ridel, John Kent Frankovich, Michael Siegel
  • Publication number: 20140045668
    Abstract: An optical monitoring system is provided for use with a blood processing system. The system includes a light source configured to illuminate a disposable flow circuit received in a centrifuge and a light detector configured to receive an image of the disposable flow circuit. A controller combines two or more of the images received by the light detector to generate a two-dimensional output. The output is used to control the separation of blood within the disposable flow circuit. The monitoring system may also be used to verify that the disposable flow circuit is suitable for use with the centrifuge or that the disposable flow circuit is properly aligned within the centrifuge. The monitoring system may be positioned outside of the centrifuge bucket which receives the centrifuge.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Applicant: Fenwal, Inc.
    Inventors: Brian C. Case, Steven R. Katz, William H. Cork, Jonathan Prendergast
  • Publication number: 20140024516
    Abstract: A centrifuge including a temperature sensor measuring ambient temperature is provided. Centrifugation operation is available or not is determined in accordance with a type of a rotor, the ambient temperature, or operation conditions set by a user. When it is inoperable, a display device displays that it is inoperable so as to invite the user to select necessity of modification of the operation conditions. Upon the display, modified operation conditions which are candidates of operable operation conditions are displayed to let the user select a candidate. To operate under the selected setting operation conditions, the display device displays that the operation is working under modified conditions.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 23, 2014
    Inventors: Shoji KUSUMOTO, Tatsuya KONNO, Ryou MURAYAMA, Yuki HODOTSUKA, Yuki SHIMIZU
  • Publication number: 20140005023
    Abstract: A centrifugal blood separation system comprising a rotor, a light source, an optical sensor, a control system, a separation vessel, and an optical cell on the separation vessel. The optical cell has a first extraction port extending radially outwardly into the optical cell, a red blood cell extraction port downstream from the first extraction port and extending into the optical cell beyond the first extraction port; and a dam between said first extraction port and said red blood cell extraction port, having an upper edge and a lower edge, wherein the first extraction port and the red cell extraction port are radially between the upper edge and the lower edge of the dam. Also, a first extraction port having a bore having a first diameter, a lumen having a second diameter smaller than the first diameter, and a frustro-conical passageway coupling the bore to the lumen.
    Type: Application
    Filed: August 29, 2013
    Publication date: January 2, 2014
    Applicant: Terumo BCT, Inc.
    Inventors: Jeremy P. KOLENBRANDER, Brian M. HOLMES, Thomas J. FELT, James R. LADTKOW
  • Patent number: 8617042
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other factors. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 31, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8617041
    Abstract: Illustrative embodiments of automated sample workcells and methods of operation are disclosed.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 31, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Joerg Haechler
  • Publication number: 20130344496
    Abstract: A fluidic centripetal apparatus for testing components of a biological material in a fluid is presented. A bottom-fillable chamber is coupled to an entry channel for receiving the fluid, the chamber inlet being provided at an outer side of the bottom-fillable chamber. A container is wholly provided in a retention chamber and contains a liquid diluent, until it releases it upon application of an external force, restoring the fluidic connection between the liquid diluent and the fluid in the retention chamber. The retention chamber can have a flow decoupling receptacle for receiving the fluid, located at the outer side of the retention chamber and interrupting a fluidic connection between the entry and exit of the retention chamber. A test apparatus and a testing method using a fluidic centripetal device for testing components of a biological material in a fluid are also provided.
    Type: Application
    Filed: March 7, 2012
    Publication date: December 26, 2013
    Inventors: Régis Peytavi, Sébastien Chapdelaine
  • Patent number: 8562501
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other factors. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: October 22, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8556793
    Abstract: Blood separation systems and methods are provided for controlling the interface between separated blood components. The system includes a blood separation chamber configured to separate blood into first and second blood components and an outlet line for removing at least a portion of the first blood component from the blood separation chamber. A primary optical sensor assembly is associated with the blood separation chamber to directly monitor the interior of the blood separation chamber. A secondary optical sensor assembly is associated with the outlet line to monitor the first blood component in the outlet line. The system also includes a controller programmed to select between the primary optical sensor assembly and the secondary optical sensor assembly for monitoring contamination of the first blood component. The system is particularly advantageous for preventing contamination of separated plasma which is lipemic or hemolytic.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: October 15, 2013
    Assignee: Fenwal, Inc.
    Inventors: John T. Foley, Lan T. Nguyen, Jonathan Prendergast, Jeffrey Maher, Christopher Mikkelson
  • Patent number: 8556792
    Abstract: A fraction collector, sample drier that automatically re-fills sample contains is described. Profiles of RPM and/or back EMF decays as a rotating but unpowered rotor comes to a stop are generated. The profiles may be generated for rotors with full, partially filled and empty sample containers. During a drying operation as the non-volatile samples are collected by evaporating the liquids more sample may be loaded while the rotor is spinning. The operation is to unpower the mechanism and measure the decay profile of PPM and/or EMF over time. A threshold may be set so that the lighter rotor will stop more quickly, and if the threshold is crossed the mechanism will load more sample into the containers.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: October 15, 2013
    Assignee: Harvard Bioscience, Inc.
    Inventor: Herbert J. Hedberg
  • Patent number: 8540614
    Abstract: An apparatus for separating at least two discrete volumes of a composite liquid into at least a first component and a second component, comprising a valve design that facilitates loading and unloading of blood bags and associated tubing and bag sets. The valves comprise a rotating head, mounted on a shaft, which assumes a “load” position. The head pivots to an “open” position, which secures the tube in its designated location, but which maintains an open lumen through the tube. When the head is in a “closed” position, blood components cannot flow through the tube. The valve apparatus comprises means for maintaining a constant pressure on the tube and contact with the tube as the tube is melted and sealed.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: September 24, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Bruce Ellingboe, Hong Duc Nguyen
  • Patent number: 8535210
    Abstract: A centrifugal blood separation system comprising a rotor, a light source, an optical sensor, a control system, a separation vessel, and an optical cell on the separation vessel. The optical cell has a first extraction port extending radially outwardly into the optical cell, a red blood cell extraction port downstream from the first extraction port and extending into the optical cell beyond the first extraction port; and a dam between said first extraction port and said red blood cell extraction port, having an upper edge and a lower edge, wherein the first extraction port and the red cell extraction port are radially between the upper edge and the lower edge of the dam. Also, a first extraction port having a bore having a first diameter, a lumen having a second diameter smaller than the first diameter, and a frustro-conical passageway coupling the bore to the lumen.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: September 17, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Jeremy P. Kolenbrander, Brian M. Holmes, Thomas J. Felt, James R. Ladtkow
  • Publication number: 20130237399
    Abstract: A centrifuge is provided, which includes a drive shaft and a rotor intended to be removably mounted on the drive shaft in a mounting position. The drive shaft and the rotor are rotatably linked. The centrifuge also includes an axial locking device, which locks the rotor on the drive shaft and includes at least one male element supported by the rotor, resiliently biased and able to engage with a female element on the drive shaft. The male element(s) is(are) linked to a visual and/or tactile indicator, providing a visual and/or tactile indication of the engagement of the male element(s) with the female element.
    Type: Application
    Filed: November 4, 2010
    Publication date: September 12, 2013
    Applicant: AWEL INTERNATIONAL
    Inventors: Micheline Lambert, Aude Lambert, July Lambert
  • Patent number: 8506825
    Abstract: A method of washing blood mixed with undesirable elements not normally found in healthy whole blood to remove the undesirable elements, the method comprising: separating the blood into components according to relative densities of the components with a rotating centrifuge bowl; providing a port through which fluid exits the bowl, the exiting fluid having a concentration of undesirable elements; flowing washing solution into the centrifuge bowl at an initial flow rate; monitoring the fluid exiting the bowl with an optical sensor having an output signal indicative of the composition of the exiting fluid; and increasing and decreasing the flow rate of the wash solution as a function of the output signal.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 13, 2013
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Matteo Fortini, Stefano Reggiani, Ivo Panzani
  • Publication number: 20130203581
    Abstract: A centrifuge is provided, which includes a chamber with a vessel in which are mounted a drive shaft for rotating a rotating assembly, and a measuring device for measuring the rotation speed of the rotating assembly. The chamber extends vertically between a bottom and an upper portion and includes a cover for opening/closing. The measuring device includes a transmitting portion rotated by the drive shaft and a second portion able to detect a passing frequency of the transmitting portion at a fixed point. The transmitting portion is supported by the rotating assembly and the second portion is mounted on the upper portion.
    Type: Application
    Filed: November 4, 2010
    Publication date: August 8, 2013
    Applicant: Awel International
    Inventor: Jean-Louis Fondin
  • Patent number: 8501015
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 6, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Christopher Fletcher, William Sweat, Jeremy Kolenbrander, Aditya Dalvi, John R. Linder
  • Patent number: 8491454
    Abstract: A spinning force system and methods of operation are provided for measuring a characteristic of a sample. The system includes a detection module having a light source for illuminating the sample and an objective being aligned to the light source to define a light path for producing an image of the sample. A rotor is mechanically coupled to the detection module and configured to rotate the light path for applying a force to the sample. The force may include a centrifugal force and other forms of force (such as a viscous drag force) resulted from the rotation. In some examples, the force is applied in a direction that is not parallel to a surface of the sample.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: July 23, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Wesley P. Wong, Kenneth A. Halvorsen
  • Publication number: 20130184140
    Abstract: A centrifuge includes a vacuum pump machine configured of an auxiliary vacuum pump and an oil diffusion pump for exhausting gas inside a rotary chamber to outside, in which a rotor rotates at high speed. In the centrifuge, a thermistor for detecting a temperature of oil and an oil surface inside a boiler of the oil diffusion pump is provided inside the boiler, and power of a heater is adjusted with the temperature detected by the thermistor, so that a degree of vacuum inside the rotary chamber is stably reduced from atmospheric pressure to a high vacuum state. Besides, when the heater does not heat, a current is carried through the thermistor for self-heating, and it is determined from variation in a resistance value whether the oil exists or not at a position at which the thermistor 8 is placed.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 18, 2013
    Applicant: HITACHI KOKI CO., LTD.
    Inventor: HITACHI KOKI CO., LTD.
  • Patent number: 8485958
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma while retaining the platelets and other factors. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 16, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Patent number: 8469202
    Abstract: A centrifugal processing bag, system and method for separating the components of a mixed material is presented. The processing bag includes a hub and a first port for receiving the mixed material, where the first port includes an outlet positioned within the processing bag at a perimeter of the bag. The processing bag also including a second port having a second port inlet spaced proximate the hub and away from a central axis of the hub. The second port directs a separated material collected from the second port inlet out of the processing bag.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: June 25, 2013
    Assignee: Velico Medical, Inc.
    Inventor: Keith M. Rosiello
  • Patent number: 8469871
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: June 25, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Publication number: 20130150225
    Abstract: One embodiment relates to a pressure sensor apparatus, including a housing with a flexible member and an aperture configured to receive a fluid. The pressure sensor apparatus further includes a first member disposed on the flexible member, a second member removeably coupled to the first member configured to move in response to a pressure of the fluid and a sensor configured to detect the movement of the second member.
    Type: Application
    Filed: October 23, 2012
    Publication date: June 13, 2013
    Applicant: Fenwal, Inc.
    Inventor: Fenwal, Inc.
  • Publication number: 20130133250
    Abstract: A fluid filtration system using a rotating container, comprising a shell having an inlet pipe installation port and an outlet port, the inlet pipe installation port and the outlet port are located on the same or opposite side (end) of the shell, and having some distance from the outermost edge of the shell, such that said rotating container can retain fluid during rotation. Stirring blades are placed inside the shell of said rotating container, which rotate with the shell synchronously. The purification process includes the injection of the fluid into the rotating container, which can withhold liquid during high-speed rotation. When the fluid in the rotating container swirls at high speed, substances of higher densities will accumulate at the internal wall of the rotating container away from the rotation axis, whereas substances of lower densities will accumulate at the inner ring region closer to the rotation axis.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 30, 2013
    Applicant: DR. T LIMITED
    Inventor: Dr. T Limited
  • Patent number: 8449439
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making to the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 28, 2013
    Assignee: Terumo BCT, Inc.
    Inventors: Christopher Fletcher, William Sweat, Jeremy P. Kolenbrander, Aditya Dalvi, John R. Lindner
  • Publication number: 20130130884
    Abstract: An apparatus for measuring a characteristic of a sample includes a sample measurement apparatus (1404), which includes a light source (1406) configured to illuminate the sample; and a detector (1412) configured to receive light from the sample. The sample measurement apparatus is sized and dimensioned to fit within a centrifuge receptacle, the centrifuge receptacle (1416) coupled to a spindle configured to rotate the centrifuge receptacle to apply a force to the sample.
    Type: Application
    Filed: June 1, 2011
    Publication date: May 23, 2013
    Applicant: President and Fellows of Harvard College
    Inventors: Wesley Philip Wong, Kenneth Anders Halvorsen
  • Publication number: 20130130883
    Abstract: The invention pertains to a cassette (2) comprising a product conveying path (1, 1a, 1b) and a positioning means (3a, 3b) engageable with a counter-piece on a centrifuge having a rotor for separating blood components or on a system component (4) arranged in a centrifuge. The positioning is effected such that a section of the product conveying path (1, 1a, 1b) is aligned with a section of the centrifuge or the system component arranged in the centrifuge. Furthermore, a tube connected with bags is accommodated in the product conveying path (1, 1a, 1b).
    Type: Application
    Filed: January 5, 2011
    Publication date: May 23, 2013
    Applicants: TERUMO EUROPE N.V., ANDREAS HETTICH GMBH & CO. KG
    Inventors: Klaus-Günter Eberle, Roland Biset, Wilfried Mertens
  • Patent number: 8444541
    Abstract: A solid-bowl screw centrifuge includes a rotatable drum having a horizontal axis of rotation, which drum surrounds a centrifuging space. Further included is a screw which is arranged within the drum, the screw being rotatable at a different speed relative to the drum. Further included is at least one liquid discharge sealed from its surroundings and at least one solid discharge in a tapering region of the drum. Also included is an immersion disk on the screw which disk lies between a liquid feed and the solid discharge and divides the centrifuging space into a discharge space between the immersion disk and the solid discharge, and a separation space between the immersion disk and the liquid discharge. The centrifuge includes a device for charging the separation space with a gas. A process for operating for the solid-bowl centrifuge is also disclosed.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: May 21, 2013
    Assignee: GEA Mechanical Equipment GmbH
    Inventors: Ulrich Horbach, Tore Hartmann, Knud Schöneberg
  • Publication number: 20130116102
    Abstract: A system for automatically processing a biological specimen is provided that includes an elevator comprising a plurality of shelves configured to receive a plurality of sample trays. The trays may comprise a plurality of sample containers containing a sample and having a plurality of respective caps engaged therewith. The trays may further include a plurality of centrifuge tube racks each containing a plurality of centrifuge tubes. The system may include a first transport mechanism, a second transport mechanism and a third transport mechanism. The system may include a chain-of-custody device configured to read identifiers on each of the containers. The system may also include a pipetting device configured to remove a portion from the sample containers and dispense the sample into the centrifuge tubes.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 9, 2013
    Applicant: TRIPATH IMAGING, INC.
    Inventor: TriPath Imaging, Inc.
  • Publication number: 20130072367
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making to the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Application
    Filed: November 16, 2012
    Publication date: March 21, 2013
    Applicant: TERUMO BCT, INC.
    Inventor: Terumo BCT, Inc.
  • Patent number: 8394006
    Abstract: Centrifuges are useful to, among other things, remove red blood cells from whole blood and retain platelets and other factors in a reduced volume of plasma. Platelet rich plasma (PRP) and or platelet poor plasma (PPP) can be obtained rapidly and is ready for immediate injection into the host. Embodiments may include valves, operated manually or automatically, to open ports that discharge the excess red blood cells and the excess plasma into separate receivers while retaining the platelets and other factors in the centrifuge chamber. High speeds used allow simple and small embodiments to be used at the patient's side during surgical procedures. The embodiments can also be used for the separation of liquids or slurries in other fields such as, for example, the separation of pigments or lubricants.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 12, 2013
    Assignee: Kensey Nash Corporation
    Inventors: John E. Nash, William T. Fisher
  • Publication number: 20130045852
    Abstract: The centrifugation vessel includes an outer wall containing an interior space. A dam defines a barrier which divides the interior space into at least two regions including a catch basin defining a higher gee region and a reservoir defining a lower gee region. These regions are joined together over the dam. The dam includes a face which is preferably tapered to enable optimization of speed of separation of a sample placed within the vessel. The vessel is usable in a biological sample processing method by having the higher gee region of the vessel configured to have an elongate form and the volume optimized for collection of a higher density fraction of the sample. Supply and withdrawal tubes extend into the regions for reliable extraction and separate collection of differing density fractions after separation by centrifugation. A medium density fluid is used within the vessel to further isolate constituents of differing densities.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: John R. Chapman, Rodney Sparks
  • Publication number: 20130040797
    Abstract: A method is provided in a centrifugal blood processing system for adding replacement fluid without a dedicated peristaltic pump to blood components being returned to the donor. A disposable blood processing set for use in the method comprises a hermetically sealed set of blood bags, connecting tubes, needles or connectors, and supporting structures with a replacement fluid line coupled directly to a return reservoir without contact with an intervening pump.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Applicant: Terumo BCT, Inc.
    Inventors: John R. LINDNER, William SWEAT
  • Publication number: 20130017943
    Abstract: A continuous centrifuge including: a rotor configured to separate a sample; a centrifuge chamber configured to accommodate the rotor; a driving part configured to rotate the rotor; a sample line configured to continuously supply and discharge the sample to and from the rotor during rotation of the rotor; and an air detecting sensor provided to a supply side and a discharge side of the sample line.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 17, 2013
    Applicant: HITACHI KOKI CO., LTD.
    Inventors: Hiroatsu Toi, Eiichi Fukuhara
  • Patent number: 8337379
    Abstract: A centrifuge for separating blood having a camera observing fluid flow, and a controller controlling the flow. The location of an interface is detected by image processing steps, which may comprise the steps of “spoiling” the image, “diffusing” the image, “edge detection”, “edge linking”, “region-based confirmation”, and “interface calculation”. “Spoiling” reduces the number of pixels to be examined preferentially on orthogonal axis oriented with respect to the expected location of the interface or phase boundary. “Diffusing” smoothes out small oscillations in the interface boundary, making the location of the interface more distinct. “Edge detection” computes the rate of change in pixel intensity, or. “Edge linking” connects adjacent maxima. “Region-based confirmation” creates a pseudo image of the regions that qualify as distinct. “Final edge calculation” uses the points where the shade changes in the pseudo image, averages the radial displacement of these points for the interface position.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: December 25, 2012
    Assignee: Terumo BCT, Inc.
    Inventors: Christopher Fletcher, William Sweat, Jeremy Kolenbrander, Aditya Dalvi, John R. Linder